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Abstract. In this lecture I present the basic knowledge needed to understand
the properties of the low-frequency spectrum of rotating stars. This spectrum is a
mixture of inertial and gravity modes. These modes both have singularities in the
limit of vanishing diffusion for a generic container. I explain the nature and the role
of these singularities; I also discuss the way these modes can be computed and the
actual difficulties that need to be circumvented to get sensible results.

1.1 Introduction

Rapidly rotating stars have benefitted from a renewed interest from stellar physicists
as they have popped up in the observational fields of interferometry and asterosis-
mology.

Recent progress in interferometry allowed observers to measure the shape of a
nearby star on the background sky, and for instance detect directly its centrifugal
distortion. First successes were obtained by van Belle et al (2001) on Altair, but
recent works give spectacular results on stars like Achernar (Domiciano de Souza
et al, 2003), Altair (Domiciano de Souza et al, 2005; Peterson et al, 2006a; Monnier
et al, 2007), and Vega (Aufdenberg et al, 2006). Observations not only give the
angular diameters of the stars, but can also determine the orientation of the spin
axis thanks to the measurement of the brightness distribution on the stellar surface.

These new observations are very important for stellar theory, because beyond
the determination of the rotational distortion these data give access to the mass
distribution inside a star, and all the physics which controls it.

Rotation long appeared as a key parameter in asteroseismology, as it permits
the identification of modes by the famous rotational splitting. However, the recent
launch of the CoRoT mission, the future launch of the KEPLER one, will strongly
increase the precision of the measurements of stellar eigenfrequencies. The precision
will be such that a parameter like rotation must perfectly be taken into account in
the models, so that other quantities, like density, temperature... can be precisely
constrained. It turns out that many stars thought to be not rapidly rotating, now fall
in this category as the influence of rotation cannot be taken into account throught
a simple perturbative method. Sometimes, like for the slowly oscillating γ-Doradus
stars, the rotation frequency is of the same order of magnitude as the excited
eigenfrequencies. There too, rotation needs to be accounted for by direct, non-
perturbative methods.

In the foregoing examples, two effects of rotation mix: the centrifugal distortion
of the star and the Coriolis acceleration. The first one modifies the shape of the



star and mainly affects the high frequency acoustic oscillations, while the second
one changes the low frequency part of the spectrum. In this series of lectures, the
former is discussed by M.-J. Goupil, whereas we concentrate on the latter.

As a first step we shall discuss the case of plane waves propagating in a rotating
fluid; we’ll then naturally move on to the eigenmodes of rotating fluids, the so-called
inertial modes, and also present the gravity modes, which share similar fundamental
properties. This will bring us to the Poincaré equation, which controls these types
of modes. The Poincaré equation being of hyperbolic type, we need to discuss in
detail the various consequences of this property. We can then discuss the more
complex case of gravito-inertial modes. We end this lecture by an introduction
to the numerical methods which can be used to compute this part of the eigen
spectrum of a rotating star.

1.2 Waves in a rotating fluid

1.2.1 Inertial waves

Inertial waves owe their existence to the Coriolis acceleration which serves as a
restoring force and ensures the conservation of angular momentum. Let us consider
the motion of a fluid particle under the action of this force. Its velocity verifies:

dv

dt
+ 2Ω ∧ v = 0

This equation is easily solved, and one finds

vx = v0 cos(2Ωt) and vy = v0 sin(2Ωt)

if at t = 0, vx = v0 and vy = 0. The trajectory of the particle is also easily derived:

x = x0 +
v0
2Ω

sin(2Ωt) and y = y0 − v0
2Ω

cos(2Ωt)

These expressions show that particles have a circular motion. The Coriolis accel-
eration thus brings the particles back to their equilibrium position after they have
followed a circular trajectory of (Rossby) radius v0/2Ω.

1.2.2 Dispersion relation

Let us now consider waves propagating in an incompressible inviscid rotating fluid.
The linearized equations of motion for disturbances read:

∂v

∂t
+ 2Ω ∧ v = − 1

ρ
∇P, ∇ · v = 0

Choosing (2Ω)−1 as the time scale and L as the length scale, we may rewrite these
equations with dimensionless variables as

∂u

∂τ
+ ez ∧ u = −∇p, ∇ · u = 0 (1.1)

Assuming that these waves are plane waves, i.e.



(p,u) = (p,u)0e
i(ωτ−k·x),

incompressibility implies that:

k · u = 0 (1.2)

showing that the waves are transverse. The equation of momentum gives:

iωu + ez ∧ u = ikP

from which we derive:

{

ez · (u ∧ k) = ik2P
iωuz = ikzP
iωk ∧ u = kzu

(1.3)

The dispersion relation of the waves follows from the elimination of the amplitudes:

ω2 =
k2

z

k2
(1.4)

From this dispersion relation we first see that the pulsation of the waves is bounded
up by the Coriolis frequency 2Ω, showing that the associated oscillations occupy
the low-frequency part of the spectrum.

These waves propagate very anisotropically. Let us first derive the phase veloc-
ity; this is

vφ =
ω

k
ek =

kz

k3
k (1.5)

which shows that the phase prefers propagating along the rotation axis. Let us now
compute the group velocity:

vg = ∇kω(k) =
k ∧ (ez ∧ k)

k3
(1.6)

This relation shows that the group velocity is orthogonal to the phase velocity!
Energy travels perpendicularly to the phase.

1.3 Inertial modes

1.3.1 General properties

The plane wave solution is acceptable only if the wavelength is very small compared
to the size of the container. This is not necessarily the case, especially in asteroseis-
mology where one is interested in the global oscillations of stars. We thus need to
consider the eigenmodes associated with these waves; still using the simplified set
up of the incompressible inviscid fluid, the eigenfunctions verify

{

iωu + ez ∧ u = −∇P
∇ · u = 0
u · n = 0 on the boundary

(1.7)



From this system we first derive the orthogonality property of these modes; if ωn

and ωm are two different pulsations then

∫

(V )

un · u ∗

m dV = 0 (1.8)

because

{

iωnun + ez ∧ un = −∇Pn

−iωmu ∗
m + ez ∧ u ∗

m = −∇P ∗
m

(1.9)

which leads to

i(ωn − ωm)

∫

(V )

un · u ∗

mdV = 0

Moreover, as expected from the dispersion relation the spectrum is bounded: ω ≤ 1.
This comes from

ω =

∫

(V )

Im[(u ∗ ∧ u) · ez]dV

∫

(V )

|u|2dV
.

Using several times Schwarz inequality, it turns out that

|ω| ≤

∫

(V )

|Im[(u ∗ ∧ u) · ez]|dV
∫

(V )

|u|2dV
≤ 1 (1.10)

since |Im[(u ∗ ∧ u) · ez]| ≤ ‖u ∗ ∧ u‖ ≤ ‖u‖2. Thus again we find that inertial
oscillations have a period larger than the semi-period of rotation.

Finally, let us note that when the spectrum exist1 it is dense in the interval
[0, 1]. A classical example of such a spectrum is:

n√
n2 +m2

, (n,m) ∈ IN2

It is dense since any frequency in [0, 1] can be approximated to any precision
by a pair of integers.

1.3.2 Rossby waves

When discussing waves in rotating fluids one often thinks to Rossby waves. What
are they? Just a sort of inertial modes actually. As they play an important part in
planetary atmospheres, they are often called planetary waves.

1 Mentioned without precision, the spectrum means the point spectrum of an op-
erator, that is, all the elements λ ∈ C such that Lf = λf , where f is square-
integrable. For the Poincaré equation, the point spectrum is usually empty!



The idea is the following: we are looking for waves propagating in a very thin
pellicula like the atmosphere of the Earth. We are seeking two-dimensional solu-
tions (vertical motions are inhibited or much smaller than horizontal ones). The
dispersion relation of such waves cannot be extracted from the one of the inertial
waves since we impose to these new waves an additional constraint, namely vz = 0.
As any dispersion relation requires a simplification by an amplitude, this amplitude
cannot be zero; we thus need to derive the dispersion relation from the beginning.
Equations of motion are:

{

iωv + 2Ω(y) ∧ v = −∇P
∇ · v = 0

(1.11)

Note that now the rotation vector depends on y which is the North-South coordi-
nate. Here we take a local frame where the x-axis points to the East and the z axis
to the local zenith. Moreover, for two dimensional motions, the vertical component
of the rotation vector is the only useful component. We thus write:

iωv + 2Ω(y)ez ∧ v = −∇P

where Ω(y) = Ω sinλ(y) and λ is the latitude; explicitly



































iωvx − 2Ω(y)vy = −∂P
∂x

iωvy + 2Ω(y)vx = −∂P
∂y

∂vx

∂x
+
∂vy

∂y
= 0

(1.12)

Pressure is eliminated for the vertical vorticity ζ; thus

iωζ = −2vy
dΩ

dy
(1.13)

This equation shows that the latitude dependence of the rotation vector is crucial.
We may now assume that dΩ

dy
is constant; this is the so-called β-plane approxima-

tion, β being the gradient of planetary vorticity. With this assumption, and setting
(vx, vy) ∝ exp[iωt− ikxx− ikyy], we easily get the dispersion relation of the Rossby
waves:

ω = − 2kx

k2
x + k2

y

(

dΩ

dy

)

(1.14)

This relation shows that ω/kx < 0 since dΩ
dy

> 0; thus, Rossby waves are retrograde:
they propagate in a counter-rotating way, to the West. The expression of their group
velocity, namely

vg = 2
dΩ

dy

(

(k2
y − k2

x)ex + 2kxkyey

)

/k4

shows that energy propagates in all the directions.
The dispersion relation of these waves shows that the latitudinal variation of the

rotation rate is crucial. Moreover, we may observe from the momentum equation



that even if the velocity field is that of a plane wave, this is not the case of the
pressure perturbation since ∂P

∂x
6= ikxP .

As mentioned in introduction, it is clear that Rossby waves are just a specific
type of inertial mode which meet some specific constraints like bidimensionality.

1.3.3 Planetary waves

Let us consider now a global analysis of the Rossby perturbations on the whole
surface of the sphere. We would call these modes planetary modes. Since the flow
is incompressible and two-dimensional, it can be described by a stream function
χ(θ, ϕ), such that

v = ∇ ∧ (χer)

er being the radial unit vector of spherical coordinates. We obtain the equation
controlling χ by applying the operator er · ∇∧ to (1.7). It turns out that

iωer · ∇ ∧2 (χer) + er · ∇ ∧ (ez ∧ u) = 0

which leads to

iω∆χ+
∂χ

∂ϕ
= 0

Now, if we expand the solutions onto spherical harmonics, namely

χ =
∑

`,m

χ`
mY

m
`

we find that an eigenmode corresponds to each harmonic, with the eigen frequency
ω`m following the dispersion relation

ω`m =
m

`(`+ 1)
(1.15)

Note that we used the equation verified by spherical harmonics∆Y m
` = −`(`+ 1)Y m

` .
We observe that the phase angular velocity is −ω/m = −1/`(`+1) and always neg-
ative2. Thus, just like Rossby waves, planetary waves propagate to the West.

1.4 The Poincaré equation

Taking the divergence of the momentum equation in (1.7), we find the equation of
the pressure perturbation, namely:

∆P − 1

ω2

∂2P

∂z2
= 0 (1.16)

well-known under the name of Poincaré equation since Cartan (1922). Since ω ≤ 1
this equation is spatially hyperbolic.

Before investigating the properties of this equation, let us make a stop on gravity
modes, which also need the solutions of Poincaré equation.

2 We indeed assumed that χ is proportional to ei(ωt+mϕ).



1.4.1 A brief stop on gravity modes

Let us consider an incompressible stably stratified fluid (we use the Boussinesq
approximation). Disturbances of the equilibrium verify the set of equations:































∂δv

∂t
= −1

ρ
∇δp+

δρ

ρ
g

∂δT

∂t
+ δv · ∇T0 = 0

∇ · δv = 0

(1.17)

where T0 is the backgound temperature which we suppose to vary linearly with
height z· We set

T0 = T00 + βz with β > 0

For small variations of temperature

δρ

ρ
= −αδT

where α is the dilation coefficient of the fluid. The equations may be rewritten as











iωδv = −∇δp− N2

iω
δvzez

∇ · δv = 0

(1.18)

where we introduced the squared Brunt-Väisälä frequency, namely N 2 = αβg.
Assuming that N is constant and eliminating the velocity, we find:

∆x,yδp−
(

ω2

N2 − ω2

)

∂2δp

∂z2
= 0

which is the Poincaré equation, here again (note that for gravity modes ω ≤ N).

1.4.2 Properties of the solutions of the Poincaré equation

The first important point is that Poincaré equation is hyperbolic with respect to
space coordinates.

A reminder about hyperbolic equations Second order partial differential
equations are divided into four categories: the elliptic, hyperbolic, parabolic and
mixed types. This division is based on a property of the coefficients of the second
order partial derivatives. Let us consider the general form:

A(x, y)
∂2f

∂x2
+B(x, y)

∂2f

∂x∂y
+ C(x, y)

∂2f

∂y2
+ · · · = 0

The functionD(x, y) = B2−4AC determines the type of the equation. If everywhere
in the definition domain of f



• D(x, y) > 0, the equation is hyperbolic
• D(x, y) = 0, the equation is parabolic
• D(x, y) < 0, the equation is elliptic

whereas if D(x, y) changes sign in the domain, the equation is said to be of mixed

type. Examples:

• The wave equation is hyperbolic
• The heat equation is parabolic
• The equation of a potential is elliptic
• Tricomi’s equation is of mixed type

The consequences of hyperbolicity The Poincaré problem is ill-posed in
the sense of Hadamard: a hyperbolic problem is well-posed when associated with
Cauchy type conditions, i.e. initial conditions. Boundary conditions are usually
impossible to satisfy with C∞ functions. We detail now some implications of ill-
posedness.

À Under-determination

A first consequence of ill-posedness is that solutions are not fully determined.
For instance, let us consider the wave equation

∂2f

∂x2
− 1

c2
∂2f

∂t2
= 0

We all know that the general solution of this equation may be written

f(x, t) = Φ(x− ct) + Ψ(x+ ct)

where Φ and Ψ are arbitrary functions. To be fully determined, they need two
initial conditions, for instance,

f(x, 0) = cos x and
(

∂f

∂t

)

0
= 0

which leads to

f(x, t) =
1

2
[cos(x− ct) + cos(x+ ct)]

Now, just imagine that instead of asking for two initial conditions to be met,
we had been asking for one initial condition and a condition at some later time,
just like:

f(x, 0) = I(x) and f(x, T ) = F (x)

where I(x) and F (x) are given data. This problem is mathematically ill-posed
and the solution cannot be fully specified. Indeed, we find that Ψ just has to
satisfy

Ψ(x) = Ψ(x+ 2cT ) + F (x+ 2cT ) − I(x)

which means that this function needs to be given in the interval [0, 2cT ].



Á Infinite degenerescence

An ill-posed problem may also have infinitely degenerate eigenvalues. For ex-
ample, if one solves the (two-dimensional) Poincaré equation in a rectangle,
namely

∂2ψ

∂x2
+

(

1 − 1

ω2

)

∂2ψ

∂z2
= 0 , ψ = 0 on ∂D

The classical solution is

ψmn(x, z) = Amn sinmπx sinnπz

and

ω2
mn =

n2

m2 + n2
(1.19)

The eigenvalues are infinitly degenerate because

ωmn = ωjm,jn ∀j ∈ IN

and each eigenmode is arbitrary

ψmn(x, z) =

∞
∑

j=1

aj sin jmπx sin jnπz

Â Singularities

If D(x, y) = B2 − 4AC > 0, we can “factorize” the second order terms; hence,

A
∂2f

∂x2
+B

∂2f

∂x∂y
+ C

∂2f

∂y2
+ · · · = 0

is changed into
(

a
∂

∂x
+ b

∂

∂y

)(

a′
∂

∂x
+ b′

∂

∂y

)

+ · · · = 0

which means that there exists a coordinate system (u, v) such that

∂2f

∂u∂v
+ · · · = 0

with

∂

∂u
= a

∂

∂x
+ b

∂

∂y

∂

∂v
= a′

∂

∂x
+ b′

∂

∂y

(u, v) are the characteristic coordinates and the curves u =Cte and v =Cte are
the characteristic curves. They are two independent families of curves deter-
mined by the equations:

dy

dx
=
b

a
and

dy

dx
=
b′

a′

Let us now illustrate the foregoing discussion by an example where we impose
boundary conditions to a wave-type equation. A typical situation is illustrated
in Fig. 1.1. From this figure we see that
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Fig. 1.1. Illustration of the propagation of Φ and Ψ values by characteristics.

• If Φ is given in [0, 2cT ] then it is known in [2cT, 4cT ]; for instance, if we
give Φ0 at x = 0, t = 0, then we determine Ψ1 at t = T , from which we find
Φ2 at t = 0 and x = 0 + 2cT .

• If Φ is known in [0, 2cT ], then f(x, t) is known at any point of the domain.
As shown in Fig. 1.1, the values needed to make f(M) are those of ΦM′

and ΦM′′ .
• If we isolate a rectangle, as in Fig. 1.2, limited on the sides by line segments

at x =Cst where f is given, we immediatly find the possibility of a con-
tradiction between the values of f on one side and those on the other side.
Indeed, on this figure we see that the values of ΦR and ΦG, given on the
red segment [0, 2cT ], control the value of f at points M0 and M1. However,
the values of f at these points are data, which need not be both compatible
with ΦR and ΦG. If they are not, the solution must have a discontinuity
somewhere.

Back to Poincaré In three dimensions characteristic lines are replaced by char-
acteristic surfaces. For the Poincaré equation, the characteristic surfaces are cones
of equation

z = ±
√

1 − ω2

ω2
r + C (1.20)

Of course, in the meridional plane, they appear as straight lines which make an
angle ϑ = arcsinω with the rotation axis. These lines show the direction of energy
propagation.
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Fig. 1.2. Illustration of the compatibility of boundary conditions with a hyperbolic
equation. If ΦG and ΦR are given, the values of the solution are known in M0 and
M1. But f(M0) and f(M1) are independent data which may not result from the
same values of ΦG and ΦR.

Attractors Characteristics bounce on the boundaries of the domain and we may
follow their trajectories just like those of a dynamical system in a phase space.
However, this dynamics is very simple since the direction of the characteristics
has only two possibilities: ±ϑ. In general, the trajectories converge towards an
attractor as shown in Fig. 1.3. Attractors are specific to a container. The case of
the spherical shell, more appropriate to astrophysical bodies, has been investigated
in detail in Rieutord et al (2001). In the inertial frequency range [0, 2Ω], they may
be characterized by the variations of their Lyapunov exponents.

1.4.3 The role of viscosity

The foregoing discussion ignored viscosity; however, as one can imagine, singular-
ities are smooth out by viscosity. Mathematically, when viscosity is restored, the
problem is well-posed and solutions are said to be regularized. Nevertheless, one
may wonder whether the singularities associated with attractors leave some signa-
ture in the viscous solutions. The answer is definitely yes, provided the viscosity
is sufficiently small. As shown in Fig. 1.4, the eigenmode concentrates along the
path of characteristics defined by the attractor: it generates an oscillating detached
shear layer. The physical interpretation is that a wave packet launched randomly
in the container, will rapidly be focused along the attractor. As time advances, it
gets closer and closer to the attractor while its wavenumber increases until diffusion
effects are strong enough to balance the contraction of the mapping made by the
characteristics. This scenario has been used to derive analytical solutions of eigen



Fig. 1.3. Convergence of characteristics towards an attractor.

modes controlled by attractors (see Rieutord et al, 2002) in a two-dimensional case.
In a thin shell, representing, for instance, the Earth atmosphere, attractors may be
confined to equatorial regions and three-dimensional equations can be simplified
into two-dimensional ones.

The structure of a detached shear layer (in the 2D case) can be derived from
the system

{

λu + ez ∧ u = −∇P +E∆u

∇ · u = 0
(1.21)

which controls the shape of inertial modes when there is viscosity (here given by
the Ekman number E). It turns out that the velocity in a shear layer is determined
by the following differential equation:

d2u

dz2
−

[

1

4
z2 + eiπ/4B

(

p

2α0Af20

)1/2

(τ1 ± iω1)

]

u = 0

where z is the coordinate across the layer. This is actually the Schrödinger equa-
tion of a quantum particle trapped in a parabolic well, i.e. the famous harmonic
oscillator. Its solutions are the parabolic cylinder functions:

u = U(a, z), a = −n− 1

2
= eiπ/4B

(

p

2α0Af20

)1/2

(τ1 ± iω1)

As shown in Rieutord et al (2002), the matching between these analytical solutions
and the numerical ones is perfect. These solutions give for the first time (to our
knowledge) an explicit example of the regularization of an operator.



Fig. 1.4. An inertial mode focused around an attractor when the fluid is slightly
viscous (E = 10−9).

1.4.4 The critical singularity

The singularities issued from the characteristics attractors are very strong; solu-
tions are neither integrable nor square-integrable. However, they are not the only
singularities: some are associated with the boundary conditions. Indeed, for the
inviscid case the velocity verifies v · n = 0 on the boundaries, which is equivalent
to

−ω2
n · ∇P + (n · ez)(ez · ∇P ) + iω(ez ∧ n) · ∇P = 0 (1.22)

for the pressure. This condition is neither of Dirichlet type nor of Neumann type.
It is called with “oblique derivatives”. It generates singularities at the so-called
“critical latitude” which is where the characteristics are tangential to the boundary.
This singularity is weaker than the attractor one (Rieutord et al, 2001) and usually
manifests itself in a thickening of the Ekman boundary layer (e.g. Roberts and
Stewartson, 1963).

1.4.5 A remark on gravity modes

We have shown in sect. 1.4.1 that gravity modes are also governed by a hyperbolic
equation. One may thus wonder why singularities of attractors have never been
mentioned the astrophysical literature. The reason is that gravity modes have es-
sentially been considered in non-rotating stars that are taken as perfect spheres. In
such a geometry, the spherical symmetry of the problem makes the partial differen-
tial equations separable. Solutions are just the product of one-dimensional solutions



which are regular. Singularities disappear. We see that this situation is very specific
and that singularities are rather the rule than the exception.

Finally, let us mention that singular gravity modes associated with attractors
have been observed experimentally by Maas et al (1997), and are not a pure con-
jecture of theoretical work!

1.5 The gravito-inertial modes

In stars and other natural systems rotation and stable stratification usually act
together. Since gravity modes and inertial modes are low-frequency modes, they
always combine in the spectral range [0,

√

(2Ω)2 +N2
max]. In slowly rotating stars,

Nmax � 2Ω and there is a large number of gravity modes which are little affected by
rotation; however, in rapidly rotating stars like γ-Dor, the Brunt-Väisälä frequency
and the Coriolis frequency are of the same order of magnitude. The low-frequency
modes need therefore a non-perturbative approach.

1.5.1 The mathematical side

The first question to be answered is how Poincaré equation is transformed when a
stable stratification is combined with rotation. A simple way towards the answer is
to consider a rotating radially stratified fluid in a sphere, and its small amplitude
perturbations (e.g. Dintrans et al, 1999). Time-periodic disturbances are solutions
of

{

∇ · v = 0
iωv + 2Ω ∧ v = −∇p− αTg

iωT + v · ∇T0 = 0
(1.23)

where α is the dilation coefficient, T0 the background temperature which we take
such that ∇T0 = β(r)er. The local gravity is g = −g(r)er. When the temperature
fluctuation is eliminated in favour of the velocity, the momentum equation reads:

iωv + 2Ω ∧ v = −∇p+
N2(r)

ω
ivrer (1.24)

Taking the divergence of this equation, we get the generalization of the Poincaré
equation. We write its second order terms for axisymmetric perturbations:

(ω2 −N2(r) cos2 θ)
∂2P

∂s2
+ 2N2(r) sin θ cos θ

∂2P

∂s∂z

+(ω2 −N2(r) sin2 θ)
∂2P

∂z2
+ · · · = 0

where s is the radial cylindrical coordinate. These terms show the nature of the
operator: it is of mixed type. The equation of the critical surfaces which separate
the hyperbolic regions from the elliptic ones is

ω4 − (N2(r) + 4Ω2)ω2 + 4Ω2N2(r) cos2 θ = 0



Fig. 1.5. Two examples of gravito-inertial modes confined in the hyperbolic region
of the domain, shown by their kinetic energy amplitude in a meridional plane.

In some standard models (e.g. Rieutord, 2006; Chandrasekhar, 1961), N ∝ r. In
this case, critical surfaces are ellipsoid or hyperboloids.

In the hyperbolic regions, characteristics are no longer straight lines (in the
meridional plane), but curves given by the following differential equation (e.g. Fried-
lander and Siegmann, 1982; Dintrans et al, 1999):

dz

ds
=
zsN2 ± ξ1/2

ω2 −N2z2
, ξ = ω2N2s2 + (1 − ω2)(ω2 −N2z2) (1.25)

Nevertheless, as before, the general rule is that they focus onto attractors. The
novelty is that they are of two kinds: Either limit cycles of characteristics as before
or a wedge made by a critical surface and a boundary. We give two examples of
these modes in Fig. 1.5, for a Boussinesq model; others may be found in Dintrans
et al (1999).

1.5.2 Gravito-inertial modes in stellar models

The foregoing discussion may be extended to more realistic models of stars. This
exercise was done in Dintrans and Rieutord (2000) where we computed the gravito-
inertial modes in a model of a 1.8 M�-ZAMS star. This mass is typical of the
γ-Doradus stars.

By scanning the gravito-inertial frequency band, attractors have also been de-
tected. They are limit-cycle attractors. However, we noticed some differences with
the Boussinesq case. Namely, the frequency bands where attractors exist are no-
ticeably narrower. The origin of this property is not clear yet, and may come from
the “distance” between the Brunt-Väisälä frequency and the Coriolis frequency,
i.e. for large-scale gravito-inertial modes, gravity dominates over rotation because
Nmax � 2Ω.



1.6 How can we compute these modes ?

To end this lecture, I would like to briefly address the numerical side of the subject.
This is indeed a delicate question as the problem is two-dimensional and therefore
involves large matrices.

The general form of the problem may be appreciated with the example of inertial
modes. If we take the curl of the momentum equation in (1.21), we find that the
velocity field verifies:

λ∇ ∧ v = E∆∇ ∧ v + ∇ ∧ (ez ∧ v), ∇ · v = 0

completed by boundary conditions. In a more symbolic form, this problem is a
generalized eigenvalue problem, like

L(f) = λM(f)

where L and M are partial differential operators and λ is the eigenvalue.

1.6.1 The grid

The first step in the numerical resolution is to decide about the discretization. In
all the examples shown, we used spectral methods. These methods are indeed very
appropriate since a discrete approximation of the functions is made in the most
compact way. Thus, matrices have the smallest size for the required precision. This
will appear as a key parameter.

Hence, for the horizontal part, we use a spherical harmonic expansion, while
for the radial dependence, we use the Gauss-Lobatto grid, which is associated with
Chebyshev polynomials. Typically, a function f(r, θ, ϕ) is discretized in the follow-
ing way:

f(r, θ, ϕ) ≡
∑

`,m

f `
m(ri)Y

m
` (θ, ϕ)

The set of f `
m(ri) constitutes the discrete representation.

1.6.2 The generalized eigenvalue problem

Once the discretization is fixed, the eigenvalue problem takes the form of the al-
gebraic generalized eigenvalue problem [A]x = λ[B]x. This new problem can be
solved numerically in three ways, typically. The first one is the brute force of the
QR (real) or QZ (complex) algorithm where all the eigenvalues of the system are
computed. Obviously, this can be done for small-size matrices only; the reasons
are that the QR/QZ algorithm uses full matrices, thus the memory requirement is
rapidly prohibitive as well as the computing time which grows like N 4, N being the
rank of the matrices.

When large sizes are necessary (for small diffusivities for instance), methods
which determine a few eigenvalues of the spectrum are to be preferred. Indeed,
the determination of the full spectrum does not make sense physically since we are



Fig. 1.6. Spectra of the numerical solution shown in Fig. 1.4. On left we see the
amplitude of the Chebyshev coefficients (for the radial and azimuthal velocities).
On right, we show the amplitudes of the spherical harmonics components for the
same quantities.

usually interested in the least-damped modes; these modes are the ones which may
be observed.

The method that we advise belongs to the Krylov-type methods, which iter-
atively determine the eigenvalues of some low-dimensional sub-space. We use the
Arnoldi-Chebyshev algorithm (e.g. Valdettaro et al, 2007). In the same vein let us
also mention the Jacobi-Davidson method which has been investigated more re-
cently and may be more appropriate to parallel computers (e.g. Sleijpen and Van
der Vorst, 2000).

1.6.3 Errors

However, once a solution is obtained, one needs to be sure that it is valid and
not a spurious one. In other words, we must ascertain that the numerical error is
negligible.

This error contains two independent sources of errors: the truncation error and
the round-off error. The truncation error is the most obvious: spectral solutions are
expansions in polynomials of higher and higher orders. Numerically, we use a finite
number of such polynomials (equivalently, we use a finite number of grid points)
and some difference remains with the exact solution. This truncation or spectral

error is easily appreciated with a spectrum of the numerical solution as the ones
shown in Fig 1.6. These two spectra represent the numerical solution of Fig. 1.4.
We see the convergence of the solution on the Chebyshev polynomials and spherical
harmonics basis. The truncation error is therefore ∼ 10−5 (and less for other parts
of the solution).
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Fig. 1.7. Effects of the round-off error on the computation of an eigenvalue. The
correct value, given by the cross, has been computed using extended precision com-
putations (28-digits).

In the foregoing example, we may say that the numerical solution is spectrally
converged. However, this solution may be pure junk if round-off errors dominate.
Indeed, all calculations are done with a finite number of digits (typically 16 in double
precision); unfortunately, it is quite common in numerical linear algebra, that the
10−16 errors on the data are amplified by a factor 1016 on the result. This comes from
the conditioning of the matrices, which may be very bad. Such huge amplifications
occur especially with ill-conditioned operators of large size. One way of estimating
the round-off error on a numerical result consists in modifying the input data with
a 10−16-noise. An example is given in Fig. 1.7 for the computation of an eigenvalue.
A more detailed discussion, with examples, may be found in Valdettaro et al (2007).

1.7 Conclusions

To conclude this lecture, I would like to stress a few properties of the low-frequency
spectrum of rotating stars, and some points in computing the associated eigenvalues
and eigenmodes.

• In a general set-up, gravito-inertial modes, as understood by physicists, do
not exist in an adiabatic approach. This is because the operator goverging the
eigenvalue problem is either spatially hyperbolic or of mixed type and is rarely
compatible with boundary conditions.

• Diffusivities (viscosity or heat diffusion) therefore play an important part in
the dynamics of the system. They regularize the singularities and control the
size of the associated shear layers.

• When computing such modes, the singularity of the adiabatic limit shows up in
the bad conditioning of the matrices of the associated linear systems. A careful
control of the round-off error is therefore needed to obtain sensible results. Our
experience is that the diffusion coefficients like viscosity are quite appropriate to
improve the conditioning of the linear operators. Relying on numerical diffusion
would be very hasardous.

Realistic numbers are often beyond reach of numerical solutions in astrophysi-
cal problems (just think to the Reynolds number in the convective zones of stars).



In the case of the eigenspectrum of a star, it turns out that the recent progress of
computers’ power together with that of numerical methods, makes the astrophys-
ical regime within (indirect) reach of the calculations. Indeed, although the brute
force computation is often not possible, the determination of the asymptotic laws
governing a given eigenmode when diffusion numbers become small is possible in
most cases. Thus, difficulties are to be expected from the models rather than from
the eigenmode computation, although, as we have shown, this calculation is not an
easy game.

I am very grateful to Coralie Neiner and Jean-Pierre Rozelot for the smooth
organization of this school and the fruitful time spent there. The high resolution
computations, illustrating this lecture, have been realized on the NEC-SX8 of the
‘Institut du Développement et des Ressources en Informatique Scientifique’ (IDRIS)
which is gratefully acknowledged.
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