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ABSTRACT

Context. The Juno spacecraft has acquired exceptionally precise data on Jupiter’s gravity field, offering invaluable insights into
Jupiter’s tidal response, interior structure, and dynamics, establishing crucial constraints.
Aims. We aim to develop a new model for calculating Jupiter’s tidal response based on its latest interior model, while also examining
the significance of different dissipation processes for the evolution of its system. We studied the dissipation of dynamical tides in
Jupiter by thermal, viscous, and molecular diffusivities acting on gravito-inertial waves in stably stratified zones and inertial waves in
convection ones.
Methods. We solved the linearised equations for the equilibrium tide. Next, we computed the dynamical tides using linear hydrody-
namical simulations based on a spectral method. The Coriolis force is fully taken into account, but the centrifugal effect is neglected.
We studied the dynamical tides occurring in Jupiter using internal structure models that respect Juno’s constraints. We specifically
looked at the dominant quadrupolar tidal components, and our focus is on the frequency range that corresponds to the tidal frequencies
associated with Jupiter’s Galilean satellites.
Results. By incorporating the different dissipation mechanisms, we calculated the total dissipation and determined the imaginary part
of the tidal Love number. We find a significant frequency dependence in dissipation spectra, indicating a strong relationship between
dissipation and forcing frequency. Furthermore, our analysis reveals that, in the chosen parameter regime in which kinematic viscos-
ity and thermal and molecular diffusivities are equal, the dominant mechanism contributing to dissipation is viscosity, exceeding both
thermal and chemical dissipation in magnitude. We find that the presence of stably stratified zones plays an important role in explaining
the high dissipation observed in Jupiter.
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1. Introduction

Tidal interactions between Jupiter and its Galilean satellites are
recognised as influential factors in both the system’s orbital
evolution and the internal dynamics (e.g. Lainey et al. 2009).
Traditionally, the tidal response of a gaseous star or planet such
as Jupiter is treated using the concept of equilibrium tide (Zahn
1966a, 1989; Remus et al. 2012), where hydrostatic deformation
exhibits a minor phase lag in response to the dissipative pro-
cesses caused by tidal forcing. However, the observed strong
tidal dissipation in Jupiter (Lainey et al. 2009) and the gravi-
tational perturbations recently measured by the Juno spacecraft
(Durante et al. 2020) cannot be fully explained by the equi-
librium tide alone. In fact, the Juno spacecraft has not only
enhanced our understanding of Jupiter’s tidal dynamics, but it
has also allowed us to delve deeper into the gravitational per-
turbation and tidal dissipation phenomena associated with the
planet. On the one hand, it has acquired precise measurements
of Jupiter’s tidal Love numbers, kℓm, which quantitatively char-
acterise the planet’s response to tidal forcing represented by
spherical harmonics of degree ℓ and order m. By analysing the
real part of these Love numbers, we gain valuable informa-
tion about the gravitational perturbations experienced by Jupiter.

On the other hand, the imaginary part of the Love numbers
provides us with insights into the processes of tidal dissipa-
tion occurring within the planet. Recently, Durante et al. (2020)
measured the Love number value for the dominant tidal compo-
nent k22 = 0.565 ± 0.018 (3σ uncertainty). This is lower than
the theoretical hydrostatic value of k(eq)

22 = 0.589 as stated by
Wahl et al. (2020), indicating a difference of approximately
∆k22 ≈ −4%. Wahl et al. (2020) noted that the influence of the
interior structure on kℓm is negligible when considering mod-
els that accurately reproduce the zonal harmonics J2, J4, and
J6, which have already been measured with high precision by
Juno. This discrepancy between the observed and the computed
values of k22 could potentially be attributed to the influence of
dynamical tides (Zahn 1975; Ogilvie & Lin 2004). Indeed, the
conventional concept of the equilibrium tide does not satisfy the
full equation of motion because the acceleration of the fluid is
neglected (Zahn 1966b). Hence, a comprehensive understanding
of the planet’s tidal response requires the inclusion of correc-
tions. These corrections introduce wave-like motions within the
planet and depend on both the tidal frequency and the internal
structure (Ogilvie 2014). The dynamical (wave-like) tide offers
additional channels for tidal dissipation and generates supple-
mentary gravitational perturbations, surpassing the effects solely
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attributed to the hydrostatic deformation (Idini & Stevenson
2021; Lai 2021; Lin 2023).

The detection of gravitational signatures from dynamical
tides can provide valuable insights into the interior structure of
Jupiter, as it is influenced by both the tidal frequency and the
internal structure. Idini & Stevenson (2021), Lai (2021), Idini &
Stevenson (2022a,b), Dewberry & Lai (2022), Dewberry (2023),
Lin (2023) found that ∆k22 can be largely attributed to the Cori-
olis effect on the fundamental modes (f-modes). Additionally,
Idini & Stevenson (2022a) proposed that resonant locking with
a gravity mode in an extended diluted core could explain a
∆k42 ≈ −11% difference between the observed and computed
values of k42. This finding supports the existence of a diluted
core in Jupiter, a possibility also suggested by Stevenson (1985)
and by Juno’s measurements of gravitational moments (Wahl
et al. 2017; Militzer et al. 2022). The Coriolis force plays a
crucial role in Jupiter’s tidal responses because tidal frequencies
of its Galilean satellites are comparable with the planet’s spin
frequency. Including the Coriolis force introduces inertial waves
in (magnetised) convective regions (Rieutord & Valdettaro
1997, 2010; Ogilvie & Lin 2004; Ogilvie 2009, 2013; Baruteau
& Rieutord 2013; Guenel et al. 2016a,b; Mathis et al. 2016;
Wei 2016, 2018; Lin & Ogilvie 2018; Astoul et al. 2019) and
a combination of gravity waves and inertial waves (known as
gravito-inertial waves) in stably stratified regions (Dintrans
et al. 1999; Dintrans & Rieutord 2000; Mathis 2009; Auclair
Desrotour et al. 2015; André et al. 2019; Pontin et al. 2023).

The dissipation of dynamical tides occurs through various
friction mechanisms, including turbulent friction in convective
layers and heat diffusion in stably stratified regions (e.g. Ogilvie
2014; Mathis 2019; Duguid et al. 2020; Vidal & Barker 2020;
de Vries et al. 2023). The rate of tidal dissipation in con-
vective and stably stratified regions of planets has significant
implications for the evolution of planet-moon systems. In the
context of the Jupiter and Saturn systems, our understanding of
tidal evolution has undergone a remarkable transformation. Both
planets exhibit tidal dissipation that is one or several orders of
magnitude stronger than previous predictions based on moon-
formation scenarios (Goldreich & Soter 1966). This intense
dissipation is essential to explaining their rapid orbital migration,
a phenomenon that came to light through precise astromet-
ric measurements (Lainey et al. 2009, 2012, 2017, 2020). For
instance, Lainey et al. (2009) fitted a dynamical model, including
parameterised tidal dissipation, to astrometric observations from
1891 to 2007 of the Galilean satellites. They found that the tidal
dissipation is k22/Q = (1.1 ± 0.2) × 10−5 (where Q is the qual-
ity factor that evaluates the ratio between the maximum energy
stored in the tidal distortion and the energy dissipated during an
orbital period), for the asynchronous tide due to Io.

Giant gas planets have traditionally been modelled with a
three-layer model. This model entails a central rocky or icy core
enveloped by a convective layer comprising metallic hydrogen
and helium, which is further encompassed by an outer layer
consisting of molecular hydrogen and helium (Stevenson 1982;
Guillot et al. 1994). While this model serves as a reference for
gas giant planets, uncertainties persist regarding the specific size
of each region and the precise characteristics of the transitions
between them. Recent studies have been diverging from the con-
ventional standard model and delving into alternative interior
structures. Specifically, Leconte & Chabrier (2012) proposed a
model with a gradient of entropy and heavy elements through-
out an entirely semi-convective (convective regions that are well
mixed and separated by thin interfaces with stable stratification,
creating a staircase-like structure in the entropy profile) planet,

suppressing the need for a compact core in Jupiter. Stevenson
(1985), Wahl et al. (2017), Debras & Chabrier (2019) investi-
gated the possibility of incorporating stable stratification into
their models, which takes the form of a substantial but diffuse
core that extends beyond what was previously believed to be the
convective zone. Therefore, significant portions of giant planet
interiors are expected to exhibit an unstable entropy gradient,
which competes with stable composition gradients. This compe-
tition can result in the emergence of double-diffusive convection,
leading to the formation of semi-convective layers (e.g. Garaud
2018). Although these layers cannot be directly observed, their
formation introduces distinct physics compared to traditional
adiabatic models. Consequently, they have a profound impact
on the behaviour and subsequent evolution of the system (e.g.
Debras & Chabrier 2019). We thus go beyond the classical mod-
els of tides that invoke inertial waves in the deep convective
envelope (Ogilvie & Lin 2004), viscoelastic tides in the rocky
or icy core (Remus et al. 2012, 2015), or the combination of
both (Guenel et al. 2014), and instead move towards models that
consider gravito-inertial waves propagating in giant planets’ inte-
riors, where both convective and stably stratified layers co-exist
(André et al. 2017, 2019; Pontin et al. 2020, 2023; Lin 2023;
Dewberry 2023).

In this study, we developed a method to calculate the dissipa-
tion of the dynamical tidal response of a self-gravitating, rotating
fluid body composed of alternating convective layers and stably
stratified layers and which takes into account the viscous, ther-
mal, and chemical dissipation processes. This is the first time that
global models incorporate the consideration of all three dissipa-
tion mechanisms, as opposed to solely focusing on viscosity in
previous models. The Coriolis force is fully taken into account,
but the centrifugal force is neglected as a first step. This method
allows us to compute the imaginary part of the tidal Love num-
ber for a given planetary interior model. We focused especially
on the latest Jupiter interior model constrained by Juno data and
calculated by Debras & Chabrier (2019).

The paper is structured as follows. In Sect. 2, we describe
how we derived the model that allows us to study the dissipation
of tidally forced waves. We provide a detailed explanation for
the separation of equilibrium tides and dynamical tides. Addi-
tionally, we derived the energy equation of tidal flows within
this framework. In Sect. 3, we present the Jupiter interior model
used in this study. In Sect. 4, we outline our methodology for
calculating the equilibrium tide in the adiabatic case. Then, we
focus on computing the dynamical (wave-like) tide from 2D
linear pseudo-spectral numerical simulations, which allowed us
to derive the associated dissipation. We then present the novel
results obtained concerning tidal waves in Jupiter in Sect. 5.
Specifically, we cover the simultaneous inclusion of inertial
waves in convection zones and gravito-inertial waves in sta-
bly stratified zones along with the evaluation of the dissipation
resulting from the different dissipative processes. Finally, in
Sect. 6, we summarise the key findings and implications of our
study.

2. Modelling tidally forced waves in giant planet
interiors

We studied the linear excitation of (gravito-)inertial waves using
an external tidal body forcing Fforcing. These waves are sub-
ject to dissipative processes, namely viscosity, thermal diffusion,
and molecular diffusion (we assume that these diffusivities are
uniform (cf. Sect. 3.2)).
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2.1. Governing equations

We begin by writing the system of dynamical equations formed
by the following set of equations. First, we write the continuity
equation:

Dtρ + ρ∇ · V = 0, (1)

where ρ is the density, V is the velocity field, and Dt = ∂t +
(V · ∇) is the Lagrangian derivative. Then, we introduce the
momentum equation:

ρ
DV
Dt
= −∇P − ρ∇Φ + ρν

(
∇

2V +
1
3
∇∇ · V

)
+ Fforcing, (2)

where P is the pressure, Φ the gravitational potential, ν is the
kinematic viscosity assumed to be constant, and Fforcing the
tidal forcing. We adopt here the Stokes hypothesis, where the
bulk viscosity is neglected. We also introduce the heat (energy)
equation:

ρT Dt s = k∇2T, (3)

where T is the temperature, k is the thermal conductivity, and

s is the specific entropy such as ds B cp

(
dT
T
− ∇ad

dP
P

)
; with

∇ad B
(

d ln T
d ln P

)
s

being the adiabatic temperature gradient and
cp the specific heat capacity. We neglect the viscous heating
term here and suppose k is constant. The chemical composition
equation can be written as

Dtµ = Dµ∇2µ, (4)

where µ is the molecular weight and Dµ is the molecular
diffusion supposed constant. The Poisson equation reads

∇2Φ = 4πGρ, (5)

where G the universal gravitational constant. Finally, the general
differential form of the equation of state (Kippenhahn & Weigert
1994) is defined by

∂ρ

ρ
= α
∂P
P
− δ
∂T
T
+ ϕ
∂µ

µ
, (6)

with

α B

(
∂ ln ρ
∂ ln P

)
T, µ
, δ B −

(
∂ ln ρ
∂ ln T

)
P, µ
, ϕ B

(
∂ ln ρ
∂ ln µ

)
P,T
. (7)

2.2. Linearisation

We linearise the hydrodynamic system (Eqs. (1)–(6)) around the
hydrostatic steady state. Each scalar field X B {P, ρ,Φ,T, µ} is
expanded as the sum of its hydrostatic value X0 and of the
Eulerian perturbations associated with the tides X′:

X(r, θ, φ, t) = X0(r) + X′(r, θ, φ, t). (8)

We neglect the non-spherical character of the hydrostatic back-
ground here due to the deformation associated with the centrifu-
gal acceleration, and the associated perturbation of the gravi-
tational potential since gravito-inertial waves are only slightly
affected by the deformation (e.g. Ballot et al. 2010; Dhouib et al.
2021). This implies that the background is independent of θ, so

X0 = X0(r). We can write the velocity field, V, as the sum of
the large-scale azimuthal velocity associated with the uniform
rotation (as a first step, we neglect the differential rotation since
Jupiter’s relative differential rotation is 4%; Guillot et al. 2018),
Ω, and of the wave velocity, u:

V(r, θ, φ, t) = r sin θΩ eφ + u(r, θ, φ, t), (9)

where t is time and (r, θ, φ) are the usual spherical coordinates
with their associated unit vector basis (er, eθ, eφ). In this case,
the linearised system ((1)-(6)) can be rewritten in the rotating
frame as

∂ρ′

∂t
+ ∇ · (ρ0u) = 0, (10)

∂u

∂t
+ 2Ω × u = −∇W −

∇ρ0

ρ0
W ′ +

ρ′

ρ0
g0 − ∇Φ

′

+ ν

(
∇

2u +
1
3
∇∇ · u

)
+ Fforcing, (11)

∂T ′

∂t
+ u · ∇T0 − ∇ad

T0

P0

(
∂P′

∂t
+ u · ∇P0

)
= κ∇2T ′, (12)

∂µ′

∂t
+ u · ∇µ0 = Dµ∇2µ′, (13)

∇2Φ′ = 4πGρ′, (14)
ρ′

ρ0
= α

P′

P0
− δ

T ′

T0
+ ϕ
µ′

µ0
, (15)

where W ′ = P′/ρ0 is the normalised pressure, κ = k/ρ0cp is
the thermal diffusivity supposed constant, and g0 = −∇Φ0 =
∇P0/ρ0 = −g0er is the gravitational acceleration.

2.3. Non-wave-like and wave-like tides

We decompose the fluctuations associated with the tides into
non-wave-like and wave-like parts:

Y = Ynw + Yw, (16)

with Y B {vr, vθ, vφ, X′},where Ynw is the non-wave-like (equilib-
rium) tide that satisfies the hydrostatic equilibrium (Zahn 1966a,
1989) and Yw the wave-like (dynamical) tide that describes the
propagation of waves (Zahn 1975; Ogilvie & Lin 2004).

2.3.1. Non-wave-like part

We assume that the non-wave-like part is adiabatic (α ≈ 1/Γ1
and κ = 0), where Γ1 = (∂ ln P0/∂ ln ρ0)s is the first adiabatic
exponent, and non-dissipative (ν = Dµ = 0). The planet is
assumed to be tidally forced by a single potential component,
Fforcing = −∇Ψ, where

Ψ(r, θ, φ, t) = Ψℓ(r)Ym
ℓ (θ, φ)e−iω0t, with Ψℓ(r) = A

( r
R

)ℓ
, (17)

where

A ∝
GRℓMsatellite

aℓ+1 (18)

is the forcing amplitude, Msatellite is the mass of the satellite,
and a is the semi-major axis. In our linear numerical calcu-
lations, we used a normalised value of A, so we set A = 1.
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Ym
ℓ (θ, φ) is an orthonormalised spherical harmonic of degree ℓ

and order m, and ω0 = nΩorbital is the tidal frequency in the iner-
tial frame centred on the planet (n labels temporal harmonics
of the orbital motion and Ωorbital denotes the orbital frequency).
We only considered the dominant quadrupolar tidal component
ℓ = m = 2.

If we suppose that the adiabatic equilibrium tide is stationary
in the frame rotating with the fluid inside the planet (Remus et al.
2012), we simplify the linearised heat (Eq. (12)) and chemical
composition (Eq. (13)) equations by neglecting ∂Pnw/∂t. In that
case, the system of equations that describes the non-wave-like
tides can be written as

ρnw + ∇ ·
(
ρ0ξ

nw)
= 0, (19)

−∇Wnw −
∇ρ0

ρ0
Wnw +

ρnw

ρ0
g0 − ∇Φ

nw − ∇Ψ = 0, (20)

T nw + ξnw
r T0

N2
t

g0δ
= 0, (21)

µnw − ξnw
r µ0

N2
µ

g0ϕ
= 0, (22)

∇2Φnw = 4πGρnw, (23)
ρnw

ρ0
=

1
Γ1

Pnw

P0
− δ

T nw

T0
+ ϕ
µnw

µ0
, (24)

where ξnw is the displacement defined as unw = ∂ξnw/∂t (it is
customary to consider the displacement ξnw instead of the veloc-
ity unw in the calculation of the non-wave-like tide since it is a
deformation induced by mass redistribution),

N2
t = −g0δ

d ln P0

dr

(
∇ad −

d ln T0

d ln P0

)
(25)

is the thermal Brunt-Väisälä frequency squared, and

N2
µ = −g0ϕ

d ln µ0

dr
(26)

is the compositional Brunt-Väisälä frequency squared. The sum
of these two qualities gives us the total Brunt–Väisälä frequency
squared:

N2 = N2
t + N2

µ = −g0

(
1
ρ0

dρ0

dr
−

1
Γ1P0

dP0

dr

)
. (27)

If we write Eq. (20) as

−∇
(
Wnw + Φnw + Ψ

)
+

(
ρnw −

dρ0

dP0
Pnw

)
∇P0

ρ2
0

= 0, (28)

we deduce that (Ogilvie 2014)

Pnw = −ρ0
(
Φnw + Ψ

)
, (29)

ρnw =
dρ0

dP0
Pnw. (30)

The non-wave-like gravitational potential is obtained by solving
the Poisson equation (Eq. (23)), which can be rewritten as

1
r2

d
dr

(
r2 dΦnw

ℓ

dr

)
−
ℓ(ℓ + 1)

r2 Φnw
ℓ + 4πG

dρ0

dP0
ρ0

(
Φnw
ℓ + Ψℓ

)
= 0,

(31)

where

Φnw(r, θ, φ, t) = Φnw
ℓ (r)Ym

ℓ (θ, φ)e−iω0t, (32)

and with the following boundary conditions to ensure its regu-
larity near the centre (r = η, where η is the aspect ratio) and its
continuity at the surface (r = 1) (e.g. Ogilvie 2009):

d lnΦnw
ℓ

d ln r
= ℓ at r = ηR, (33)

d lnΦnw
ℓ

d ln r
= −(ℓ + 1) at r = R. (34)

Using Eqs. (21) and (22) in Eq. (24) we obtain

1
Γ1

Pnw

P0
−
ρnw

ρ0
+

N2

g0
ξnw

r = 0, (35)

where ξnw = ξnw
r er + ξ

nw
h such that ξnw

h · er = 0. From this equa-
tion we can derive the expression for the non-wave-like radial
displacement,

N2
(
ξnw

r,ℓ +
Φnw
ℓ
+ Ψℓ

g0

)
= 0; (36)

so, when N2 , 0 we obtain

ξnw
r,ℓ = −

Φnw
ℓ
+ Ψℓ

g0
. (37)

Subsequently, from Eq. (19) we can derive the non-wave-like
horizontal displacement

ξnw
h,ℓ =

1
ℓ(ℓ + 1)

(
2ξnw

r,ℓ + r
dξnw

r,ℓ

dr

)
; (38)

therefore, we can deduce that

div ξnw = 0. (39)

This is the conventional equilibrium tide (Zahn 1966a, 1989;
Remus et al. 2012). This solution applies not only to stably strat-
ified zones, but also to convective regions, since N2 is not equal
to zero but slightly negative and the fact that we generally set N2

in these zones to zero is only an approximation. Thus, Eqs. (37)
and (38) may be applied to the whole fluid domain inside the
planet. Terquem et al. (1998) and Goodman & Dickson (1998)
argued that this equilibrium tide solution does not apply to con-
vective regions, as they assumed that the convective zone is
adiabatically stratified (N2 = 0). A comparison between these
two definitions of the non-wave-like tides performed by Barker
(2020) highlights the fact that in the interface between convec-
tive zones and stably stratified zones, a discontinuity arises in
the horizontal component of displacement. This situation poses
a problem both physically, since the ellipsoidal deformation and
the related displacement has no reason to be discontinuous at
convective-radiative boundaries, and numerically when dealing
with multi-zone problems. We can therefore use the solution
derived by Zahn (1966a, 1989) and Remus et al. (2012) which
applies in stably stratified zones, but also in convective regions,
since N2 is not strictly equal to zero, but slightly negative.
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2.3.2. Wave-like part

To derive the wave-like part, we first assumed the Boussinesq
approximation (Spiegel & Veronis 1960), which neglects the
density variations except where they appear in the buoyancy
term, so the acoustic waves are filtered out. This approxima-
tion is an essential first step for addressing such a complex
problem where the eigenmodes at these low frequencies are gen-
erally singular and are regularised by diffusion processes (see
Sect. 6 for the discussion on the use of the anelastic approx-
imation instead of the Boussinesq one). In fact, calculating
inertial and gravito-inertial waves in an internal structure model
with multiple transition layers poses a challenge, particularly
given the presence of the strong density gradients. Addition-
ally, incorporating three diffusion processes with coefficients
spanning several orders of magnitude, potentially reaching very
low values, adds another layer of complexity that is numeri-
cally demanding. To manage these complexities effectively, it is
necessary to start with a simplified model to control the phys-
ical processes before moving on to the following stages. This
approach is crucial for acknowledging and addressing possi-
ble biases introduced during the analysis. In Sect. 6, we discuss
the potential limitations of this first necessary study within the
Boussinesq approximation and the requirements to go beyond it
in a near future. Then, we assumed the Cowling approximation
(Cowling 1941), which neglects the perturbations of the gravi-
tational potential induced by the waves since the perturbations
induced by the non-wave-like tides are dominant (e.g. Ogilvie &
Lin 2004). The system of equations that describes the wave-like
tides can thus be written as

∇ · uw = 0, (40)

∂uw

∂t
+ 2Ω × uw = −∇Ww + g0

(
δ

T w

T0
− ϕ
µw

µ0

)
er + ν∇

2uw + f nw,

(41)

∂T w

∂t
+ vwr T0

N2
t

g0δ
= κ∇2T w, (42)

∂µw

∂t
− vwr µ0

N2
µ

g0ϕ
= Dµ∇2µw, (43)

ρw

ρ0
= −δ

T w

T0
+ ϕ
µw

µ0
, (44)

with

f nw = −
∂unw

∂t
− 2Ω × unw, (45)

the forcing term that arises when solving the non-wave-like tides
as a residual force, as the non-wave-like one does not satisfy the
equation of motion due to the omission of inertial forces associ-
ated with this flow. This force encompasses the acceleration of
the non-wave-like tide and the Coriolis acceleration applied to it
and will force the gravito-inertial tidal waves (see also Ogilvie
2005; André et al. 2019).

We choose the planet’s radius R for the length scale and
(2Ω)−1 for the timescale (t = τ/2Ω). Therefore, we can define the
normalised quantities as follows: uw = 2ΩRu, Ww = 4Ω2R2Π,
g0 = 4Ω2Rg∗0, f nw = 4Ω2R f ∗, and the normalised differential
operator as R∇ = ∇∗. We write the normalised temperature and
chemical composition as T w = TiΘ, µw = µiM, T0 = TiT ∗0 and
µ0 = µiµ

∗
0, where Ti and µi are the temperature and the molecular

weight, respectively, at the inner boundary. So, we can write the
normalised system as

∇
∗ · u = 0, (46)

∂u
∂τ
+ ez × u = −∇Π +

(
δ

T ∗0
Θ −

ϕ

µ∗0
M

)
g∗0er + E∇∗2u + f ∗, (47)

∂Θ

∂τ
+

T ∗0 N∗t
2

g∗0δ
ur =

E
Pr
∇
∗2
Θ, (48)

∂M
∂τ
−
µ∗0N∗µ

2

g∗0ϕ
ur =

E
Sc
∇
∗2M, (49)

where we define the normalised Brunt–Väisälä frequencies:

N∗t
2
=

N2
t

4Ω2 and N∗µ
2
=

N2
µ

4Ω2 . (50)

These equations are governed by three dimensionless num-
bers. These are the Prandtl number, defined as the ratio of the
kinematic viscosity (ν) to the thermal diffusivity (κ),

Pr =
ν

κ
; (51)

the Schmidt number, defined as the ratio of the kinematic
viscosity (ν) to the molecular diffusivity (Dµ),

Sc =
ν

Dµ
; (52)

and the Ekman number, which compares the ratio between the
viscous force and the Coriolis force,

E =
ν

2ΩR2 . (53)

2.4. Energy equation

From the scalar product between ū (where □̄ denotes the com-
plex conjugate) and the momentum Eq. (47) and by using
Eqs. (48) and (49), we obtain the energy equation

∂τ
(
Ek + Ep,th + Ep,µ

)
= Pacou + Dth + Dch + Dvisc + Ptide, (54)

with

Ek =
1
2
||u||2 (55)

being the specific kinetic energy,

Ep,th =


1
2

(
δg∗0

T ∗0 N∗t

)2

|Θ|2 if N2
t , 0

0 if not
(56)

the specific potential energy associated with thermal
stratification,

Ep,µ =


1
2

(
ϕg∗0
µ∗0N∗µ

)2

|M|2 if N2
µ , 0

0 if not
(57)

the specific potential energy associated with chemical
stratification,

Pacou = −∇
∗Π · ū (58)
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the specific work of pressure forces that can be related to the
acoustic flux ∇ · (P′u),

Dth =


E
Pr

(
δg∗0

T ∗0 N∗t

)2

Θ̄∇∗
2
Θ if N2

t , 0

0 if not
(59)

the specific power dissipated by thermal diffusion,

Dch =


E
Sc

(
ϕg∗0
µ∗0N∗µ

)2

M̄∇∗2M if N2
µ , 0

0 if not
(60)

the specific power dissipated by chemical diffusion,

Dvisc = E∇∗2u · ū (61)

the specific power dissipated by viscous friction, and

Ptide = f ∗ · ū (62)

the specific tidal power. Then, after spatial integration over the
volume V , we obtain

∂t

(
Ẽk + Ẽp,th + Ẽp,µ

)
= P̃acou + D̃th + D̃ch + D̃visc + P̃tide, (63)

where □̃ =
1
2
ℜ

[∫
V
□dV

]
. Here, we assume that the density is

constant by adopting the Boussinesq approximation, allowing us
to simplify it in this equation on both sides.

3. Interior model of Jupiter as revealed by Juno

3.1. Five-layer model

In order to assess the dissipation of dynamical tides on Jupiter,
we need to prescribe the background state profiles of the different
quantities and the Brunt–Väisälä frequencies. Recent observa-
tions have made significant advancements in our understanding
of the internal structure of gas giant plants, such as Jupiter and
Saturn, yet some degree of uncertainty remains. As we can see
in Fig. 1, the internal structure model computed by Debras &
Chabrier (2019) to reproduce Jupiter’s multipolar moments as
measured by Juno assumes an extended diluted core of radius
0.69R treated as a stably stratified fluid layer (a similar zone is
probably also present in Saturn; Mankovich & Fuller 2021), and
a convective envelope that features a small stably stratified layer
between 0.9R and 0.92R, possibly resulting from H-He immis-
cibility (Debras & Chabrier 2019). The equation of state used
to compute this model is the one derived in Chabrier & Debras
(2021). As illustrated in Fig. 2, starting from its surface and mov-
ing towards the core, Jupiter is thought to exhibit the following
layers:

– Gaseous envelope: this outermost layer is characterised by
convective motion and differential rotation.

– Transitional stably stratified zone: this region is considered
to be potentially semi-convective. It is also known as a
double-diffusive zone, as proposed by Leconte & Chabrier
(2012).

– Internal convective zone: this layer is magnetised and com-
posed of metallic hydrogen and helium, and it is rotating
quasi-uniformly since if the rotation were significantly dif-
ferent from solid rotation, the ohmic dissipation would
become inexplicable (e.g. Liu et al. 2008; Guillot et al. 2018).

Fig. 1. Profiles of compositional (N2
µ), thermal (N2

t ), and total (N2)
Brunt–Väisälä frequencies squared normalised by the inertial frequen-
cies squared (4Ω2) as a function of the normalised radius r/R.

Fig. 2. Schematic of model of Jupiter’s interior used in this study.

– Stably stratified zone: this layer is located closer to the
core and may exhibit double diffusion convection or a
diluted core structure due to stabiliing composition gradi-
ents (Leconte & Chabrier 2012, 2013; Wilson & Militzer
2012b,a; Wahl et al. 2013, 2017; González-Cataldo et al.
2014; Mazevet et al. 2015).

– Potential unstable solid core of size 1.4% of radius: made up
of rock or ice. While this size may vary slightly based on
different models, we are unable to construct a model with a
substantial core (bigger than ∼10%) that respects the Juno
constraints (e.g. Debras & Chabrier 2019).

We note that as a first step, we did not take the differential
rotation and magnetism into account in this study.

3.2. Transport properties

Using the transport properties outlined in Stevenson & Salpeter
(1977), we made calculations to determine the various molec-
ular diffusivities within Jupiter and the associated dimension-
less numbers (the expressions of these numbers are given in
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Fig. 3. Prandtl, Schmidt, and Ekman number profiles as a function of
the normalised radius based on Stevenson & Salpeter (1977).

Appendix A). The radial profile of these dimensionless num-
bers (Prandtl, Schmidt and Ekman) is displayed in Fig. 3. We
can see that the influence of viscous forces is generally small
compared to the Coriolis acceleration. Consequently, the Ekman
number, which characterises the ratio of viscous to Coriolis
forces, becomes extremely low, typically of the order of 10−17

when assuming molecular viscosity. However, due to the chal-
lenges in accurately resolving shear layers at very low diffusivity
levels, such Ekman number regimes cannot be reached numeri-
cally. The numerical strategy adopted is therefore to reach the
lowest possible Ekman number values, hoping to have reached a
regime where the scaling laws obtained will apply to the lower
astrophysical values. Moreover, this Ekman number value is cal-
culated with a molecular viscosity value, whereas inertial tidal
waves could in reality be subject to a turbulent effective viscos-
ity (Ogilvie & Lin 2004, 2007; Mathis et al. 2016; Duguid et al.
2020; Vidal & Barker 2020; de Vries et al. 2023), with larger
values that would lead to a larger Ekman number. Indeed, by
employing the non-rotating mixing-length theory, we can make
a rough estimation of the turbulent effective eddy viscosity in
convective regions resulting in an Ekman number of approxi-
mately 10−7 (Guillot et al. 2004). When replacing the standard
non-rotating mixing length theory by the rotating mixing length
theory developed in Stevenson (1979), we end up (following
Mathis et al. 2016) with a much smaller turbulent Ekman num-
ber of approximatively 10−15, which is closer to the microscopic
value, because of the inhibition of convection by rapid rotation
(Fuentes et al. 2023). On the other hand, the Prandtl number,
which measures the ratio of viscosity to thermal diffusivity, is
low within the planet (approximately 10−2), but it increases to

around 1 near the surface (at r > 0.9R). Regarding the Schmidt
number, which characterises the ratio of viscosity to molecular
diffusivity, it remains close to unity throughout the planet. As
a first step, we assumed in our simulations that these dimen-
sionless numbers are constant. Then, we were able to study the
impact of their variations by exploring the parameter domain.

4. Numerical resolution

Our attention in this paper is directed towards the ℓ = m = 2
component of the tide, as it is commonly considered to be
the most prominent for a quasi-circular and coplanar two-body
system (Mathis & Le Poncin-Lafitte 2009; Ogilvie 2014).

4.1. Solving the non-wave-like part

Our goal here is to find the non-wave-like displacement ξnw , as
it is needed in the expression for the effective forcing driving
dynamical tides (Eq. (45)). Therefore, we must first solve
Poisson’s equation (Eq. (31)) numerically with boundary condi-
tions (33) and (34) using the density and pressure background
profiles (ρ0 and P0) that we computed using the structure model
defined in Sect. (3.1). Then, we were able to easily compute
the vertical and horizontal non-wave-like displacement using
Eqs. (37) and (38). We can see, in Fig. 4, these quantities as a
function of the normalised radius for A = 1 and ℓ = 2. We
emphasise here that setting the forcing value to A = 1 gives
very high displacement values, while a realistic forcing value
(Eq. (18)) would give much lower values. Since we are deal-
ing with the linear case, the choice of A has no impact on
our results (ultimately, we want to calculate the Love number
defined just after in Eq. (64), which is a ratio where A will be
simplified).

Once the solution to Poisson’s equation (Eq. (31)) is obtained
numerically, the Love number (Love 1911) is readily given by

knw
ℓ =

Φnw
ℓ

(r = R)
Ψℓ(r = R)

. (64)

We note that this includes only non-wave-like tides, and it is
real since we do not take into account its dissipation. For ℓ = 2
we find that knw

2 = 0.638. However, it is important to acknowl-
edge that our assumption of a spherical planet does not hold
true for Jupiter, as its rapid rotation causes it to be flattened,
leading to a discrepancy between our value and the calculated
values by Wahl et al. (2020). In fact, they investigated the non-
rotating case and found a value of knw

2 = 0.536. However, when
taking the planet’s rotation into account, they determined that
the value changes to knw

2 = 0.589 for m = 2. It is worth not-
ing that the Love number becomes dependent on the azimuthal
order m when considering the effects of rotation. Our approach
takes into account rotation while neglecting flattening, whereas
the method of Wahl et al. (2020) takes into account both rota-
tion and induced deformation simultaneously. Since our main
objective in this study is to understand wave-like tides, we com-
puted the non-wave-like tides only to calculate the forcing term.
Therefore, we can omit the flattening as a first step, considering
that the forcing term will be only slightly modified. The discrep-
ancy of the calculated equilibrium Love number in comparison
to the observed value (k22 = 0.565, Durante et al. 2020) sug-
gests uncharacterised dynamical (wave-like) contribution due to
tidal waves.
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Fig. 4. Non-wave-like (equilibrium) gravitational potential (left) and corresponding radial and horizontal displacements (right) as a function of the
normalised radius for A = 1 and ℓ = 2.

4.2. Solving the wave-like part

We expanded the velocity, temperature, molecular weight, and
reduced pressure on spherical harmonics (Rieutord 1987) as

u =
+∞∑
ℓ=0

ℓ∑
m=−ℓ

(
um
ℓ (r)Rm

ℓ (θ, φ) + vmℓ (r)Sm
ℓ (θ, φ)

+wm
ℓ (r)Tm

ℓ (θ, φ)
)

e−iω̃τ, (65)

Θ =

+∞∑
ℓ=0

ℓ∑
m=−ℓ

tm
ℓ (r)Ym

ℓ (θ, φ) e−iω̃τ, (66)

M =
+∞∑
ℓ=0

ℓ∑
m=−ℓ

µm
ℓ (r)Ym

ℓ (θ, φ) e−iω̃τ, (67)

Π =

+∞∑
ℓ=0

ℓ∑
m=−ℓ

pm
ℓ (r)Ym

ℓ (θ, φ) e−iω̃τ, (68)

with Rm
ℓ = Ym

ℓ er, Sm
ℓ = ∇Ym

ℓ , Tm
ℓ = ∇ × Rm

ℓ , and ω̃ = ω/2Ω
being the normalised frequency associated with the tidal forc-
ing in the rotating frame. Then, the projection of the linearised
dimensionless system (Sect. 4.2.1) and the associated boundary
conditions (Sect. 4.2.2) are solved using the linear 2D pseudo-
spectral Linear Solver Builder (LSB) code (Valdettarov 2007).
These equations are discretised in the radial direction on the
Gauss-Lobatto collocation nodes associated with Chebyshev
polynomials. They are truncated at order Nr for the Cheby-
shev basis and at order Nℓ for the spherical harmonics basis.
The governing equations, Eqs. (69) to (74), and adopted bound-
ary conditions (Sect. 4.2.2) form a linear system of the form
MX = F, which is solved on each point of the radial grid, given
the value of the forcing frequency ω̃ and azimuthal order m.

4.2.1. System of equations to solve

Using Eqs. (65)–(68) and the expressions of the operators in
the spherical harmonics basis specified in Appendix B, we can
rewrite the system (46)–(49) as

drum
ℓ +

2
r

um
ℓ − ℓ(ℓ + 1)

vmℓ
r
= 0, (69)

E∆ℓum
ℓ −

(
2E
r2 − iω̃

)
um
ℓ +

(
im +

2E
r2 ℓ(ℓ + 1)

)
vmℓ

− βℓℓ−1w
m
ℓ−1 − β

ℓ
ℓ+1w

m
ℓ+1 − dr pm

ℓ +
δg∗0
T ∗0

tm
ℓ −
ϕg∗0
µ∗0
µm
ℓ = − f ℓ,mR ,

(70)

E∆ℓvmℓ +
(
iω̃ +

im
ℓ(ℓ + 1)

)
vmℓ +

(
2E
r2 +

im
ℓ(ℓ + 1)

)
um
ℓ

− γℓℓ−1w
m
ℓ−1 − γ

ℓ
ℓ+1w

m
ℓ+1 −

pm
ℓ

r
= − f ℓ,mS , (71)

E∆ℓwm
ℓ +

(
iω̃ +

im
ℓ(ℓ + 1)

)
wm
ℓ + γ

ℓ
ℓ−1v

m
ℓ−1 + γ

ℓ
ℓ+1v

m
ℓ+1

−
αℓ
ℓ−1

ℓ
um
ℓ−1 +

αℓ
ℓ+1

ℓ + 1
um
ℓ+1 = − f ℓ,mT , (72)

E
Pr
∆ℓtm
ℓ − um

ℓ

T ∗0 N∗t
2

g∗0δ
+ iω̃tm

ℓ = 0, (73)

E
Sc
∆ℓµ

m
ℓ + um

ℓ

µ∗0N∗µ
2

g∗0ϕ
+ iω̃µm

ℓ = 0, (74)

where

dr□ =
d□
dr
, (75)

d2
r2□ =

d2□

dr2 , (76)

∆ℓ□ = d2
r2□ +

2
r

dr□ −
ℓ(ℓ + 1)

r2 □, (77)

and the coupling coefficients, which all depend on m, are given
by

αℓℓ−1 = α
ℓ−1
ℓ =

√
ℓ2 − m2

(2ℓ − 1)(2ℓ + 1)
, (78)

βℓℓ−1 = (ℓ − 1)αℓℓ−1, β
ℓ
ℓ+1 = −(ℓ + 2)αℓℓ+1, (79)

γℓℓ−1 =
ℓ − 1
ℓ
αℓℓ−1, γ

ℓ
ℓ+1 =

ℓ + 2
ℓ + 1

αℓℓ+1. (80)
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Fig. 5. Meridional cut (z = r cos θ and s = r sin θ) of dimensionless kinetic energy (left), potential energy associated with chemical (middle), and
potential energy associated thermal stratification (right) of the forced mode ω̃ = −0.76 for m = 2, E = 10−7, Pr = Sc = 1 with a spatial resolution
of (Nr, Nℓ) = (300, 301). The trajectories of characteristics are represented with white curves, while the surfaces at which they undergo reflections
are shown with brown curves.

Fig. 6. Spectral content of velocity field components (u, v,w), pres-
sure (p), temperature (t), and molecular weight (µ) of the forced mode
ω̃ = −0.76 for m = 2, E = 10−7, Pr = Sc = 1. Chebyshev and spher-
ical harmonics coefficients are shown in the top and bottom panels,
respectively.

Since we only considered the dominant quadrupolar tidal com-
ponent ℓ = m = 2, the forcing term can be written as

f ∗ = f ℓ,mR (r)Rm
ℓ + f ℓ,mS (r)Sm

ℓ + f ℓ,mT (r)Tm
ℓ , (81)

with

f ℓ,mR =

[
ω̃2ξnw

r,ℓ +
mω̃
ℓ(ℓ + 1)

(
2ξnw

r,ℓ + rdrξ
nw
r,ℓ

)]
δ(ℓ−2)δ(m−2), (82)

f ℓ,mS =

[
mω̃

ℓ2(ℓ + 1)2

(
(ℓ(ℓ + 1) + 2) ξnw

r,ℓ + rdrξ
nw
r,ℓ

)
+
ω̃2

ℓ(ℓ + 1)

(
2ξnw

r,ℓ + rdrξ
nw
r,ℓ

)]
δ(ℓ − 2)δ(m − 2), (83)

f ℓ,mT = −iω̃
αℓ
ℓ−1

ℓ2

(
−(ℓ − 2)ξnw

r,ℓ−1 + rdrξ
nw
r,ℓ−1

)
δ(ℓ − 3)δ(m − 2),

(84)

obtained by projecting Eq. (45) on the spherical harmonics basis.

4.2.2. Boundary conditions

Given our specific emphasis on (gravito-)inertial modes while
excluding surface gravity modes, we were able to adopt the clas-
sical boundary conditions established in pioneering studies by
Dintrans et al. (1999), Dintrans & Rieutord (2000), Valdettaro
et al. (2007), Ogilvie & Lin (2004, 2007), Ogilvie (2005, 2009),
Rieutord & Valdettaro (2010). Namely, we employed impenetra-
ble and stress-free boundary conditions while assuming that the
spheres bounding the fluid domain can absorb any flux of heat
or chemical elements while remaining at constant temperature
and molecular weight. That is to say, the radial functions must
satisfy the following inner (r = η) and outer (r = 1) boundary
conditions:

um
ℓ = 0, (85)

dvmℓ
dr
+

um
ℓ − v

m
ℓ

r
= 0, (86)

d
dr

(
wm
ℓ

r

)
= 0, (87)

tm
ℓ = 0, (88)
µm
ℓ = 0. (89)

5. Results

Having established the framework for our numerical work, we
now present the numerical results. We discuss the basic proper-
ties of the forced waves before considering how the dissipative
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Fig. 7. Dissipation spectra for m = 2, Pr = Sc = 1, and E = 10−6 (top), E = 10−7 (middle), and E = 10−8 (bottom) with a spatial resolution
(Nr, Nℓ) = (300, 301). The total dissipation is represented by black crosses, and its viscous, thermal, and molecular contributions are represented
by green points, red stars, and blue plus signs, respectively. The magenta dashed line indicates the viscous (total) dissipation in the case of a purely
convective interior (N2

µ = N2
t = 0).
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Fig. 8. Same as middle panel of Fig. 7, but for Sc = 0.5 (top) and Sc = 6 (bottom).

properties depend on the model’s key parameters and the impli-
cations for astrophysical tidal evolution. Our calculations are
focused on the frequency range of −1 < ω̃ < −0.5, which is
directly relevant to the tidal frequencies of the Galilean moons.
It is worth noting that the negative tidal frequency indicates that
the tidal forcing is retrograde in the co-rotating frame with the
planet, based on our convention.

5.1. Energies

In this section, we present our numerical results for the different
types of energy examined in our study, with a specific focus on
the forced mode ω̃ = −0.76 (the frequency exited on Jupiter by
Io for m = n = 2). We adopt typical values for various dimen-
sionless numbers, namely E = 10−7, Pr = Sc = 1. Furthermore,
we set the aspect ratio to η = 0.014 (because of the solid core of
size 1.4% of radius; see Sect. 3.1). The left panel of Fig. 5 illus-
trates the spatial distribution of the kinetic energy of this mode
in a meridional quarter-plane since it is symmetrical with respect
to the equator. Notably, we can observe two distinct types of
modes. Firstly, there are gravito-inertial modes that exist within
the inner stably stratified regions (and theoretically within the
thin, outer, stably stratified layer; however, it is very thin, so it
is not clear here). As expected, we find equatorial trapping of

sub-inertial (ω̃ < 1) gravito-inertial modes (e.g. Dintrans et al.
1999; Dintrans & Rieutord 2000; Mathis 2009). Secondly, we
have inertial modes present in the two convective zones, which
are separated by the thin, stably stratified layer. These modes
exhibit multiple reflections at the boundaries of their propagation
zones, following specific trajectories known as attractors (Maas
& Lam 1995). We note that the attractor starting from the crit-
ical latitude (e.g. Rieutord et al. 2001; Rieutord & Valdettaro
2018) in the inner convective zone and reflected at the pole, at
the surface, at the equator, and at the interface with the inner-
most stably stratified zone seems to appear as well, regardless of
the thin, intermediate, stably stratified region. We also represent
the trajectories of characteristics with white curves in this figure,
while the surfaces at which they undergo reflections are depicted
by brown curves. These paths of characteristics are calculated
based on the second-order partial differential equation satisfied
by the pressure perturbation in the inviscid and short-wavelength
approximations (see Mirouh et al. 2016 for the detailed deriva-
tion). The inclusion of these curves provides a valuable means
of understanding the solutions to non-dissipative problems and
validation of numerical calculations. We find that the patterns
formed by the characteristics are in very good agreement with
the numerical calculation, especially in the inner, stably stratified
layers. In convective zones, the paths of characteristics follow
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Fig. 9. Same as middle panel of Fig. 7, but for Pr = 0.5 (top) and Pr = 2 (bottom).

Fig. 10. Modified tidal quality factor as function of tidal frequency for m = 2, E = 10−7, and Pr = Sc = 1. Vertical dotted lines indicate the tidal
frequencies for the four Galilean Moons of Jupiter (from right to left: Io, Europa, Ganymede, Callisto). The magenta dashed line indicates the
values of these quantities in the case of a purely convective interior (N2

µ = N2
t = 0). The dash-dotted orange line marks the observed value of this

quantity due to Io.
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Fig. 11. Imaginary part of Love number as function of tidal frequency for m = 2, Pr = Sc = 1, and E = 10−6 (top), E = 10−7 (middle), and E = 10−8

(bottom). Vertical dotted lines indicate the tidal frequencies for the four Galilean Moons of Jupiter (from right to left: Io, Europa, Ganymede,
Callisto). The magenta dashed line indicates the values of these quantities in the case of a purely convective interior (N2

µ = N2
t = 0). The dash-

dotted orange line marks the observed value of this quantity due to Io.

straight lines that maintain a constant angle relative to the rota-
tion axis (z-axis) in order to respect the inertial wave dispersion
relation. In contrast, stably stratified regions introduce a distinct
behaviour where the characteristics become curved, owing to the
distortion caused by the presence of the stable stratification.

The middle and right panels of Fig. 5 reveal that the chemi-
cal and thermal energies primarily concentrate within the stably

stratified regions, as the thermal and chemical Brunt-Väisälä fre-
quencies approach zero within convective zones. Consequently,
at the interfaces of the convective zones, both potential energies
have a finite transition to zero.

To ensure the numerical convergence for this mode, we
employed a spatial resolution of (Nr, Nℓ) = (300, 301). This
convergence can be appreciated by inspecting Fig. 6, where we
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Fig. 12. Same as left panel of Fig. 5, but for an interior model without
the thin, external, stably stratified layer (two-zone model).

display the spectral content of the velocity field components,
pressure, temperature, and molecular weight for the same forced
mode. In the top panel, we show the maximum Chebyshev coef-
ficients Ck as a function of the Chebyshev order k, selecting the
highest value among all the spherical harmonics coefficients cor-
responding to a given k. Likewise, the bottom panel displays
the maximum spherical harmonics coefficients Cℓ as a func-
tion of the spherical harmonic degree ℓ, considering the highest
value among all Chebyshev coefficients. This spatial resolution
(Nr, Nℓ) = (300, 301) has proved to be sufficient up to values of
E ≈ 10−8.

5.2. Dissipation spectra

We analysed three distinct forms of dissipation: viscous, thermal,
and chemical. The total dissipation is defined as follows:

D(ω̃) = D̃th + D̃ch + D̃visc. (90)

Figure 7 shows the viscous (D̃visc), thermal (D̃th), molecular
(D̃ch), and total (D) dissipation rates integrated over the vol-
ume as a function of the normalised forcing frequency (ω̃) for
m = 2, E = {10−6, 10−7, 10−8}, and Pr = Sc = 1. We observe a
significant frequency dependence, indicating a strong relation-
ship between dissipation and the forcing frequency. Moreover,
our analysis reveals that the dominant mechanism contributing
to dissipation is viscosity, surpassing both thermal and chemi-
cal dissipations in magnitude. We ensure that the total energy
is conserved D ≈ P̃tide to a given degree of confidence (max-
imum relative error of 5%). We note that, given our boundary
conditions (Sect. 4.2.2), Pacou ≈ 0.

Following the comparison method adopted by André et al.
(2019) in Cartesian coordinates, we also computed the dissipa-
tion spectra for the old vision of Jupiter’s interior, where there
is a single purely convective zone extending from r = η = 0.014
to r = 1. In this scenario, the only form of dissipation present is
viscous dissipation, as thermal and chemical dissipation are neg-
ligible due to N2

µ = N2
t = 0. The dissipation due to viscosity is

represented by the magenta dashed line in Fig. 7. We can see that
the spectra in this case exhibit a smooth profile, devoid of any
pronounced peaks at specific frequencies, unlike the four-layer
model. Additionally, it is worth noting that the dissipation in this
case is significantly weaker, ranging from two to four orders of
magnitude lower.

We also focused on the influence of Ekman number varia-
tions on dissipation spectra. Our results reveal that varying the
Ekman number has a significant impact on the energy dissi-
pation. Indeed, we find an increase in the number of peaks in
the dissipation spectra as the Ekman number decreases. More
specifically, the decrease in the Ekman number leads to lower
viscosity, which results in higher and narrower resonance peaks
associated with gravito-inertial modes, making the spectrum
more complex, whereas all peaks are smoothed when a higher
viscosity is used. This result is consistent with the predictions of
Auclair Desrotour et al. (2015), which studied the dissipation of
gravito-inertial waves by viscosity in a Cartesian box and ther-
mal diffusion in a stably stratified medium. We also explored the
impact of the Schmidt (Sc = {0.5, 6}) and Prandtl (Pr = {0.5, 2})
numbers in Figs. 8 and 9, respectively. We find that decreasing
the Schmidt (Prandtl) number increases the molecular (thermal)
dissipation. However, the total dissipation is not modified, since
the viscous dissipation is dominant in this parameter regime.

5.3. Quality factor and Love number

To establish a connection between our numerical computations
and observations, it was necessary to calculate the imaginary
component of the Love number from the total dissipation. This
calculation enabled us to conduct a comprehensive analysis by
comparing our numerical models with actual observations and
performing quantitative and qualitative comparisons.

The imaginary part of the Love number ℑ [kℓm] plays a cru-
cial role in characterising the response of a celestial body to tidal
forces, capturing the phase difference between the applied tidal
forcing and the resulting response. It represents the transfer of
energy and angular momentum within the system. By establish-
ing a relation between the overall dissipation and the imaginary
part of the Love number, we gain valuable insights into the evo-
lution of the system. This relation can be expressed as in Ogilvie
(2013):

ℑ [kℓm(ω̃)] =
GM

4R3Ω2

8π
(2ℓ + 1)ω̃

D; (91)

then, we can define the modified tidal quality factor as

Q′ℓm(ω̃) = sign(ω̃)
3

2ℑ [kℓm(ω̃)]
, (92)

which has the advantage of combining the tidal quality factor Q
with the real part of the Love numberℜ[kℓm]:

ℑ [kℓm(ω̃)] = sign(ω̃)
ℜ[kℓm(ω̃)]

Qℓm(ω̃)
. (93)

Lainey et al. (2009) fitted a dynamical model including param-
eterised tidal dissipation to astrometric observations of the
Galilean satellites from 1891 to 2007. They found that ℑ [k22] =
1.1 × 10−5 (Q′22 = −1.4 × 105), for the asynchronous tide (ℓ =
m = n = 2) due to Io (ω̃ = −0.76).

Using Eqs. (91) and (92), we computed the imaginary part of
the Love number and the modified tidal quality factor, and we
represent them as a function of the normalised forcing frequency
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Fig. 13. Same as middle panel of Fig. 11, but for η = 0.1.

Fig. 14. Same as Fig. 1, but for a structure model with a smaller internal
stably stratified layer.

in Fig. 10 and the middle panel of Fig. 11 for m = 2, E = 10−7,
and Pr = Sc = 1. We find a significant discrepancy between
computed values of the imaginary part of the Love number (the
modified tidal quality factor) due to Io and the observed ones,
differing by roughly two orders of magnitude (the computed
imaginary part of the Love number is 8.8 × 10−4, whereas the
observed one is 1.1 × 10−5). Consequently, our calculations tend
to overestimate the amplitude of tidal dissipation. Conversely,
when examining the purely convective model, we observe an
underestimation of tidal dissipation by approximately one and
a half orders of magnitude.

We investigated the influence of varying Ekman number
on the imaginary part of the Love number. The outcomes are
illustrated in Fig. 11 for E = {10−6, 10−7, 10−8}. We find that
decreasing the Ekman number impacts the imaginary part of
the Love number (the dissipation) by increasing the number of
peaks. However, for the frequency associated with the forcing
imposed by Io, the impact is small because we are not on a reso-
nance (a peak), and the imaginary part of the Love number does
not vary significantly. We find the same result for the Schmidt
and Prandtl numbers. Their impact on the total dissipation is very
weak; therefore, they do not influence the imaginary part of the
Love number.

Eventually, we find that stable stratification plays a crucial
role in explaining the high dissipation. This conclusion was also

highlighted by André et al. (2019), who investigated tidal dissi-
pation in a rotating semi-convective region with a Cartesian box
model. In addition, Lin (2023) and Dewberry (2023) have also
studied tidal responses in some simplified scenarios conceivable
for Jupiter’s interior with stably stratified layers, taking only the
viscous diffusion into account. Our results confirm their results
taking into account the three possible diffusion mechanisms,
which are dominated by the viscous one, and more realistic
internal structure models for Jupiter.

5.4. Impact of the external stably stratified layer: Four-zone
versus two-zone models

In Fig. 12, we observe the distribution of kinetic energy in a
two-zone interior model. We can see that the internal part of
the model follows a gravito-inertial pattern, while the external
zone exhibits a single inertial mode. This discrepancy, in com-
parison with the left panel of Fig. 5, arises due to the absence of
the external stably stratified layers, which theoretically facilitate
wave reflection and the formation of two distinct inertial modes.
Nevertheless, we can see that the attractor’s presence remains
consistent, independently of the presence of the narrow inter-
mediate stably stratified region. Furthermore, we find that the
impact of this zone on the dissipation is very weak.

5.5. Impact of the size of solid and diluted cores

In order to study the impact of the size of the diluted and solid
cores on the total dissipation, we first carried out a test with the
five-layer model (Sect. 3.1), but with a bigger solid core (smaller
diluted core) of 10% instead of 1.4%. As shown in Fig. 13, we
find that the magnitude of imaginary part has slightly decreased
(the imaginary part of the Love number due to Io is 5.4 × 10−4)
and that the position of the peaks is only slightly modified.
We performed another test with the two-layer model, but this
time with a solid core of size 15% instead of 1.4%. We find
that the position of the peaks changes and the dissipation due
to Io increases by less than half an order of magnitude (with
this model, the imaginary part of the love number due to Io is
2.5 × 10−3). Afterwards, we used another structure model that
also satisfies Juno constraints and uses the equation of state of
Chabrier & Debras (2021) where we reduce the size of the inter-
nal stably stratified layer (diluted core). As we can see in Fig. 14,
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Fig. 15. Same as middle panel of Fig. 11, but for the structure model represented in Fig. 14.

the size of the diluted is reduced, and it is now localised between
48% and 56% of the radius (the outer stably stratified layer is
in the same position). We can also see that the stratification in
this model is stronger (N2/(2Ω)2 ≈ 10 instead of ≈ 4). With this
model, we find, as we can see in Fig. 15, that the imaginary part
of the love number due to Io is closer to the observed value (with
this model the imaginary part of the Love number due to Io is
1.4 × 10−4), but the gap remains significant (approximately one
order of magnitude).

6. Discussion and conclusions

We developed a numerical method that enables the calculation
of the forced dynamic tidal response of an incompressible, non-
magnetised, uniformly rotating fluid body. The Coriolis force
is fully accounted for in our calculations. However, we do not
consider centrifugal distortion, which allows us to solve the
problem using spherical geometry. We take into consideration
various types of dissipations such as fluid viscosity, thermal
dissipation, and molecular diffusivity. By incorporating these
dissipation mechanisms, we compute, using 2D numerical sim-
ulations, the total dissipation and determine the imaginary part
of the tidal Love numbers for a given complex planetary interior
model. In this study, we examine the dynamical tides in the lat-
est Jupiter interior model (Sect. 3) and specifically investigate the
quadrupolar tidal components (ℓ = m = 2). Our focus is on the
frequency range that corresponds to the tidal frequencies associ-
ated with Jupiter’s Galilean moons. We considered a multi-layer
model with alternating convective and stably stratified regions,
which enables a more comprehensive and realistic representation
of the physical processes occurring within giant gaseous plan-
ets’ interiors, in particular the dissipation of dynamical tides. We
find that the presence of stably stratified regions plays a signifi-
cant role in explaining the strong dissipation observed on Jupiter
when compared to the case of a sole convective envelope. In this
framework, we find that the dissipation depends on the chosen
internal structure, in particular the size of the diluted core. In
fact, with a large diluted core (around 68% of the radius), we
find a discrepancy between the calculated and observed dissipa-
tion of two orders of magnitude due to Io, whereas with a smaller
stably stratified inner layer (around 8% of the radius) the dis-
crepancy becomes smaller (one order of magnitude). This may

provide constraints on the size of the diluted core in the future.
Our analysis also reveals that, in the chosen parameter regime in
which the kinematic viscosity and thermal and molecular diffu-
sivities are uniform and equal (the realistic variation in transport
coefficients vary by several orders of magnitude and their ratios
are potentially different from 1, depending on the considered
region), the dominant mechanism contributing to dissipation is
viscosity, surpassing both thermal and chemical dissipations in
magnitude. Furthermore, it is important to note that our model
is not limited to Jupiter, but it can also be applied to other giant
planets such as Saturn and exoplanets.

There are several caveats that should be carefully considered
in future studies in order to ensure accurate quantitative compar-
isons with high-precision observations, it is crucial to incorpo-
rate the relevant missing physical processes in a self-consistent
manner. First, neglecting the influence of centrifugal effects may
limit the accuracy of our solutions. Particularly for high-degree
tidal components, the impact of centrifugal forces becomes
increasingly significant (Dewberry 2023). Second, while adopt-
ing the Boussinesq approximation to investigate dynamical tides
simplifies the system of equations to solve, it is important to
acknowledge its limitations. These limitations are particularly
significant when the Lamb frequency, which characterises the
acoustic modes, approaches a comparable magnitude to the
excited mode frequencies near the surface. Clearly, an impor-
tant follow-up of this work would be to go from the Boussinesq
approximation to the anelastic approximation and take into
account density stratification. The outcomes of using the more
realistic anelastic approximation are not expected to completely
deviate from those obtained with the Boussinesq approximation;
in fact, both approximations yield the same attractors of charac-
teristics. This comes about because in the anelastic approxima-
tion the velocity u is replaced by the specific linear momentum
ρu in the system of equations. This means that the momentum
vector satisfies the same set of equations as the velocity vec-
tor does in the Boussinesq case (Dintrans & Rieutord 2000). In
this respect, using simple polytropic models, the work of Ogilvie
(2013) gives a first exploration of the effects of density vari-
ations of the background on tidal dissipation. The Boussinesq
approximation may overestimate the tidal dissipation that could
explain why the computed dissipation in our work is too
large when compared to the observations. This will be carefully
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evaluated in a follow-up work where we shall use the anelastic
approximation.

Finally, differential rotation can play a crucial role in the
dynamics of the outer regions of gas giant planets. In addition,
the ionised inner region, characterised by the presence of a
magnetised gas, can exhibit significant effects due to ohmic
dissipation and induced magnetic torques. We know that the
presence of differential rotation in a convective zone is strongly
dependent on electrical conductivity (e.g. Guillot et al. 2018;
Galanti et al. 2019). Therefore, an interesting follow-up of
this work would be to undertake a study to understand the
profound impact of both differential rotation (Mathis 2009;
Baruteau & Rieutord 2013; Mirouh et al. 2016; Guenel et al.
2016a,b; Dewberry et al. 2021) and magnetic fields (Rogers &
MacGregor 2010; Mathis & de Brye 2011; Barker & Lithwick
2014; Wei 2016, 2018; Lin & Ogilvie 2018) on wave propagation
and dissipation in gas giant planets.
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Appendix A: Dimensionless number expressions
in Jupiter

The expressions for the different diffusivities and associated
dimensionless numbers are derived in Stevenson & Salpeter
(1977) for metallic and molecular phases. The region with R <
0.9 exhibits a metallic phase, whereas the region with R > 0.9
is characterised by a molecular phase. We added a smooth tran-
sition between both zones. We reiterate the expression for these
numbers here:

Pr =


4

0.3
T−1/2ρ−1/3 if R < 0.9

1 if not

, (A.1)

Sc =


4
3

106T−2ρ2/3 if R < 0.9

1
4

106.5T−2ρ5/6 if not

, (A.2)

E =


2 × 10−5 T−1/2

ΩR2 if R < 0.9

5 × 10−5 T−1/2

ΩR2 if not

. (A.3)

All quantities must be expressed in SI units.

Appendix B: Expression of some operators in the
spherical harmonics basis

The spherical vector harmonics form a complete family, and the
orthogonality relations ensure that any sufficiently regular vec-
tor field u can be uniquely expanded over the spherical vector
harmonics (Rieutord 1987):

u =
[
um
ℓ , v

m
ℓ , w

m
ℓ

]
. (B.1)

Appendix B.1. General case

The divergence of the vector field u

∇ · u =
1
r2 ∂r(r2um

ℓ ) −
ℓ(ℓ + 1)

r
vmℓ . (B.2)

The curl of the vector field u is expressed as follows:

∇ × u =
[
ℓ(ℓ + 1)

wm
ℓ

r
,

1
r
∂r(rwm

ℓ ),
um
ℓ

r
−

1
r
∂r(rvmℓ )

]
. (B.3)

Appendix B.2. Particular case : a vector field with zero
divergence

If ∇ · u = 0., the curl of the vector field u can be rewritten as

∇ × u =
[
ℓ(ℓ + 1)

wm
ℓ

r
,

1
r
∂r(rwm

ℓ ), −
∆ℓ(rum

ℓ )
ℓ(ℓ + 1)

]
, (B.4)

with ∆ℓ□ = ∂2
r2□ +

2
r
∂r□ −

ℓ(ℓ + 1)
r2 □.

The Laplacian of the vector field u is expressed as follows:

∇
2u =

[
1
r
∆ℓ

(
rum
ℓ

)
,

1
r
∂r

(
Dℓum

ℓ

ℓ(ℓ + 1)

)
, ∆ℓw

m
ℓ

]
, (B.5)

with Dℓ□ = ∂2
r

(
r2□

)
− ℓ(ℓ + 1)□.

The vector product between the unit vector ez and the vector field
u is given by

ez × u =
[
(ℓ − 1)αℓℓ−1w

m
ℓ−1 − (ℓ + 2)αℓℓ+1w

m
ℓ+1 − imvmℓ ,

ℓ − 1
ℓ
αℓℓ−1w

m
ℓ−1 +

ℓ + 2
ℓ + 1

αℓℓ+1w
m
ℓ+1 −

im
ℓ(ℓ + 1)

(
um
ℓ + v

m
ℓ

)
,

−
αℓ
ℓ−1

ℓ2
rℓ−1∂r

(
um
ℓ−1

rℓ−2

)
−
αℓ
ℓ+1

(ℓ + 1)2 r−ℓ−2∂r

(
rℓ+3um

ℓ+1

)
−

im
ℓ(ℓ + 1)

wm
ℓ

]
. (B.6)
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