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Internal shear layers in librating spherical shells:
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Internal shear layers generated by the longitudinal libration of the inner core in a spherical
shell rotating at a rate Ω∗ are analysed asymptotically and numerically. The forcing
frequency is chosen as

√
2Ω∗ such that the layers issued from the inner core at the

critical latitude in the form of concentrated conical beams draw a simple rectangular
pattern in meridional cross-sections. The asymptotic structure of the internal shear layers
is described by extending the self-similar solution known for open domains to closed
domains where reflections on the boundaries occur. The periodic ray path ensures that
the beams remain localised around it. Asymptotic solutions for both the main beam along
the critical line and the weaker secondary beam perpendicular to it are obtained. The
asymptotic predictions are compared with direct numerical results obtained for Ekman
numbers as low as E = 10−10. The agreement between the asymptotic predictions and
numerical results improves as the Ekman number decreases. The asymptotic scalings
in E1/12 and E1/4 for the amplitudes of the main and secondary beams, respectively,
are recovered numerically. Since the self-similar solution is singular on the axis, a new
local asymptotic solution is derived close to the axis and is also validated numerically.
This study demonstrates that, in the limit of vanishing Ekman numbers and for particular
frequencies, the main features of the flow generated by a librating inner core are obtained
by propagating through the spherical shell the self-similar solution generated by the
singularity at the critical latitude on the inner core.

Key words: boundary layer separation, waves in rotating fluids

1. Introduction

In astrophysical fluid bodies, such as metallic liquid cores and subsurface oceans, complex
fluid flows can be excited by mechanical forcing (Le Bars, Cébron & Le Gal 2015).
Libration, precession and tides, which correspond to harmonic perturbations of the
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rotation rate, rotation axis and body shape, respectively, are the most common large-scale
forcings originating from gravitational interactions between orbiting bodies. Libration
in particular is crucial for quasi-synchronised bodies locked in a spin–orbit resonance
with their orbiting companion. The amplitude of the response to libration forcing helps
constrain the internal structure of astrophysical bodies, indicating, for example, the
existence of a subsurface ocean in Enceladus (Thomas et al. 2016). The internal flows
driven by such forcing have been extensively studied both numerically (Calkins et al. 2010;
Cébron et al. 2012; Favier et al. 2015) and experimentally (Noir et al. 2009, 2012; Grannan
et al. 2014; Le Reun, Favier & Le Bars 2019).

In a rotating fluid, the Coriolis acceleration acts as a restoring force leading to the
propagation of inertial waves whose frequency ω∗ is smaller than twice the rotation rate
Ω∗ (Greenspan 1968). In closed geometries, propagating inertial waves can eventually
form global modes which can be resonantly excited by an external forcing (Aldridge &
Toomre 1969). While analytical inviscid solutions exist for simple geometries such as
the cylinder or the sphere, the ill posedness of the inviscid problem in a closed domain
implies that singularities are the norm rather than the exception. Even when inviscid modes
exist, such as for the cylinder, viscous corrections at the corners tend to spawn internal
shear layers (McEwan 1970). In a spherical shell, two types of inviscid singularities
are observed. Attractors are formed by the gradual convergence of characteristics along
which inertial-wave beams propagate (Rieutord, Georgeot & Valdettaro 2001; Rieutord &
Valdettaro 2018). A second type of singularity appears wherever the boundary is locally
tangent to the direction of propagation of inertial waves, the so-called critical latitude
(Kerswell 1995). Viscosity naturally regularises these inviscid attractors and the singular
surfaces associated with critical latitudes, which gives rise to different types of internal
shear layers propagating in the bulk of the rotating fluid. These shear layers are also
relevant to stratified fluids, which can support internal gravity waves that are very similar
at the linear level with inertial waves in rotating fluids. Internal and inertial attractors
have been experimentally found in a rectangular basin with one sloping boundary by
Maas et al. (1997) and Manders & Maas (2003), respectively. The internal shear layers
spawned by critical latitudes on concave and convex boundaries have also been observed
experimentally in a precessing spheroid (Noir et al. 2001) and librating (spherical and
ellipsoidal) shells (Koch et al. 2013; Lemasquerier et al. 2017), respectively. They could
play an important role in the mixing of stratified fluids (Brouzet et al. 2016; Dauxois et al.
2018) and the generation of zonal flows in rapidly rotating fluid bodies (Maas 2001; Morize
et al. 2010; Favier et al. 2014; Le Dizès 2015).

The dependence of oscillating internal shear layers on frequency has been tackled both
as eigenvalue (Rieutord & Valdettaro 1997; Rieutord et al. 2001; Rieutord, Valdettaro
& Georgeot 2002; Rieutord & Valdettaro 2018) and forced problems (Ogilvie 2009;
Rieutord & Valdettaro 2010; Lin & Ogilvie 2018, 2021). Eigenmodes computed with
the first approach are categorised as attractors, critical-latitude and quasi-regular modes
based on the path of characteristics (Rieutord & Valdettaro 2018). For the forced problem,
the response is classified as resonant, non-resonant or anti-resonant when its dissipation
increases, remains constant or vanishes as viscosity tends to zero (Rieutord & Valdettaro
2010). The anti-resonant response occurs at the frequencies of periodic orbits. The
non-resonant counterpart is observed at the frequencies of attractor modes, while the
resonant one corresponds to the frequencies where global modes are hidden beneath the
localised wave beams (Lin & Ogilvie 2021).

There are numerous theoretical and numerical studies investigating the scaling laws
of oscillating internal shear layers. It is now accepted that the width of the shear layers
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spawned from the critical latitude scales like E1/3 (Walton 1975b; Kerswell 1995), where
E is the Ekman number measuring the importance of viscosity compared with rotational
effects. Such a scaling has been demonstrated in several numerical works (Favier et al.
2014; Lin & Noir 2021). However, the scaling for the amplitude of the response is disputed
in the literature. Early theoretical predictions by Kerswell (1995) asserted that the strength
of the internal shear layers spawned from the inner boundary in a spherical shell should
follow a E1/6 scaling, which is also observed numerically (Calkins et al. 2010; Favier
et al. 2014; Cébron et al. 2019). However, by asymptotically matching the solution of the
internal shear layer to that of the boundary layer near the critical latitude, Le Dizès & Le
Bars (2017) found that the amplitude should scale with E1/12. Recent numerical results
by Lin & Noir (2021) at Ekman numbers in the range 10−7 < E < 10−5, namely at lower
viscosities than previous work, tend to favour the scaling E1/12 over E1/6. In the present
paper, we will further validate the amplitude scaling E1/12 by reaching Ekman numbers as
low as E = 10−10.

One of the difficulties associated with these internal shear layers is their behaviour as
they bounce on solid boundaries. Moore & Saffman (1969) and Thomas & Stevenson
(1972) introduced self-similar solutions to describe the wave beams in unbounded
geometries for rotating and stratified fluids, respectively. These similarity solutions are
leading-order expressions describing the viscous smoothing in a O(E1/3) layer of a
local inviscid singularity propagating along a characteristic line. Le Dizès & Le Bars
(2017) applied these solutions to the case of the critical-latitude singularity on a librating
axisymmetric convex surface. They also numerically demonstrated the ability of the
self-similar solutions to describe the internal shear layers generated by a librating spheroid
in an unbounded domain. In a bounded domain, such as a spherical shell, where reflections
on the boundaries and attractor singularities exist, the similarity solutions were found to
be able to describe the internal shear layers created by the critical-latitude singularity
(Walton 1975a) and attractors (Rieutord et al. 2001; Ogilvie 2005). Internal shear layers
are wave packets. How these wave packets are reflected on the boundaries depends on
the geometry of the reflecting surfaces. On a flat surface, they are completely reflected,
as plane waves, in a characteristic direction different from the incident one (Phillips 1963,
1966; Kistovich & Chashechkin 1994; Le Dizès 2020), while on a curved surface there may
exist ‘back-reflected’ waves along the incident characteristic but in the opposite direction
(Baines 1971a). Moreover, when the incident characteristic is tangent to the curved surface
at some point, the incident waves are also split into two different waves (Baines 1971b).
However, in both cases, if the wavelengths of the incident beam are sufficiently large
compared with the length scales of the reflecting surface, the back-reflected response is
negligible (Baines 1971a). We shall be in this situation in the present study.

In this paper, we consider the inertial waves generated by the longitudinal libration of the
inner core of a rotating spherical shell in the linear limit of infinitesimal forcing amplitudes
and Ekman numbers. The objective is to generalise the work of Le Dizès & Le Bars
(2017) to the case of a closed geometry involving reflections on curved solid boundaries.
For simplicity, we do not consider the case of attractors and focus on the shear layer
spawned from the critical latitude at a particular frequency for which the characteristic path
eventually comes back to the critical latitude after several reflections. These periodic orbits
(Rieutord et al. 2001; Rieutord & Valdettaro 2018) are a natural choice since the path of
characteristics remains topologically simple, which would not be the case for frequencies
sustaining attractors. For illustration, the shear layers in a spherical shell forced by the
libration of the inner core are displayed in figure 1. This solution is obtained by the direct
numerical integration of the linearised viscous equations and will serve as a reference to
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1×10–8

|vφ|

1×10–10

1×10–5

1×10–12

1×10–2

1×10–4

1×10–14

1×10–3

1×10–16

1×10–6D

(a)

(b)

E = 10–8E = 10–6 E = 10–10

Figure 1. Contours of the amplitude of azimuthal velocity |vφ | (a) and dissipation D (b) for three Ekman
numbers obtained by the direct numerical integration of the linear forced viscous problem. The aspect ratio of
the spherical shell is η = 0.35 and the dimensionless librating frequency of the inner core is ω = √

2.

which the generalised asymptotic solution introduced in this paper will be systematically
compared.

The paper is organised as follows. Section 2.1 introduces the setting of the problem
and the basic equations. Then we describe the asymptotic theory in § 2.2. The self-similar
solution in an open geometry and its scaling are recalled in § 2.2.1. In § 2.2.2, we recall the
reflection laws on a flat boundary and on the axis. The extended asymptotic solutions for
different regions of the spherical shell are derived in §§ 2.2.3–2.2.4. Section 2.3 is devoted
to the description of the numerical method used to integrate the linearised equations. The
comparison between the theoretical predictions and the numerical results is performed in
§ 3 for the solution in the bulk. Close to the axis, the self-similar solution is singular. In
§ 4, a new asymptotic solution valid close to the axis is derived using Hankel transforms
and compared with the numerical solution. Finally, a summary and possible directions for
future works are discussed in § 5.

2. Framework

2.1. Basic equations
We consider the viscous incompressible rotating flow filling a spherical shell and forced
by the libration of the inner core, as shown in figure 2. The radii of the outer and inner
spheres are ρ∗ and ηρ∗ (with 0 < η < 1), respectively. The flow between them rotates
around the symmetry axis Oz and with an angular velocity Ω∗ . The inner core librates
at an amplitude ε∗ and frequency ω∗, such that the corresponding angular rotation rate is
Ω∗ + ε∗ cos(ω∗t∗). Space and time variables are non-dimensionalised by the outer radius
ρ∗ and angular period 1/Ω∗, respectively. The non-dimensional radii of the outer and
inner shells are then 1 and η, respectively, while the non-dimensional angular velocity of
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Internal shear layers in a spherical shell

Ω∗

Ω∗ + ε∗ cos ω∗t∗

ηρ∗

ρ∗

ez

er×
eφ

Figure 2. Schematic of the problem: the outer shell of radius ρ∗ rotates with an angular velocity Ω∗, while
the inner one of radius ηρ∗ rotates at Ω∗ + ε∗ cos(ω∗t∗) with ε∗ and ω∗ being the amplitude and frequency of
the libration, respectively.

the inner core is 1 + ε cos ωt with libration amplitude ε = ε∗/Ω∗ and libration frequency
ω = ω∗/Ω∗. The Ekman number is defined by

E = ν

Ω∗ρ∗2 , (2.1)

with ν being the kinematic viscosity.
Since we are concerned with the harmonic linear response in the limit of small viscosity,

both the libration amplitude and the Ekman number are assumed to be small. The libration
frequency ω is chosen in the inertial-wave range such that it can be written as ω = 2 cos θc.
The angle θc indicates the direction of propagation of the inertial waves with respect to
the equatorial plane. It also corresponds to the inclination angle that internal shear layers
make with respect to this plane. In order to form a simple closed circuit, θc is fixed to
45◦. This means that the libration frequency ω is fixed to

√
2. These values are unchanged

throughout the paper. An example of the ray path is shown in figure 3, where the internal
shear layer is initially spawned at the critical latitude Sc and returns to it after bouncing
on the axis, reflecting twice on the outer boundary and reflecting on the equatorial plane,
thanks to the imposed symmetry.

The flow is governed by the linearised incompressible Navier–Stokes equations in the
rotating frame. We seek the following harmonic solution for the velocity V and pressure P

(V , P) = ε(v, p) e−iωt + c.c., (2.2)

where the notation c.c. denotes complex conjugate terms. The velocity v and pressure p
satisfy the following equations in the rotating frame

−iωv + 2ez × v = −∇p + E∇2v, (2.3a)

∇ · v = 0, (2.3b)
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L5
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x|| x⊥
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Figure 3. Critical lines Lj (j = 1, 2 . . . 8) and the local coordinate systems (x‖, x⊥) for rays initially emitted in
the northward direction. The opposite directions are used for rays initially emitted in the southward direction.

with the boundary conditions

v = reφ on the inner shell, (2.4a)

v = 0 on the outer shell, (2.4b)

where r is the distance to the rotation axis.

2.2. Asymptotic theory
The asymptotic analysis is conducted within the cylindrical coordinate system (r, z, φ).
The basic idea of the asymptotic theory is to assume that the main features of the
solution come from the propagation of the critical-latitude singularity Sc localised at
r = η

√
1 − ω2/4 and z = ηω/2 on the inner sphere. For the frequency ω = √

2, this
singularity is expected to propagate along the critical characteristic lines Lj (j = 1 . . . 8)
and form a closed circuit (see figure 3). The northward rays correspond to the rays initially
propagating along the line L1. They then cover the circuit L1 → L2 → L3 → L4 → L5,
possibly bounce on the inner core leading to the additional path L6 → L7 → L8 before
starting the circuit again. Similarly, the southward rays start propagating on the line
L5 from Sc, travelling on L5 → L4 → L3 → L2 → L1 (possibly on L8 → L7 → L6) and
continuing the same circuit again. The critical lines L1–L5 correspond to the main beam
(inclined quadrilateral) observed in figure 1, while L6–L8 are responsible for the two
secondary wider and weaker beams near the centre line z = r. Both northward and
southward rays are expected to contribute to the solution. Note, however, that computing
their contribution will require considering their interaction with the rotation axis and their
reflections on boundaries.

For building the asymptotic solution around these critical lines, it is useful to introduce
a local frame (x‖, x⊥) for each critical line where x⊥ = 0 corresponds to the critical line
itself. The variable x‖ measures the travelled distance from the source along the critical
lines. It increases as the ray propagates on each critical line. However, as we shall see
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Internal shear layers in a spherical shell

z

r

E1/2

E0

E1/5

E2/5

E1/3

E−1/12

E1/3

E1/12

E1/3

E1/12

E1/3

E1/12

E1/3

E1/12

E1/3

E1/12

E1/6

E1/4

E1/6

E1/4

E1/3

E1/6

E1/2

E1/2

E1/2

E1/2

Figure 4. Ekman scalings in a spherical shell: length scales and amplitudes are shown in red and blue,
respectively.

below, it may exhibit a jump when the ray is reflected. The variable x⊥ indicates the
position with respect to the critical line. The orientation of x⊥ can a priori be arbitrarily
chosen. For convenience, we have assumed that the orientation does not change sign during
the propagation, that is a ray at a positive x⊥ stays at a positive x⊥ after reflection. The
orientation of the local frames shown in figure 3 is for the northward rays. Opposite local
frames are taken for the southward rays.

The final result of the asymptotic analysis in terms of Ekman scalings is summarised
in figure 4. The Ekman layer adjacent to the inner core is characterised by a E1/2 width
and a E0 velocity amplitude. Around the critical latitude the width increases to E2/5 with
an extension of E1/5 along the boundary (Roberts & Stewartson 1963). The width and the
amplitude of the main beams around the critical lines L1–L5 are of order E1/3 and E1/12,
respectively (see § 2.2.3), while those of the secondary beams around L6 and L8 are of
order E1/6 and E1/4, respectively (see § 2.2.4). Near L7, the beam recovers the E1/3 width
of the main beam, while it travels a distance of order E1/6 along L7. Around the axis where
two main beams intersect, the length scale remains as E1/3, while the amplitude diverges
as E−1/12 (see § 4).

2.2.1. Self-similar solution and scaling
As first shown by Moore & Saffman (1969), the propagation and viscous smoothing
of a localised singularity can be described in the limit of small Ekman numbers by
a self-similar solution. This result has been used and applied to the critical-latitude
singularity generated by the libration of a sphere in Le Dizès & Le Bars (2017). We now
briefly recall the main results.

The self-similar form is derived by considering the small Ekman number limit of the
governing equations projected onto the local frame (x‖, x⊥). The solution is characterised
by v‖, v⊥, vφ and p. The former two are velocity components along and perpendicular to
the critical lines, while the latter two correspond to the azimuthal velocity and pressure,
respectively. As the width of the internal shear layer regularised by viscosity scales with
E1/3, all quantities are expanded with the perturbation parameter E1/3. The dependence
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on the radial coordinate r is removed by dividing the solution by
√

r. At leading order,
only v‖ and vφ are required to fully describe the solution. The former has the following
self-similar form:

v‖= 1√
r

C0Hm(x‖, ζ ) = 1√
r

C0

(
x‖

2 sin θc

)−m/3

hm(ζ ), (2.5)

with the similarity variable

ζ = x⊥E−1/3
(

2 sin θc

x‖

)1/3

, (2.6)

and the function

hm(ζ ) = e−imπ/2

(m − 1)!

∫ +∞

0
eipζ−p3

pm−1 dp. (2.7)

The real index m and the complex amplitude C0 are the parameters characterising the
strength and the (complex) amplitude of the singularity. Expression (2.5) is a leading-order
expression of a viscous solution in the limit of small Ekman numbers. Next-order
corrections are expected to be O(E1/3). The solution preserves the self-similar structure
described by hm(ζ ) during its propagation and decay as x−m/3

‖ with x‖ being the distance
from the source. Note that there are two singularities in (2.5). One is on the rotation axis
where r = 0, the other is at the source x‖ = 0. The similarity solution requires modification
close to these two regions. In addition, it is modified close to the boundaries where the
solution should be derived following the more classical E1/2 scaling characteristic of
Ekman viscous layers (see Le Dizès 2020).

Le Dizès & Le Bars (2017) derived the particular values of the two parameters m and
C0 for any axisymmetric convex librating object by matching the similarity solution with
the boundary layer solution close to the critical latitude. As a necessary condition for
matching, they obtained the particular values

m = 5/4, (2.8)

and

C0 = E1/12

8(2 sin θc)3/4 eiπ/2 for a northward ray, (2.9a)

C0 = E1/12

8(2 sin θc)3/4 ei3π/4 for a southward ray. (2.9b)

The curvature at the critical latitude κc = − sin θc for the spherical inner core has been
applied. Note that there is an error concerning the phase of C0 in Le Dizès & Le Bars
(2017), which is corrected here. The value m = 5/4 implies that the ray amplitude decays
as x−5/12

‖ . The parameters C0 for the northward and southward rays only differ by a phase
shift of π/4. These two values of C0 only hold for the initial rays directly spawned from
the source. For the subsequent reflected rays, the phase and amplitude of C0 have to be
modified as they will be in the next subsection.

The relation between the azimuthal velocity vφ and the parallel velocity v‖ is

vφ = ±iv‖. (2.10)

The sign depends on the angle between the local unit vector e‖ and the global unit vector
er. The + sign is taken for obtuse angles, while the − sign is taken for acute ones.
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Internal shear layers in a spherical shell

Rc

L2 L3

θc
i

θc
r

Figure 5. Reflection on the outer boundary from the incident beam around L2 to the reflected beam around
L3: red and blue solid lines are critical lines and wave beams, respectively; the red dashed line is the tangent
plane at the reflection point Rc; θ i

c and θ r
c are the incident and reflected angles.

The values (2.9a,b) of C0 clearly show that the amplitude of the leading-order
asymptotic solution scales with E1/12. Numerical results in open and closed geometries
have partially confirmed such scaling at relatively high Ekman numbers (above 10−7) (Le
Dizès & Le Bars 2017; Lin & Noir 2021). Further evidence about this scaling at lower
Ekman numbers will be provided here.

2.2.2. Reflections on the outer boundary and on the axis
As shown in figure 3, there are two reflections (L2 → L3 and L3 → L4) on the outer
boundary. How the incident beam reflects on the curved boundary depends on its relative
length scales compared with those of the reflecting surface. As proved by Baines (1971a)
for a plane wave, the ‘back-reflected’ wave along the incident characteristic but in the
opposite direction vanishes when the incident wavenumber becomes large, and the incident
wave feels the curved boundary as locally flat and reflects as a local plane wave on a
flat surface. For our case, the wave beam described by the similarity solution (2.5) is
shown to be dominated by large wavenumbers (see Appendix A). Therefore, the possible
‘back-reflected’ wave beam is negligible and not considered, as shown in the figure 5
for the reflection of an incident beam along L2 yielding only a reflected beam along L3.
Moreover, the reflection on the curved boundary can be approximated by that on the flat
tangent surface at the critical reflection point Rc (in red dashed line).

The reflection of internal shear layers on a flat boundary has been studied by Le Dizès
(2020). The incident and reflected wave beams were found to preserve, at leading order,
their self-similar structures, which are

vi
‖ = Ci

0Hm(xi
‖, ζ

i)/
√

r, vr
‖ = Cr

0Hm(xr
‖, ζ

r)/
√

r, (2.11a,b)

where the superscripts i and r denote the variables associated with the incident and
reflected beams, respectively. The corresponding reflection laws take the forms

xi
‖c

xr
‖c

= K3,
Ci

0
Cr

0
= Km−1, (2.12a,b)

with K = sin θ i
c/ sin θ r

c the ratio of the sines of the critical incident and reflected inclination
angles θ i

c and θ r
c . Here, xi

‖c and xr
‖c are the distances between the critical reflection point

Rc and the source before and after the reflection, respectively. The above reflection laws
suggest that the effective source is displaced and the amplitude is modified by the reflection
on the flat boundary. The reflected beam appears to be generated from a ‘virtual’ source
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J. He, B. Favier, M. Rieutord and S. Le Dizès

located at the position xr
‖ away from the reflection point Rc and with a strength Cr

0. Note
that K is a real number, so the phase is left unchanged by the reflection on the boundary. It
is worth mentioning that viscous corrections are also created during the reflection process.
These corrections are not considered in the present work. Le Dizès (2020) has shown that
they are O(E1/6) smaller and also possess a self-similar structure.

The reflection on the axis from L1 to L2 (see figure 3) has been discussed by Le Dizès
& Le Bars (2017) and Rieutord & Valdettaro (2018), which reveals that the phase of the
parallel velocity is shifted by π/2 while the amplitude and the distance to the source is kept
the same. By the same method, the reverse reflection from L2 to L1 also shifts the phase of
the parallel velocity by π/2 while keeping all other quantities unchanged. In other words,
we always have on the axis

Cr
0 = eiπ/2Ci

0. (2.13)

2.2.3. Asymptotic solution for the main beams around the critical lines L1–L5
The similarity solution (2.5) and the reflection laws ((2.12) and (2.13)) are applied to
build the asymptotic solutions around the critical lines L1–L5 for the two beams shown
in figure 3. Taking the northward beam travelling from L1 to L5 as an example, the two
ratios of sines of inclination angles at the points R1 and R2 shown in figure 3 take the forms

K1 =
√

1 − η2/η, K2 = 1/K1. (2.14a,b)

The lengths of the critical lines L1–L5 in figure 3 take the values

d1 =
√

2, d2 =
√

2

(
−1 +

√
2 − η2

η

)
, d3 = 2

√
2, d4 = d2, d5 = d1,

(2.15a–e)

rescaled by the distance to the axis of the critical latitude in accordance with the
non-dimensionalisation adopted by the asymptotic theory (Le Dizès & Le Bars 2017). The
global coordinates (r, z) of a point P are transformed into the local coordinates (x‖, x⊥)

for every critical line by computing the distances to the source Sc and to the corresponding
critical line, respectively. The travelled distance x‖ should be modified on the boundary
according to (2.12a), and the amplitude C0 should be modified on the boundary and
axis according to (2.12b) and (2.13), respectively. We obtain for the northward beam
the characteristics given in table 1. For the southward beam travelling from L5 to L1,
the multiplicative inverses of the ratios (2.14) are taken, and the local coordinates and
amplitudes for every critical line can be constructed similarly.

Up to this stage, we have described how to build the asymptotic solution along one
complete revolution of the periodic orbit, from the critical latitude and back. However,
it is natural to assume that the self-similar solution will continue propagating along the
periodic characteristic path until its amplitude eventually becomes negligible. When the
northward beam goes back to the critical latitude on the inner core, the outer part of the
beam (x⊥ > 0) is expected to propagate forward for another cycle without being modified
by the inner core. By contrast, the inner part (x⊥ < 0) is expected to reflect on the inner
core and follow another path on L6–L8 before starting a new cycle. We shall see in § 2.2.4
that this different circuit has actually no impact on the beam: its new expression on L1 is the
same as if the inner core was not present. For this reason, the whole beam can be assumed
to propagate forward for another cycle without considering the presence of the inner core.
The same is naturally true for the southward beam. For each cycle, the self-similar nature
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Internal shear layers in a spherical shell

Critical line x‖ x⊥ Amplitude

L1
z − r√

2

z + r − 2√
2

C0

L2 d1 + z + r − 2√
2

z − r − 2√
2

iC0

L3 (d1 + d2)K−3
1 + r − z + 2√

2

2
√

2 − η2/η − z − r√
2

iC0K−1/4
1

L4 d1 + d2 + d3K3
1 + 2

√
2 − η2/η − z − r√

2

r − z − 2√
2

iC0

L5 d1 + d2 + d3K3
1 + d4 + z − r + 2√

2

r + z − 2√
2

iC0

Table 1. Characteristics of the northward beam from L1 to L5.

of the local solution should be preserved since only C0 and x‖ are modified by reflections
on the axis and boundaries. The asymptotic solution for the nth cycle can be expressed as

√
rv‖n = CnHm(x‖n, ζn). (2.16)

The subscript n indicates a variable associated with the nth cycle. When n = 0, (2.16)
is equivalent to (2.5) for the very first cycle. The variables of the subsequent cycles are
related to those of the first n = 0 cycle by

x‖n = x‖0 + nL, (2.17)

ζn = ζ0(x‖n/x‖0)
1/3, (2.18)

Cn = C0 einπ/2, (2.19)

where L is the travelled distance within one cycle, and π/2 is the phase shift induced by
the reflection on the axis occurring once per cycle. Here, L takes the following formulas
for different critical lines

L = d1 + d2 + d3K3
1 + d4 + d5, for L1, L2, L4, L5, (2.20a)

L = (d1 + d2 + d4 + d5)K−3
1 + d3, for L3. (2.20b)

Note that L does not change from one cycle to another and is the same for both beams. For
the reflection L2 ↔ L3, L and x‖0 are discontinuous (see table 1 and (2.20a,b)), while L/x‖0
is continuous. The same is also true for the reflection L3 ↔ L4. Note also that the norm of
the amplitude of the self-similar solution does not change after each cycle (|Cn| = |C0|).
This is associated with the symmetric character of each cycle, which guarantees that the
phases of contraction and expansion experienced by the beam during one cycle exactly
compensate.

The complete asymptotic solution associated with one beam is thus the sum of the
solution (2.16) for every cycle. After N + 1 cycles, we obtain

√
rv(N)

‖ =
N∑

n=0

CnHm(x‖n, ζn). (2.21)
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The self-similar solution decays with the travelled distance as x−5/12
‖ (see (2.5) and (2.8)).

This gives a behaviour in n−5/12 of the coefficients of the series (2.21) that does not
guarantee its absolute convergence. However, because Cn is oscillating with n (see (2.19)),
the series does converge. The number of cycles can therefore be chosen as large as wanted.
Using the relations ((2.17)–(2.19)), the series of the integrals (2.21) can be transformed to
an integral of a geometric series

√
rv(N)

‖ = C0

(
x‖0

2 sin θc

)−m/3 e−imπ/2

(m − 1)!

∫ ∞

0
eipζ0−p3

pm−1
N∑

n=0

in e−np3L/x‖0 dp. (2.22)

Moreover, with the closed form of the geometric series the solution can be expressed by
two parts

√
rv(N)

‖ = C0Gm(x‖0, x⊥, L) + ε(N)
m (x‖0, x⊥, L), (2.23)

with

Gm(x‖0, x⊥, L) =
(

x‖0

2 sin θc

)−m/3

gm(ζ0, L/x‖0), (2.24a)

gm(ζ0, L/x‖0) = e−imπ/2

(m − 1)!

∫ ∞

0

eipζ0−p3
pm−1

1 − i e−p3L/x‖0
dp, (2.24b)

and

ε(N)
m = C0

(
x‖0

2 sin θc

)−m/3 e−imπ/2

(m − 1)!

∫ ∞

0
eipζ0−p3

pm−1 −iN+1 e−p3L(N+1)/x‖0

1 − i e−p3L/x‖0
dp. (2.25)

The correction term ε
(N)
m behaves as

ε(N)
m ∼ −C0

e−imπ/2

(m − 1)!
1
3

(
2 sin θc

L

)m/3
Γ (m/3)

1 − i
iN+1N−m/3, (2.26)

as the number of cycles becomes large. It vanishes as the number of cycles tends to infinity.
Therefore, in the limit N → ∞, the asymptotic solution takes the form

√
rv‖ = C0Gm(x‖, x⊥, L). (2.27)

Only the local coordinates in the very first cycle are needed to compute the asymptotic
solution. Without any ambiguity, the subscript 0 denoting the very first cycle has been
dropped for the parallel coordinate and similarity variable hereafter. The above discussion
holds both for northward and southward rays. The final global asymptotic solution in the
closed geometry is the sum of the solutions of both rays, that is

√
rv‖ = CNW

0 Gm(xNW
‖ , xNW

⊥ , L) + CSW
0 Gm(xSW

‖ , xSW
⊥ , L), (2.28)

where the superscripts NW and SW denote northward and southward rays, respectively.
Equation (2.28) provides the description of the parallel velocity, while the azimuthal
velocity vφ can be derived from the phase relation (2.10).
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Internal shear layers in a spherical shell

2.2.4. Asymptotic solution for the secondary beams around L6 and L8
When the northward and southward beams come back to the critical latitude on the inner
core, their corresponding critical lines become L5 and L1, respectively (see figure 6).
Because these two critical lines are tangent to the surface, the part of the beams below
L5 and L1 reflects on the inner boundary, while the other part goes straight. This particular
reflection is referred to as diffraction by Baines (1971b) for a plane wave. The reflected
beams are then along L6 → L7 → L8 or L8 → L7 → L6 for the northward or southward
beams, respectively (see solid blue and green lines in figure 6). These reflected beams
correspond to the two secondary weaker beams near the line z = r observed in figure 1.
In order to construct the corresponding asymptotic solution, curvature effects for the
reflection on the inner core must be included. For this purpose, the non-penetrability
condition is applied at the reflection point R (see figure 6) other than the critical one Sc,
namely

sin θ rvr
‖ ∼ sin θ ivi

‖, (2.29)

where θ i and θ r are incident and reflected inclination angles at the reflection point R,
respectively. Note that their values are different from the critical values at the critical
reflection point Sc due to the effect of curvature. The incident parallel velocity vi

‖ is
obtained by propagating the similarity solution from the critical latitude back to it along
L1 → L2 → L3 → L4 → L5 or the inverse sequence for the northward or southward
beam, respectively, which is

vi
‖ = 1√

r
C0i

e−imπ/2

(m − 1)!

∫ ∞

0
eipxi

⊥/E1/3
e−p3L/(2 sin θc)pm−1 dp (2.30)

in terms of the local coordinates (xi
‖, xi

⊥). Note that xi
‖ = L has been applied. Taking the

northward beam as an example, according to the geometry shown in figure 6, xi
⊥ and xr

⊥
can be expressed as a function of θ i as

xi
⊥ =

√
2 cos θ i −

√
2, xr

⊥ = −
√

2 sin θ i. (2.31a,b)

Note that the coordinates are also calculated with reference to the distance to the axis of
the critical latitude by which the radius of the inner core is

√
2 (Le Dizès & Le Bars 2017).

Moreover, xi
⊥ can be expressed in terms of xr

⊥ as

xi
⊥ =

√
2 − (xr

⊥)2 −
√

2. (2.32)

The variable xr
⊥ being small within the beam, we obtain the following relation at the

leading order:

xi
⊥ ∼ λ(xr

⊥)2, (2.33)

where λ = ±√
2/4. The minus and plus signs are for northward and southward beams,

respectively. The inclination angles can also be expressed using xr
⊥ as

sin θ i =
∣∣∣∣ xr

⊥√
2

∣∣∣∣ , sin θ r =
√

1 −
(

xr
⊥√
2

)2

∼ 1. (2.34a,b)

Therefore, the parallel velocity of the reflected beam takes the following form:

vr
‖ ∼

∣∣∣∣ xr
⊥√
2

∣∣∣∣ 1√
r

C0i
e−imπ/2

(m − 1)!

∫ ∞

0
eipλ(xr

⊥)2/E1/3
e−p3L/(2 sin θc)pm−1 dp. (2.35)
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L5

L1

L6

L8

L7

Sc

R

θ i

θr

x⊥
i

x⊥
r

R

θi

θr

x⊥
i

x⊥
r

Figure 6. Schematic of the reflection on the inner boundary and the resulting rays around L6–L8. Blue and
green lines are northward and southward rays; red lines are critical lines.

The phase is proportional to (xr
⊥)2/E1/3, which means that xr

⊥ scales with E1/6. The
reflected beam is therefore expected to be wider than the self-similar solution with a
width of order E1/6. Because of this larger transverse scale, it should not be affected by
viscous diffusion within the shell. In other words, expression (2.35) for vr

‖ is expected
to remain valid on the whole segment L6 (respectively L8) for the northward beam
(respectively for the southward beam). Each beam is then reflected twice on the outer
boundary (see figure 6). Between these two reflection points on L7, the beam recovers its
initial width but because it travels a distance of order E1/6, the viscous diffusion is still
negligible. Moreover, the reflections on the outer boundary are perfectly symmetric, such
that the northward and southward beams remain unchanged after these two reflections.
The formula (2.35) then still holds for the northward or southward beam around L8 or L6,
respectively. Namely, for each beam, the asymptotic solution (after rescaling with 1/

√
r)

is anti-symmetric about the centre line z = r.
Note that, contrary to the solution around the main beam L1–L5, the asymptotic solution

(2.35) for L6 and L8 is no longer self-similar.
The asymptotic solution (2.35) corresponds to the first cycle only. The summation

strategy used in the § 2.2.3 for L1–L5 can also be applied to construct the asymptotic
solution around L6 and L8 after an infinite number of cycles. The parallel velocity for the
nth cycle is

v
(n)
‖ ∼

∣∣∣∣ x⊥√
2

∣∣∣∣ 1√
r

C0in
e−imπ/2

(m − 1)!

∫ ∞

0
eipλ(x⊥)2/E1/3

e−p3(nL)/(2 sin θc)pm−1 dp, (2.36)

with the phase shift equal to in and the travelled distance equal to nL. The summation of
the above formula from n = 1 to ∞ yields the asymptotic solution after an infinite number
of cycles

v‖∼
∣∣∣∣ x⊥√

2

∣∣∣∣ 1√
r

C0
e−imπ/2

(m − 1)!

∫ ∞

0
eipλ(x⊥)2/E1/3 i e−p3L/(2 sin θc)

1 − i e−p3L/(2 sin θc)
pm−1 dp. (2.37)
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Internal shear layers in a spherical shell

This formula holds for both northward and southward rays. The final solution is the sum
of both solutions.

Finally, it is worth mentioning that, because x⊥ is O(E1/6) along L6 and L8 and C0 is
O(E1/12), the amplitude of v‖ is smaller than on the other lines and exhibits a new scaling
in E1/4.

2.3. Numerical method
In order to validate the asymptotic approach, we now consider the complete numerical
solution of the linear viscous harmonic problem described in § 2.1. The governing
equations (2.3) are solved numerically in spherical coordinates (ρ, ϑ, φ), where ρ, ϑ

and φ are the radial distance from the centre of the sphere, polar and azimuthal angles,
respectively. In order to compare the numerical results with asymptotic predictions
obtained within a different cylindrical coordinate system, the azimuthal velocity is adopted
since this velocity component is the same in both cylindrical and spherical frames.

As in Rieutord & Valdettaro (1997), the fields are expanded onto spherical harmonics in
the polar and azimuthal directions and onto Chebyshev polynomials in the radial direction.
We consider the expansion

v =
+∞∑
l=0

+l∑
m=−l

ul
m(ρ)Rm

l + vl
m(ρ)Sm

l + wl
m(ρ)T m

l , (2.38)

with
Rm

l = Ym
l (ϑ, ϕ)eρ, Sm

l = ∇Ym
l , T m

l = ∇ × Rm
l , (2.39a–c)

where gradients are taken on the unit sphere. Projecting the curl of the momentum equation
(2.3a) onto this basis yields (Rieutord 1987)

EΔlwl + iωwl = −Alρ
l−1 ∂

∂ρ

(
ul−1

ρl−2

)
− Al+1ρ

−l−2 ∂

∂ρ
(ρl+3ul+1),

EΔlΔl(ρul) + iωΔl(ρul) = Blρ
l−1 ∂

∂ρ

(
wl−1

ρl−1

)
+ Bl+1ρ

−l−2 ∂

∂ρ
(ρl+2wl+1),

⎫⎪⎪⎬
⎪⎪⎭ ,

(2.40)

with

Al = 1

l
√

4l2 − 1
, Bl = l2(l2 − 1)Al, Δl = d2

dρ2 + 2
ρ

d
dρ

− l(l + 1)

ρ2 . (2.41a–c)

Axisymmetry (m = 0) is assumed. The unknown variables in (2.40) are only wl and ul.
The third component vl is related to ul through the continuity equation (2.3b), that is

vl = 1
ρl(l + 1)

dρ2ul

dρ
. (2.42)

The no-slip boundary conditions on the outer core impose that

wl = ul = dul

dρ
= 0, at ρ = 1. (2.43)

The libration on the inner boundary imposes a forcing in the azimuthal direction. Its
projection onto spherical harmonics yields the inhomogeneous boundary conditions on
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the inner core

wl = 2
√

π

3
ηδ1,l, ul = dul

dρ
= 0 at ρ = η, (2.44)

where δi,j is the Kronecker symbol.
Equations ((2.40)–(2.44)) are then discretised on the collocation points of the

Gauss–Lobatto grid, which yields a linear system

Ax = b. (2.45)

This linear algebraic system of equations is solved using the LU decomposition. The
dimensions of the matrix A and the vector b depend on the spatial resolution which
is related to the number of spherical harmonics (lmax) and the number of Chebyshev
polynomials (Nr). For the computations at low Ekman numbers, large numbers of spherical
harmonics and Chebyshev polynomials are necessary. Typically, in order to reach E =
10−10, we use lmax = 4000 and Nr = 2000, which leads to a matrix size of 8004000. In
that case, the memory footprint of the LU solver is approximately of 1.4 TB.

In order to display the wave structures and the scalings, the azimuthal velocity (vφ) and
viscous dissipation rate (D) are computed. The latter is defined as (Rieutord & Valdettaro
1997)

D = 1
2

E[S2
ρρ + S2

ϑϑ + S2
φφ + 2(S2

ρϑ + S2
ρφ + S2

ϑφ)], (2.46)

where S is the rate-of-strain tensor. If the amplitudes of the velocities for the main
(L1–L5) and secondary (L6 and L8) beams scale with E1/12 and E1/4, respectively, and the
corresponding length scales are E1/3 and E1/6, the dissipation rates should scale with E1/2

(= E1+(1/12−1/3)×2) and E7/6 (= E1+(1/4−1/6)×2) respectively with the above definition.
We validate these scalings numerically in the following.

3. Bulk solution

In this section, we compare the asymptotic and numerical solutions in the bulk region of
the spherical shell for the two geometries η = 0.35 and

√
2/2, respectively. When deriving

the similarity solutions ((2.5)–(2.10)), Le Dizès & Le Bars (2017) normalised lengths
by the distance to the axis of the critical latitude, while lengths are non-dimensionalised
by the radius of the outer shell in this paper. In order to adapt the theoretical results to our
framework, the Ekman number defined by (2.1) is rescaled by 2/η2, and the coordinates
rescaled by

√
2/η. The asymptotic solutions are obtained with the rescaled Ekman number

and rescaled coordinates. In order to compare asymptotic and numerical solutions, the
asymptotic solution has then to be divided by η/

√
2 or the numerical solutions multiplied

by this quantity. The former is used when doing comparison in global coordinates, while
the latter is used when doing comparison in local coordinates.

In the following, we shall only use the azimuthal component of the velocity for the
comparisons. Other components of the velocity show similar behaviours, and will not be
presented here.

3.1. Aspect ratio η = 0.35
The asymptotic solution for an infinite number of cycles is compared with the numerical
one in figure 7. The inner and outer Ekman boundary layers and a region close to the axis
are excluded since the asymptotic solution does not hold there. The asymptotic solution
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Internal shear layers in a spherical shell

is calculated using the expressions (2.28) and (2.37) for the corresponding critical lines
L1–L5 and L6 and L8 within the following respective regions:

L1 : η < z + r < 1 and z − r > 0; (3.1a)

L2 : η < z − r < 1; (3.1b)

L3 : 1 < z + r <

√
2 − η2; (3.1c)

L4 : −1 < z − r < −η; (3.1d)

L5 : η < z + r < 1 and z − r < 0; (3.1e)

L6 : −η < z − r < 0; (3.1f )

L8 : 0 < z − r < η. (3.1g)

These regions are chosen such that all the rays within them follow the same circuit.
Note that we use a logarithmic colour scale over three decades in amplitude. This figure
demonstrates that our asymptotic solution can qualitatively reproduce both global and
local structures of the internal shear layer at the frequency ω∗/Ω∗ = √

2, especially as
the Ekman number becomes small. The wave structure consists of an inclined rectangle
and two beams near the centre line z = r. As the Ekman number decreases, the beams
get thinner and their amplitude decreases, which is observed for both asymptotic and
numerical solutions. The jumps of the asymptotic solution far away from the critical
lines at high Ekman number occur at the endpoints of the calculation regions for every
critical line (3.1) which tend to disappear as the Ekman number is reduced and the solution
becomes more localised. These jumps may be smoothed by considering the rays outside
the regions (3.1) which, however, follow a circuit different from L1 ↔ L2 ↔ L3 ↔ L4 ↔
L5 and are therefore not considered here. In figure 7, S1−5 are the five sections crossing the
main circuit, while S6 and S7 are crossing the two secondary beams near the centre line
z = r. Quantitative comparisons will be made on these sections in the following.

Figure 8 compares the asymptotic velocity profiles for the northward and southward
rays independently and their sum with the numerical profiles on three sections (S2, S3
and S4) and at an Ekman number of E = 10−10. The northward ray propagates from S2
to S4, while the southward one propagates from S4 to S2. Therefore, the amplitude of the
northward ray decays from S2 to S4, while that of the southward ray decays from S4 to S2.
The figure shows that only the superposition of both rays can approximate the numerical
solution.

The asymptotic and numerical solutions at different Ekman numbers for the main beams
on the section S2 are compared in figure 9, which shows that our asymptotic solution
performs better as the Ekman number decreases, as expected. At the lowest value of
E = 10−10, which starts to be relevant for geophysical applications, the agreement between
the two solutions is remarkable, even far from the characteristic path. In figure 10, the same
comparison is also made for the secondary beams on the sections S6 and S7. The numerical
solutions on two different sections S6 and S7 are almost the same, which demonstrates
the quasi-inviscid propagation of the beams along the critical lines L6 and L8. Better
performance of asymptotic solutions with decreased Ekman number is also observed. Note
that in figure 9 the narrower regions of the similarity variables at higher Ekman numbers
are caused by the fixed length of the sections. The similarity variables on the sections take
wider ranges of values for lower Ekman numbers (see (2.6)). The same is also true for the
x⊥ scaled with E1/6 in figure 10.
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E = 10–8 E = 10–10

S4

S5

S2 S3

(a)

(b)

S6

S7

|vφ|

Figure 7. Contours of amplitudes of azimuthal velocity of numerical (a) and asymptotic (b) solutions for
three Ekman numbers E = 10−6, 10−8 and 10−10.
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Figure 8. Azimuthal velocity profiles vφ of the asymptotic solution (AS) for northward and southward rays
and the sum of them and the numerical solution (NS) on three sections (S2, S3 and S4, see figure 7) and at the
Ekman number E = 10−10.
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Figure 9. Azimuthal velocity profiles vφ of the asymptotic and numerical solutions (AS and NS) at three
Ekman numbers (E = 10−6, 10−8 and 10−10) for the main beams on the section S2.
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Figure 10. Same caption as above for the secondary beams on the sections S6 and S7.

The physical scalings of the numerical results in the range of Ekman number 10−10 ≤
E ≤ 10−6 are presented in figures 11 and 12 for the main and secondary beams,
respectively. A fixed point at the intersection between the critical line L2 and the section
S2 is selected to measure both velocity amplitude and dissipation rate at various Ekman
numbers for the main beams. For the secondary beams, the same quantities are measured
on the sections S6 and S7 in the narrow range −5 � x⊥/E1/6 � 5 around the critical lines
L6 and L8 since the quantities are close to zero on the critical lines. Both L2 and L∞ norms
are considered for Ekman numbers ranging from 10−6 to 10−10, as shown in figure 12.
For the L2 norm, results are scaled by the square root of the number of points into the
region −5 � x⊥/E1/6 � 5 since the number of points changes with the Ekman number.
Figure 11(a) shows that the velocity amplitude of the main internal shear layer follows
the scaling E1/12 predicted by Le Dizès & Le Bars (2017) for an open geometry. This
observation is to be contrasted with the scaling E1/6 assumed by Kerswell (1995), who
actually extrapolated the scaling of the shear layer emitted by an oscillating split disc to the
one emitted by a librating inner core. The foregoing numerical results show that this simple
extrapolation is not valid. We note that our results also further confirm the numerical
observation made by Lin & Noir (2021) at comparatively higher Ekman numbers, where
the scaling E1/12 was favoured over E1/6. For the secondary beams, figure 12(a) shows
that the amplitude of the velocity also follows the predicted scaling E1/4. Regarding the
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10−10 10−9 10−8 10−7 10−6 10−10 10−9 10−8 10−7 10−6

E

6 × 10−3

1 × 10−2

2 × 10−3

3 × 10−3

4 × 10−3

2 × 10−2

|vφ|

Numerical solution
E1/12

E1/6

E

10−8

10−7

10−6

D

Numerical solution
E1/2

(a) (b)

Figure 11. Scalings for the azimuthal velocity amplitude |vφ | (a) and dissipation rate D (b) as a function of the
Ekman number measured at the intersection between the section S2 and the critical line L2 (see figures 3 and
7).

10−10 10−9 10−8 10−7 10−6 10−10 10−9 10−8 10−7 10−6

E

10−4

10−3

|vφ|

L2

L∞
E1/4

E

10−14

10−12

10−10

D

L2

L∞

E7/6

(a) (b)

Figure 12. Same caption as in figure 11 but with quantities measured in the sections S6 and S7 around L6/L8
in the range −5 � x⊥/E1/6 � 5.

dissipation rate, it follows the expected E1/2 and E7/6 scalings for the main and secondary
beams, respectively. These scalings imply that the power dissipated by the respective
beams vanishes as E5/6 and E4/3, which is weaker than the E1/2 dissipation within the
Ekman boundary layers. Libration in the whole shell is therefore mainly dissipated in the
Ekman boundary layers.

Excluding the dissipation in the boundary layers by using stress-free boundary
conditions, Rieutord & Valdettaro (2010) also found a vanishing dissipation as E → 0 but
with a lower power, namely as E2/5 (see their figure 12). However, Rieutord & Valdettaro
(2010) forced the oscillating flow with an O(1) body force, while in the present case the
forcing vanishes as E → 0. This latter point underlines the importance of the nature of the
forcing in the response of the fluid and the associated viscous dissipation.

The errors of the asymptotic solution relative to the numerical one are measured on the
five sections S1−5 in the narrow range −10 � ζ � 10 around the critical lines L1–L5 for the
main beams. They are also computed on the two sections S6−7 in the narrow range −5 �
x⊥/E1/6 � 5 around the critical lines L6 and L8 for the secondary beams (see figures 3
and 7). The solution in these narrow regions is negligibly affected by the boundaries, the
axis and the critical latitude where the asymptotic solution is not expected to perform
well. The absolute error is measured by the norm of the difference between the theoretical
predictions and numerical results averaged over the region of interest around the beam.
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Figure 13. Absolute and relative errors on the azimuthal component of the velocity between the asymptotic
and numerical solutions as a function of the Ekman number. The quantities are computed in the five sections
S1−5 defined in figure 7 in the range of −10 � ζ � 10.
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E1/12

(a) (b)

Figure 14. Same caption as in figure 13 but computed in the two sections S6−7 defined in figure 7 in the range
of −5 � x⊥/E1/6 � 5.

The relative error between the two approaches is obtained by normalising with the
reference numerical solution. The absolute error plotted in figure 13(a) for the main beams
is shown to scale with E1/6 for both L2 and L∞ norms, while that for the secondary beams
shown in figure 14(a) scales with E1/3. Figure 13(b) demonstrates that the scaling in E1/12

of the numerical solution for the main beams is very well predicted if we focus on the beam
near the critical lines, similar to that for the secondary beams shown in figure 12(a). The
relative errors for the main and secondary beams given in figures 13(c) and 14(b) follow
the same scaling in E1/12 as expected.

3.2. Aspect ratio η = 1/
√

2
We now consider the comparison between the theoretical asymptotic predictions and
numerical results in a spherical shell with an aspect ratio of η = 1/

√
2. The reason behind

this choice is the peculiar nature of the critical path, which connects the critical latitude to
the pole and the equator without reflection on the boundaries. We use the same asymptotic
approach as described previously.

Figure 15 compares the contours of the amplitude of the azimuthal velocity at E =
10−10. Once again, our asymptotic solution can reproduce the beam structure, including
the secondary weaker beam which corresponds to secondary reflections on the inner core
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Figure 15. Contours of |vφ | at E = 10−10 and η = 1/
√

2 by numerical (a) and asymptotic (b) methods.
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Figure 16. Velocity profiles along the three sections shown in figure 15 for E = 10−10 and η = 1/
√

2.

close to the critical latitude. The velocity profiles are compared in figure 16 for the three
sections defined in figure 15. We can see that a good agreement is obtained, even for this
more pathological case involving reflections near the poles. The convergence properties as
the Ekman number is reduced are the same as for the previous case η = 0.35.

4. Solution close to the axis

The self-similar solution (2.28) is singular on the axis due to the term 1/
√

r. The region
close to the axis has therefore been ignored in the asymptotic results discussed so far.
Around the axis, the velocity and pressure can be expressed using Hankel transforms, as
done by Le Dizès & Le Bars (2017) in an open geometry. In this section, we generalise
this approach to the case of the spherical shell where the asymptotic solution now involves
a series of rays propagating in opposite directions.

4.1. Asymptotic theory
We consider the reflections on the axis at the intersection of two adjacent critical lines
L1 and L2 shown in figure 3 for the aspect ratio η = 0.35. In the spherical shell, two
types of rays are involved there: the northward rays that reflect from L1 to L2, and the
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Internal shear layers in a spherical shell

southward ones that reflect from L2 to L1 after having performed two reflections on the
outer sphere. Far away from the axis, the self-similar solution (2.28) holds. Close to the
axis, the following Hankel transform for the velocity components and pressure can be used:

vr =
∫ ∞

0
U1(k)J1(kr) eiμ1z dk +

∫ ∞

0
U2(k)J1(kr) eiμ2z dk, (4.1a)

vφ =
∫ ∞

0
V1(k)J1(kr) eiμ1z dk +

∫ ∞

0
V2(k)J1(kr) eiμ2z dk, (4.1b)

vz =
∫ ∞

0
W1(k)J0(kr) eiμ1z dk +

∫ ∞

0
W2(k)J0(kr) eiμ2z dk, (4.1c)

p =
∫ ∞

0
P1(k)J0(kr) eiμ1z dk +

∫ ∞

0
P2(k)J0(kr) eiμ2z dk, (4.1d)

where Jα(α = 0, 1) are the Bessel functions of the first kind and μ1 and μ2 are inviscid
wavenumbers corresponding to the northward and southward rays, respectively. The four
other viscous wavenumbers that could also be present in (4.1) (see Le Dizès 2015) have
been omitted here because they are not present in the internal shear layer structure and not
needed to smooth the singularity on the axis, as we shall see. Note also that, in an open
geometry, only the component μ1 associated with the northward ray is used (Le Dizès &
Le Bars 2017), since the southward ray goes to infinity and never comes back close to the
axis. At leading order, the two inviscid wavenumbers are related to k by

μ1 = k
cos θc

sin θc
, μ2 = −k

cos θc

sin θc
. (4.2a,b)

The corresponding amplitudes (U1, V1, W1, P1) and (U2, V2, W2, P2) are related to each
other by the following expressions (Le Dizès 2015):

U1,2 = i cos θcV1,2, (4.3a)

W1 = − sin θcV1, (4.3b)

W2 = sin θcV2, (4.3c)

kP1,2 = −2 sin θcV1,2. (4.3d)

To describe the solution close to the reflection point on the axis, of coordinates
(0, η/ cos θc), we introduce the local variables

r̃ = r/E1/3, z̃ = (z − η/ cos θc)/E1/3. (4.4a,b)

The Hankel transform (4.1) can then be written as

vr = i cos θc

[∫ ∞

0
Ṽ1J1(k̃r̃) eik̃γ z̃ dk̃ +

∫ ∞

0
Ṽ2J1(k̃r̃) e−ik̃γ z̃ dk̃

]
, (4.5a)

vφ =
∫ ∞

0
Ṽ1J1(k̃r̃) eik̃γ z̃ dk̃ +

∫ ∞

0
Ṽ2J1(k̃r̃) e−ik̃γ z̃ dk̃, (4.5b)

vz = sin θc

[
−
∫ ∞

0
Ṽ1J0(k̃r̃) eik̃γ z̃ dk̃ +

∫ ∞

0
Ṽ2J0(k̃r̃) e−ik̃γ z̃ dk̃

]
, (4.5c)

p = −2 sin θcE1/3

[∫ ∞

0
Ṽ1

J0(k̃r̃)

k̃
eik̃γ z̃ dk̃ +

∫ ∞

0
Ṽ2

J0(k̃r̃)

k̃
e−ik̃γ z̃ dk̃

]
, (4.5d)

with γ = 1/ tan θc.
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Expressions for Ṽ1 and Ṽ2 are sought by matching the solution close to the axis (4.5)
with the self-similar solution in the bulk ((2.28) and (2.10)). When both r̃ and z̃ go to
infinity, the limit of vφ (4.5b) is

vφ ∼ 1√
2πr̃

∫ ∞

0

Ṽ1(k̃)√
k̃

eik̃(r̃+γ z̃)−i3π/4 dk̃ (4.6a)

+ 1√
2πr̃

∫ ∞

0

Ṽ1(k̃)√
k̃

eik̃(−r̃+γ z̃)+i3π/4 dk̃ (4.6b)

+ 1√
2πr̃

∫ ∞

0

Ṽ2(k̃)√
k̃

eik̃(r̃−γ z̃)−i3π/4 dk̃ (4.6c)

+ 1√
2πr̃

∫ ∞

0

Ṽ2(k̃)√
k̃

eik̃(−r̃−γ z̃)+i3π/4 dk̃, (4.6d)

using the asymptotic behaviour of the Bessel function at infinity. The four components
correspond to the incident northward rays (L1), the reflected northward rays (L2), the
incident southward rays (L2) and the reflected southward rays (L1). The former two
components for the incident and reflected northward rays imply that there is a phase shift
from the incident to reflected rays, which is 3π/2 for the azimuthal velocity. Considering
the phase (2.10) between v‖ and vφ , the phase shift for v‖ is π/2. The same is true for the
southward rays.

On the other hand, the self-similar solution ((2.28) and (2.10)) for vφ in the bulk takes
the following form close to the intersection point on the axis (r → 0, z → η/ cos θc):

vφ ∼ i
1√
r

CNW
0 Gm(LNW , sin θc(r̃ + γ z̃), L) (4.7a)

+ 1√
r

CNW
0 Gm(LNW , sin θc(−r̃ + γ z̃), L) (4.7b)

+ i
1√
r

CSW
0 Gm(LSW , sin θc(r̃ − γ z̃), L) (4.7c)

+ 1√
r

CSW
0 Gm(LSW , sin θc(−r̃ − γ z̃), L), (4.7d)

where LNW and LSW are the travelled distances of the northward and southward rays
from the source to the intersection point on the axis, respectively. Here, L is the travelled
distance within one cycle (2.20).

By matching (4.6) with (4.7), the amplitudes Ṽ1 and Ṽ2 are obtained as follows:

Ṽ1 = E−1/6CNW
0

√
2π

k̃m−1/2

sinm θc
ei5π/4 e−imπ/2

(m − 1)!
e−LNW k̃3/(2 sin4 θc)

1 − i e−Lk̃3/(2 sin4 θc)
, (4.8a)

Ṽ2 = E−1/6CSW
0

√
2π

k̃m−1/2

sinm θc
ei5π/4 e−imπ/2

(m − 1)!
e−LSW k̃3/(2 sin4 θc)

1 − i e−Lk̃3/(2 sin4 θc)
. (4.8b)

It is worth pointing out the factor E−1/6 in front of the ray amplitudes CNW
0 and CSW

0 .
These amplitudes are O(E1/12), which means that Ṽ1 and Ṽ2 scale as E−1/12. This implies
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Figure 17. Comparison of asymptotic solutions and numerical results of vz on the axis for three Ekman
numbers.

that the solution close to the reflection point is expected to grow infinitely as E goes to zero.
It clearly shows the singular nature of the small Ekman number limit for this problem: the
linear solution is expected to vanish everywhere except in the boundary layer on the inner
sphere (where it is finite) and at this single reflection point on the axis (where it diverges).

4.2. Comparison with numerical results
The asymptotic solution close to the axis (4.5) with the amplitudes (4.8) is compared with
the numerical results. Figure 17 compares the asymptotic and numerical solutions along
the rotation axis for three Ekman numbers. Only the velocity component vz is concerned,
as the other two components are zero by axisymmetry. We obtain a good agreement
between the theoretical predictions and the numerical results. As the Ekman number
decreases, our asymptotic solution converges to the numerical one. Figure 18 shows the
same comparison but on the line perpendicular to the rotation axis and passing by the
reflection point (0, η/ cos θc). All three velocity components are considered. Contrary to
previous results, only one part of the asymptotic solution (namely the imaginary part of
vr and the real part of vz and vφ) performs well. However, as we decrease the Ekman
number, the other part of the asymptotic solution approaches the corresponding numerical
one, although there are still obvious differences for our lowest Ekman number 10−10.
Interestingly, the absolute errors of the asymptotic solution close to axis are found to be
almost invariant with the Ekman number (not shown here), while the relative errors scale
with E1/12 similarly to those in the bulk (see figures 13c and 14b). This suggests that both
the errors of the asymptotic solutions close to axis and in the bulk come from the same
source, which could be a weaker singularity at the critical latitude. It is suspected that
the order of this singularity is O(E1/6), which corresponds to m = 1 if its solution is still
self-similar. Its contribution to the asymptotic solution is not considered here, since we
are concerned with the leading-order response, but could be further investigated in future
studies.

5. Conclusion

Using both numerical and asymptotic methods, we have studied the harmonic response
that is generated in a rotating spherical shell by librating the inner sphere at the frequency
ω = √

2Ω where Ω is the angular frequency of the fluid. For this particular frequency, the
inertial waves propagate along rays inclined at 45 degrees with respect to the equatorial
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Figure 18. Comparison of asymptotic solutions and numerical results of three velocity components on the
line perpendicular to the axis at the reflection point (0, η/ cos θc) for three Ekman numbers.

plane and therefore form closed periodic orbits in a spherical shell. We have shown, by
considering numerical results down to Ekman numbers E = 10−10, that the harmonic
response is mainly governed by the internal shear layers that are emitted from the critical
latitude of the inner sphere. In Le Dizès & Le Bars (2017), it was shown that these internal
shear layers are concentrated wave beams that can be described in an open geometry and at
small Ekman numbers by the similarity solution initially introduced by Moore & Saffman
(1969). Here, we have further generalised this model and constructed an asymptotic
solution by monitoring the reflections of the critical-latitude beams on the boundaries
and on the axis. Despite the curvature of the boundaries, owing to the large-wavenumber
approximation (Baines 1971a), the reflection laws on a locally planar boundary (Le Dizès
2020) can be applied to construct the self-similar form of the main E1/3 shear layers. The
diffraction (Baines 1971b) on the inner boundary creates a secondary E1/6 shear layer
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whose asymptotic form is not self-similar. The two asymptotic forms give the scalings
of the velocity amplitudes in E1/12 and E1/4 for the main and secondary shear layers,
respectively. The respective local dissipation rates are predicted to scale with E1/2 and
E7/6. We have finally obtained that the asymptotic solution can be written as an infinite
sum of similarity solutions for the main shear layers. Interestingly, this sum converges
owing to the phase shift of π/2 that the beams experience at each reflection on the rotation
axis. The same summation strategy can also be applied for the non-self-similar form of the
secondary shear layers and a convergent sum is thus obtained for the same reason.

The asymptotic solution has been compared with the numerical solution of the linearised
equations for several Ekman numbers and two values of the shell aspect ratio, and a very
good agreement has been demonstrated. The relative error has been shown to be of order
E1/12. We suspect that it could be associated with a weaker singularity at the critical
latitude. An immediate consequence of our result is the scaling in E1/12 of the harmonic
response velocity, as predicted for the internal shear layer amplitude in an open geometry
(Le Dizès & Le Bars 2017). This scaling was also observed in recent simulations by Lin
& Noir (2021) but it contrasts with the E1/6 scaling previously reported in the literature
in similar contexts (Kerswell 1995; Calkins et al. 2010; Favier et al. 2014; Cébron et al.
2019).

We have also analysed the solution close to the point on the rotation axis where
the critical-latitude beam reflects. The similarity solution diverges at this point. We
have provided a new asymptotic expression describing the solution in the O(E1/3)
neighbourhood of this point. We have in particular shown that the solution also scales
as E−1/12 in this region.

It is worth emphasising that the theoretical method that has been used to build the
asymptotic solution can be applied to other situations. For instance, one can imagine
considering other libration frequencies. As long as ω < 2Ω , critical-latitude beams are
expected to be excited. These beams would propagate in the spherical shell, be reflected
on boundaries and form a complex ray pattern depending on the aspect ratio and the
frequency. If the critical-latitude beams converge towards an attractor, or if they travel
along a periodic orbit, as in the present case, the solution is expected to be localised along
these beams. The solution could then be obtained as a sum of similarity solutions. Because
these similarity solutions decrease slowly along their direction of propagation as x−5/12

‖ ,
the convergence of this sum would depend on the phase shift that the beam experiences
on the periodic orbit or on the attractor, that is on the number of reflections on the axis. If
the sum converges, we claim that our approach should apply. The other situation where the
sum does not converge is naturally of interest. We suspect that in that case one obtains a
completely different response with a new scaling in E, and probably multi-layer structures
as observed in the Stewartson layers between differentially rotating spheres (Stewartson
1966).

Finally, it is important to mention that we have limited our analysis to libration to be able
to use an existing model for the structure of the critical-latitude beam. Yet, critical-latitude
beams exist for other types of harmonic forcing. One similar viscous forcing is the
precession of a spherical shell for which the critical-latitude beams are inclined at 30 ◦
with respect to the rotation axis and form a periodic orbit if the inner core radius is smaller
than half the outer one (Hollerbach & Kerswell 1995). The asymptotic solution obtained
in the present paper for libration is expected to work similarly in that case with the same
singularity strength (m = 5/4) for the critical latitude beam. The modification associated
with the azimuthal dependence of precession is indeed expected to just add a phase factor
to the solution.
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Another stronger forcing is the periodic translation of a sphere generating the famous
Saint Andrews cross pattern (Mowbray & Rarity 1967; Greenspan 1968) which is nothing
but the pattern left by the critical-latitude beams. If these beams can be described by the
similarity solution of Moore & Saffman (1969), a similar approach could then naturally
be developed in those cases and further generalised to closed geometries.
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Appendix A. Justification of the absence of back-reflected beams

In this section, our objective is to show that no back-reflected beams are present when
the beam described by the similarity solution reflects on a curved boundary. This result is
obtained by proving that this beam is composed of wavelengths which are small compared
with the radius of curvature of the boundary. For this purpose, one just has to notice that
the similarity solution ((2.5)–(2.7)) is given by an integral of the form

I =
∫ ∞

0
eip(x⊥/E1/3) e−p3(x‖/2 sin θc)pm−1 dp, (A1)

and that, since this integral converges for any m > 0 and x‖ > 0, we can replace the
boundaries 0 and ∞ of the integral by ε and 1/ε for any ε → 0. Thus, after a change
of integration variable we obtain

I ∼ Em/3
∫ (1/ε)/E1/3

ε/E1/3
eip̃x⊥ e−Ep̃3(x‖/2 sin θc)p̃m−1 dp̃. (A2)

The first term eip̃x⊥ of the integrand denotes the carrier with p̃ as the wavenumber, while
the rest can be considered as the amplitude. If we choose ε = E1/6, the wavenumbers fall
into the following interval:

E−1/6 < p̃ < E−1/2, (A3)

which means that the wavenumbers are large in the small Ekman number limit. In other
words, the wavelengths governing the similarity solution are small compared with the O(1)

scale of the boundary. As explained in Baines (1971a), this guarantees that the reflection of
the beam on the boundary is as if the boundary was locally flat. No back-reflected beams
are therefore created.
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