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Following our previous work on periodic ray paths (He et al. 2022), we study asymptotically
and numerically the structure of internal shear layers for very small Ekman numbers in a three-
dimensional (3D) spherical shell and in a two-dimensional (2D) cylindrical annulus when
the rays converge towards an attractor. We first show that the asymptotic solution obtained
by propagating the self-similar solution generated at the critical latitude on the librating
inner core describes the main features of the numerical solution. The internal shear layer
structure and the scaling for its width and velocity amplitude in 𝐸1/3 and 𝐸1/12 respectively
are recovered. The amplitude of the asymptotic solution is shown to decrease to 𝐸1/6 when
it reaches the attractor, as it is also observed numerically. However, some discrepancies are
observed close to the particular attractors along which the phase of the wave beam remains
constant. Another asymptotic solution close to those attractors is then constructed using the
model of Ogilvie (2005). The solution obtained for the velocity has an 𝑂 (𝐸1/6) amplitude,
but a different self-similar structure than the critical-latitude solution. It also depends on the
Ekman pumping at the contact points of the attractor with the boundaries. We demonstrate
that it reproduces correctly the numerical solution. Surprisingly, the solution close to an
attractor with phase shift (that is an attractor that touches the axis in 3D or in 2D with a
symmetric forcing) is found to be much weaker.

1. Introduction
In rotating flows, inertialwaveswith a frequency smaller than twice the rotation rate propagate
at a fixed angle with respect to the rotation axis (Greenspan 1968). The frequency and the
angle are preserved when inertial waves reflect on a boundary. However, an inertial wave
beam may contract or expand as it reflects. This linear contraction effect is responsible of
inviscid singularities in the inertial wave field (Ogilvie 2020).
There are two types of inviscid singularities concerned in the present work. One is at the

critical latitude of a sphere where the rays are tangent to the boundary and where Ekman
pumping blows up (Roberts & Stewartson 1963). This singularity propagates within the fluid
along the tangent critical line at the critical latitude (Kerswell 1995). When regularised by
viscosity, it forms concentrated internal shear layers around the critical line. The viscous self-
similar solution of Moore & Saffman (1969) and Thomas & Stevenson (1972) is expected to
describe the viscous structure of these thin layers for small Ekman numbers. For a librating
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spheroid, Le Dizès & Le Bars (2017) derived the singularity strength and the amplitude of
the self-similar solution by asymptotically matching the shear layer solution with the Ekman
layer solution. The self-similar solution was found to be in agreement with direct numerical
simulation. The same self-similar solution (with the singularity strength and the amplitudes
derived in an open domain) was also used to describe the solution on a periodic orbit in a
spherical shell geometry (He et al. 2022, hereafter HFRL22). In that case, the solution was
obtained by considering its propagation along the periodic orbit for an infinite number of
cycles. It was found to agree very well with the numerical solutions obtained for low Ekman
numbers. In particular both the internal shear layer structure and its amplitude scaling in
𝐸1/12 were recovered by the numerical results using Ekman numbers as low as 10−10.
The singularity obtained from the critical latitude on the outer sphere gives rise to different

internal shear layers. These layers are weaker, thicker and do not possess a self-similar
structure (Kerswell 1995; Lin & Noir 2020). Kida (2011) obtained their asymptotic structure
for a precessing sphere.
Besides libration and precession which drive the flows through viscosity, non-viscous

forcing associated with translating or deforming bodies have also been analysed. Many
studies have been performed in the context of stratified fluids for applications to tidal flows.
Analytic results were obtained for the cylinder and the sphere in an unbounded geometry
(Hurley 1997; Hurley & Keady 1997; Voisin 2003) and validated experimentally in both 2D
(Sutherland & Linden 2002; Zhang et al. 2007) and 3D (Flynn et al. 2003; Voisin et al.
2011; Ghaemsaidi & Peacock 2013). Hurley & Keady (1997) and Voisin (2003) also showed
that, in the far-field, the solution takes the self-similar form predicted by Moore & Saffman
(1969). The singularity strength however varies with respect to the nature of the forcing.
Machicoane et al. (2015) discussed this effect for pulsating and oscillating spheres.
The other inviscid singularity is the attractor in a closed container onto which inertial

waves tend to focus (Maas & Lam 1995). The presence of such singularities is related to
the hyperbolic character of the Poincaré equation describing the wave structure: it leads to
an ill-posed Cauchy problem except for a few geometries such as the cylinder or the sphere
(Rieutord et al. 2000). Attractors also generate intense internal shear layers, as first observed
in a trapezoidal tank for a stably stratified fluid (Maas et al. 1997). The asymptotic structure of
these layers was analysed in a forced regime in 2D by Ogilvie (2005) (hereafter O05). Under a
few technical hypotheses, hewas able to derive the functional equation describing the inviscid
streamfunction and to provide the viscous asymptotic expression of the streamfunction close
to the attractor. In particular, O05 showed that, for his quadrilateral geometry possessing
a unique attractor, the main contribution to the solution is associated with the logarithmic
singularity of the inviscid streamfunction. We shall use and adapt his results to our geometry.
His results were confirmed by a numerical study of an inclined rotating square in Jouve &
Ogilvie (2014).
In a spherical shell, there may exist both critical-latitude and attractor singularities at

the same time. In HFRL22, we have considered a case where no attractor was present. We
have assumed that the fluid was forced by librating the inner core at a frequency such that
inertial waves propagated in a direction oriented at 45o with respect to the vertical. All the
ray trajectories were periodic in that case, and the (critical) path issued from the critical
latitude on the inner core was just a rectangle in the upper left meridional cut of the shell. For
other frequencies, the rays issued from the critical latitude are expected to perform a more
complex pattern and possibly converge to an attractor (Tilgner 1999; Ogilvie & Lin 2004;
Ogilvie 2009). It is this situation we want to address in the present work. We consider the
same framework as in HFRL22, where local asymptotic solutions propagated in the volume
are compared with global numerical results, but for a frequency for which an attractor is now
present.
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(a) (b) (c)

Figure 1: Configurations: (𝑎) a 3D spherical shell subject to the longitudinal libration on
the inner core; (𝑏) a 2D cylindrical annulus subject to the symmetric forcing on the inner
core; (𝑐) a 2D cylindrical annulus subject to the antisymmetric forcing on the inner core.
The red arrows show the magnitudes and the directions of the forcings at one instant.

The paper is organised as follows. The framework is introduced in section § 2. In
§ 2.1, we describe the 3D and 2D configurations that we have considered, and provide
the governing equations. In § 2.2, the numerical method used to integrate the equations for
each configuration is explained. In section § 3, we first analyse the wave beams emitted
from the critical latitude on the inner core. The asymptotic solution built by propagating
the self-similar solution is compared to the numerical solution. Discrepancies are observed
close to the attractors for some of the cases. In section § 4, we then focus on the solution
close to the attractors. We construct an asymptotic solution based on the theory of O05 for
an attractor without phase shift in §4.1, and provide a numerical validation in §4.2. A brief
conclusion is finally provided in section § 5.

2. Framework
2.1. Configurations

In this paper, we consider the flow of an incompressible fluid of constant kinematic viscosity
a∗ rotating around the vertical axis 𝒆𝑧 with a uniform rotation rate Ω∗. We consider two
different configurations. The first one is the axisymmetric flow filling a three-dimensional
(3D) spherical shell, as inHFRL22. The other configuration is the two-dimensional (2D) flow,
but with three velocity components, between two co-axial cylinders whose axis is horizontal,
as in Rieutord et al. (2002) and Rieutord & Valdettaro (2010). In the following, geometries,
governing equations and forcings are described separately for the two configurations.

2.1.1. 3D configuration
The geometry of the 3D spherical shell is shown in figure 1a, whose meridional plane can
be found in the figure 2 of HFRL22. The radii of the outer and inner spheres are 𝜌∗ and
[𝜌∗ (with 0 < [ < 1 the aspect ratio), respectively. Lengths are non-dimensionalised by the
outer radius 𝜌∗ such that the inner and outer dimensionless radii are [ and 1 respectively.
Time is non-dimensionalised by the angular period 1/Ω∗. The imposed harmonic forcing is
the libration of one of the two boundaries, with the amplitude 𝜖 = 𝜖∗/Ω∗ and the frequency
𝜔 = 𝜔∗/Ω∗. The Ekman number is defined as

𝐸 =
a∗

Ω∗𝜌∗2
, (2.1)
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with a∗ being the kinematic viscosity.
As in HFRL22, we care about the linear harmonic response when the Ekman number is

extremely small. We look for solutions that are harmonic in time

Y(𝒗, 𝑝)𝑒−i𝜔𝑡 + 𝑐.𝑐. (2.2)

with 𝑐.𝑐. denoting complex conjugation. The velocity 𝒗 and pressure 𝑝 satisfy the linearised
incompressible Navier-Stokes equations in the rotating frame

− i𝜔𝒗 + 2𝒆𝑧 × 𝒗 = −∇𝑝 + 𝐸∇2𝒗 , (2.3a)

∇ · 𝒗 = 0 . (2.3b)

In terms of the velocity components and pressure, the governing equations in the cylindrical
coordinate system (𝑟, 𝑧, 𝜙) become

− i𝜔𝑣𝑟 − 2𝑣𝜙 + 𝜕𝑝

𝜕𝑟
− 𝐸 (∇2 − 1

𝑟2
)𝑣𝑟 = 0 , (2.4a)

−i𝜔𝑣𝑧 +
𝜕𝑝

𝜕𝑧
− 𝐸∇2𝑣𝑧 = 0 , (2.4b)

−i𝜔𝑣𝜙 + 2𝑣𝑟 − 𝐸 (∇2 − 1
𝑟2
)𝑣𝜙 = 0 , (2.4c)

𝜕𝑣𝑟

𝜕𝑟
+ 𝑣𝑟

𝑟
+ 𝜕𝑣𝑧

𝜕𝑧
= 0 , (2.4d)

with the Laplacian operator

∇2 = 𝜕2

𝜕𝑟2
+ 1
𝑟

𝜕

𝜕𝑟
+ 𝜕2

𝜕𝑧2
. (2.5)

One of the two boundaries is subject to the longitudinal libration as shown by the red
arrows in figure 1a, which corresponds to the oscillating solid body rotation of the boundary
according to

𝒗(𝜌) = 𝑟𝒆𝜙 at 𝜌 = [ or 1, (2.6)

while the other boundary is subject to the no-slip boundary condition

𝒗(𝜌) = 0 at 𝜌 = 1 or [. (2.7)

𝑟 is the distance to the rotation axis of the cylindrical coordinate system (𝑟, 𝑧, 𝜙), while 𝜌 is
distance to the centre in the spherical coordinate system.

2.1.2. 2D configuration
We also consider a 2D simplification of the 3D axisymmetric configuration discussed above.
The geometry can be viewed as a slender cored torus with the principal radius tending to
infinity (Rieutord et al. 2002; Rieutord & Valdettaro 2010), which is effectively equivalent
to two co-axial cylinders whose principal axis is horizontal, as shown in figures 1b and 1c.
The flow between the two cylinders satisfies the similar governing equations as (2.3), while
the curvature terms in the differential operators, such as 1/𝑟 , 1/𝑟𝜕/𝜕𝑟 and 1/𝑟2, are omitted.
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Explicitly, in terms of the velocity components and pressure, the governing equations are

− i𝜔𝑣𝑥 − 2𝑣𝑦 +
𝜕𝑝

𝜕𝑥
− 𝐸∇2𝑣𝑥 = 0, (2.8a)

−i𝜔𝑣𝑧 +
𝜕𝑝

𝜕𝑧
− 𝐸∇2𝑣𝑧 = 0, (2.8b)

−i𝜔𝑣𝑦 + 2𝑣𝑥 − 𝐸∇2𝑣𝑦 = 0, (2.8c)
𝜕𝑣𝑥

𝜕𝑥
+ 𝜕𝑣𝑧

𝜕𝑧
= 0, (2.8d)

with the Laplacian operator
∇2 = 𝜕2/𝜕𝑥2 + 𝜕2/𝜕𝑧2. (2.9)

We use (𝑥, 𝑦, 𝑧) to denote the Cartesian coordinates, where 𝑂𝑥 and 𝑂𝑧 are the horizontal
and vertical axes respectively and 𝑂𝑦 is along the direction perpendicular to the 𝑂𝑥𝑧 plane,
as shown in figures 1b and 1c. Note that although we use the same symbol for the Laplacian
operators in 2Dand 3D, there is no ambiguity since the 2Dand 3Doperators are independently
used in the corresponding dimensions.
The imposed forcing should be viscous and similar to the libration in the 3D configuration.

The direction of the forcing is thus aligned with that of 𝒆𝑦 perpendicular to the 𝑂𝑥𝑧 plane.
We consider two options for the amplitude of the forcing. One option is that the amplitude is
a constant, which is

𝒗(𝜚) = 𝒆𝑦 at 𝜚 = [ or 1, (2.10)

where 𝜚 =
√
𝑥2 + 𝑧2. The cylinder subject to this forcing is expected to oscillate uniformly

along the direction 𝒆𝑦 , as shown by the red arrows in figure 1b. The other option is that the
amplitude of the forcing depends linearly on the horizontal coordinate 𝑥, which is

𝒗(𝜚) = 𝑥𝒆𝑦 at 𝜚 = [ or 1. (2.11)

The cylinder subject to this forcing oscillates non-uniformly inducing shear at the inner
boundary, as shown by the red arrows in figure 1c. While unrealistic from an experimental
point of view, it is a mathematically well-posed boundary condition and provides another
symmetry as discussed latter. While the formula for the 2D antisymmetric forcing (2.11) is
similar to the 3D libration case (2.6), they differ in that the horizontal coordinate 𝑥 in the 2D
configuration can be negative.
Both forcings are symmetric about the horizontal axis 𝑂𝑥. However, the former forcing

(2.10) is symmetric about the vertical axis 𝑂𝑧, while the latter (2.11) is antisymmetric about
𝑂𝑧; see the red arrows in figures 1b and 1c respectively. These two forcings are thus referred
to as symmetric and antisymmetric forcings respectively, according to their symmetries about
the 𝑂𝑧 axis. They are also imposed on one of the two boundaries, while the other boundary
condition is no-slip.
In summary, we consider three different forcings, which are referred to as the 3D libration

(2.6), 2D symmetric (2.10) and antisymmetric (2.11) forcings. The first one is defined in the
3D spherical shell, while the latter two correspond to the 2D cylindrical annulus.

2.2. Numerical methods
The governing equations (2.3) are solved numerically by spectral methods for both the 3D
and 2D configurations. We actually solve the vorticity equation, which is the curl of the
momentum equations (2.3(𝑎))

− i𝜔∇ × 𝒗 + 2∇ × (𝒆𝑧 × 𝒗) = 𝐸∇ × (∇2𝒗). (2.12)
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In the 2D configuration, the curl is only taken in the 𝑂𝑥𝑧 plane. The numerical methods are
different for the two configurations. Therefore, they are presented separately.

2.2.1. 3D configuration
In the 3D configuration, the numericalmethod is similar to that in our formerwork (HFRL22).
The governing equations are solved in the spherical coordinates (𝜌, \, 𝜙) with 𝜌 the distance
to the centre, \ the colatitude and 𝜙 the azimuthal angle. The velocity is expanded onto the
vector spherical harmonics in the angular directions

𝒗 =

+∞∑︁
𝑙=0

+𝑙∑︁
𝑚=−𝑙

𝑢𝑙𝑚(𝜌)𝑹𝑚
𝑙 + 𝑣𝑙𝑚(𝜌)𝑺𝑚

𝑙 + 𝑤𝑙
𝑚(𝜌)𝑻𝑚

𝑙 , (2.13)

with

𝑹𝑚
𝑙 = 𝑌𝑚

𝑙 (\, 𝜙)𝒆𝜌, 𝑺𝑚
𝑙 = ∇𝑌𝑚

𝑙 , 𝑇𝑚
𝑙 = ∇ × 𝑹𝑚

𝑙 . (2.14)

The gradients are taken on the unit sphere. The vorticity equation (2.12) is projected onto
the basis. 𝑢𝑙 and 𝑤𝑙 satisfy a set of ordinary differential equations

𝐸Δ𝑙𝑤
𝑙 + i𝜔𝑤𝑙 = −2𝐴𝑙𝜌

𝑙−1 𝜕

𝜕𝜌

(
𝑢𝑙−1

𝜌𝑙−2

)
− 2𝐴𝑙+1𝜌

−𝑙−2 𝜕

𝜕𝜌

(
𝜌𝑙+3𝑢𝑙+1

)
, (2.15a)

𝐸Δ𝑙Δ𝑙 (𝜌𝑢𝑙) + i𝜔Δ(𝜌𝑢𝑙) = 2𝐵𝑙𝜌
𝑙−1 𝜕

𝜕𝜌

(
𝑤𝑙−1

𝜌𝑙−1

)
+ 2𝐵𝑙+1𝜌

−𝑙−2 𝜕

𝜕𝜌

(
𝜌𝑙+2𝑤𝑙+1

)
, (2.15b)

with

𝐴𝑙 =
1

𝑙2
√
4𝑙2 − 1

, 𝐵𝑙 = 𝑙2(𝑙2 − 1)𝐴𝑙 , Δ𝑙 =
d2

d𝜌2
+ 2
𝜌

d
d𝜌

− 𝑙 (𝑙 + 1)
𝜌2

, (2.16)

(e.g. Rieutord 1991). Axisymmetry (𝑚 = 0) is employed. 𝑣𝑙 is related to 𝑢𝑙 through the
continuity equation

𝑣𝑙 =
1

𝜌𝑙 (𝑙 + 1)
d𝜌2𝑢𝑙

d𝜌
. (2.17)

One of the two boundaries is subject to the no-slip boundary condition

𝑤𝑙 = 𝑢𝑙 =
d𝑢𝑙

d𝜌
= 0 at 𝜌 = 1 or [. (2.18)

The other boundary is subject to the libration (2.6), whose projection onto the spherical
harmonics yields the inhomogeneous boundary condition

𝑤𝑙 = 2
√︂

𝜋

3
𝜌𝛿1,𝑙 , 𝑢𝑙 =

d𝑢𝑙

d𝜌
= 0 at 𝜌 = [ or 1. (2.19)

𝛿1,𝑙 is the Kronecker symbol. Note that the libration is imposed on the spherical harmonic
degree 𝑙 = 1.
The equations (2.15-2.19) are truncated to the spherical harmonic degree 𝐿. The derivatives

to the radial coordinate 𝜌 are replaced by the Chebyshev differentiation matrices at 𝑁 + 1
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collocation points of the Gauss-Lobatto grid. Then a block tridiagonal system is obtained as
𝑫1 𝑪1
𝑩1 𝑫2 𝑪2

. . .
. . .

. . .
𝑩𝐿−1 𝑫𝐿−1 𝑪𝐿−1

𝑩𝐿 𝑫𝐿





𝒘1

𝝆𝒖2

...
𝒘𝐿−1

𝝆𝒖𝐿


=


𝒃1
𝒃2
...

𝒃𝐿−1
𝒃𝐿


. (2.20)

The blocks within the coefficient matrix and the vectors are (𝑁 +1) × (𝑁 +1) and (𝑁 +1) ×1,
respectively. The order of the coefficient matrix is (𝑁 + 1)𝐿 and the number of non-zero
elements is (𝑁 + 1)2(3𝐿 − 2). This block tridiagonal system is usually solved by a LU solver
(Rieutord & Valdettaro 1997), by which the coefficient matrix is stored in the banded matrix
format and the number of elements in memory is (𝑁 + 1)2(4𝐿 − 4) − (𝑁 + 1) (𝐿 − 2). On the
other hand, the block tridiagonal system can be solved by the block version of the standard
tridiagonal algorithm (also called Thomas algorithm), which is the Gaussian elimination on
a block tridiagonal system. This method has been utilised by Ogilvie & Lin (2004). The
algorithm can be found in Engeln-Mèullges & Uhlig (1996) (p.121). The elimination is
advanced forward from the lowest spherical harmonic degree to the highest and the block
tridiagonal matrix is reduced to a block upper bidiagonal one, then the solution is obtained
by backward substitution. During the forward elimination, the updated diagonal block 𝑫𝑙 is
factorized by the LU solver. A partial pivoting of the block is employed in order to improve
the numerical stability.
The three blocks 𝑩𝑙 , 𝑫𝑙 and 𝑪𝑙 and the inhomogeneous term 𝒃𝑙 at the spherical harmonic

degree 𝑙 are only needed when they take part in the forward elimination. Hence, the storage of
the whole coefficient matrix is unnecessary. However, all the updated super diagonal blocks
𝐶𝑙 should be reserved in memory for the backward substitution. Their size is (𝑁 +1)2(𝐿−1),
which is almost one third of that of non-zero elements in the original coefficient matrix and
one fourth of that in the banded matrix format required by the global LU solver. Therefore,
the memory usage of the block tridiagonal algorithm is much less than that of the global LU
solver, especially when 𝐿 and 𝑁 are very large, as required for very low Ekman numbers.
We develop a code based on the block tridiagonal algorithm using the efficient dynamic
programming language Julia (Bezanson et al. 2017). For now, we can reach 𝐸 = 10−11 by
using 8000 spherical harmonics and 2500 Chebyshev polynomials using double precision
floating-point format. The memory footprint is around 750𝐺𝐵.

2.2.2. 2D configuration
In the 2D configuration, we take the numerical method similar to that adopted by Rieutord
et al. (2002) and Rieutord & Valdettaro (2010). The vorticity equation (2.12) is solved in the
polar coordinates (𝜚, 𝜗) with 𝜚 the distance to the centre and 𝜗 the angle measured from the
horizontal axis 𝑂𝑥. In terms of the streamfunction 𝜓 and the associated variable 𝜒

𝑣 𝜚 = − 1
𝜚

𝜕𝜓

𝜕𝜗
, 𝑣𝜗 =

𝜕𝜓

𝜕𝜚
, 𝑣𝑦 = 𝜒, (2.21)

the vorticity equation is recast to

− i𝜔∇2𝜓 + 2(sin 𝜗𝜕𝜒
𝜕𝜚

+ cos 𝜗
𝜚

𝜕𝜒

𝜕𝜗
) − 𝐸∇4𝜓 = 0, (2.22a)

−i𝜔𝜒 − 2(sin 𝜗𝜕𝜓
𝜕𝜚

+ cos 𝜗
𝜚

𝜕𝜓

𝜕𝜗
) − 𝐸∇2𝜒 = 0, (2.22b)
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with the operator

∇2 = 𝜕2

𝜕𝜚2
+ 1
𝜚

𝜕

𝜕𝜚
+ 1
𝜚2

𝜕2

𝜕𝜗2
. (2.23)

The streamfunction 𝜓 and the associated variable 𝜒 are expanded by Fourier series in the
angular direction as

𝜓 =

+∞∑︁
𝑙=−∞

𝜓𝑙 (𝜚)𝑒i𝑙𝜗 , 𝜒 = −i
+∞∑︁

𝑙=−∞
𝜒𝑙 (𝜚)𝑒i𝑙𝜗 . (2.24a, b)

The projection of the governing equations (2.22) onto this basis is

i𝜔∇2𝑙 𝜓𝑙 + (𝜒′
𝑙−1 − 𝜒′

𝑙+1) −
1
𝜚
[(𝑙 − 1)𝜒𝑙−1 + (𝑙 + 1)𝜒𝑙+1] + 𝐸∇4𝑙 𝜓𝑙 = 0, (2.25a)

i𝜔𝜒𝑙 + (𝜓 ′
𝑙−1 − 𝜓 ′

𝑙+1) −
1
𝜚
[(𝑙 − 1)𝜓𝑙−1 + (𝑙 + 1)𝜓𝑙+1] + 𝐸∇2𝑙 𝜒𝑙 = 0, (2.25b)

with

∇2𝑙 =
d2

d𝜚2
+ 1
𝜚

d
d𝜚

− 𝑙2

𝜚2
. (2.26)

The unforced boundary is subject to the no-slip boundary condition

𝜓𝑙 =
d𝜓𝑙

d𝜚
= 𝜒𝑙 = 0 at 𝜚 = 1 or [. (2.27)

The other boundary is subject to the viscous forcings (2.10,2.11). Both forcings are symmetric
about the horizontal axis 𝑂𝑥, which leads to

𝜓−𝑙 = −𝜓𝑙 , 𝜒−𝑙 = 𝜒𝑙 . (2.28)

Only the non-negative Fourier components are necessary to be computed. The symmetric
forcing (2.10) imposes the boundary condition

𝜓𝑙 =
d𝜓𝑙

d𝜚
= 0, 𝜒𝑙 = i𝛿0,𝑙 at 𝜚 = [ or 1. (2.29)

Note that the forcing is imposed at 𝑙 = 0. Therefore, the following Fourier components are
excited

𝜒0, 𝜓1, 𝜒2, 𝜓3, . . . . (2.30)
On the other hand, the antisymmetric forcing (2.11) imposes the boundary condition

𝜓𝑙 =
d𝜓𝑙

d𝜚
= 0, 𝜒𝑙 = i

𝜚

2
𝛿1,𝑙 at 𝜚 = [ or 1. (2.31)

Note that the forcing is imposed at 𝑙 = 1. Therefore, the following Fourier components are
excited

𝜒1, 𝜓2, 𝜒3, 𝜓4, · · · . (2.32)
As in the 3D configuration, the equations are truncated at the Fourier component 𝐿 and the

derivatives to 𝜚 are replaced by the Chebyshev differentiation matrices with the order 𝑁 + 1.
The resulting block tridiagonal system is solved by the same block tridiagonal algorithm
using the efficient dynamic programming language Julia (Bezanson et al. 2017).
The validation of the two spectral codes used in this paper can be found in the Appendix A.
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3. Wave beams from the critical latitude on the inner core
The aforementioned forcings are imposed on the inner core. The forcing frequency𝜔 is chosen
in the inertial range such that inertial waves propagate at an inclined angle \𝑐 = arccos𝜔/2
relative to the horizontal plane. As in HFRL22, two concentrated wave beams are expected to
be generated from the critical latitude localised at (𝑟, 𝑧) = ([

√︁
1 − 𝜔2/4, [𝜔/2) on the inner

core. These wave beams travel along the tangential line at the critical latitude in two opposite
directions (northward and southward) and reflect on the boundaries and form a ray pattern
in the spherical shell geometry. In general, for a fixed inclined angle \𝑐 , any ray pattern is
composed of the four rays with opposite propagation directions, which are referred to as the
northward, outward, southward and inward, as shown in figure 2. In HFRL22, we considered
the case where the ray pattern is a simple periodic pattern. Here, we consider a more general
situation where the wave beams converge towards an attractor. Our first objective is to analyse
whether an asymptotic solution can be constructed by propagating the self-similar solution
describing the concentrated wave beam emitted from the critical latitude, as it was done in
HFRL22.
In §3.1, the asymptotic theory is presented. The properties of the self-similar solution and

of the reflection laws are first recalled and adapted to the 2D configurations that we also
consider before analysing the propagation towards the attractor. The asymptotic solution is
then compared to numerical results in §3.2.

3.1. Asymptotic theory
3.1.1. Viscous self-similar solution and scaling
The concentrated ray beams emitted from the critical latitude are associated with an inviscid
singularity along the critical ray (Le Dizès 2022). It is the viscous smoothing of this
singularity that gives rise in the limit of small Ekman numbers to a self-similar expression
for the dominant wave beam velocity components (Moore & Saffman 1969).
The natural way to describe this self-similar solution is to introduce the local coordinates

(𝑥 ‖ , 𝑥⊥) on the critical ray path, with 𝑥 ‖ measuring the travelled distance from the source
along the critical ray and 𝑥⊥ measuring the displacement relative to the critical ray (𝑥⊥ = 0
is the critical ray equation). The orientation of 𝑥⊥ is chosen as indicated in figure 2. It is
assumed not to change during the beam propagation.
The wave beam is centred on the critical ray and has a width of order 𝐸1/3. In the (𝑟, 𝑧)

plane, its main velocity component is oriented along 𝒆 ‖ and can be written at leading order
in 𝐸1/3 in the 3D axisymmetric geometry as (see details in Le Dizès & Le Bars 2017)

𝑣 ‖ =
1
√
𝑟
𝐶0𝐻𝑚(𝑥 ‖ , 𝑥⊥) =

1
√
𝑟
𝐶0

(
𝑥 ‖

2 sin \𝑐

)−𝑚/3
ℎ𝑚(Z) (3.1)

with the similarity variable

Z = 𝑥⊥𝐸
−1/3

(
2 sin \𝑐

𝑥 ‖

)1/3
(3.2)

and the special function introduced by Moore & Saffman (1969)

ℎ𝑚(Z) =
𝑒−i𝑚𝜋/2

(𝑚 − 1)!

∫ +∞

0
𝑒i𝑝Z−𝑝

3
𝑝𝑚−1𝑑𝑝. (3.3)

The velocity across the critical rays 𝑣⊥ and the pressure 𝑝 are𝑂 (𝐸1/3) smaller. However, the
wave beam has a velocity component normal to the (𝑟, 𝑧) plane of same order which is given
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x‖ x⊥

Northward ray

x‖x⊥

Outward ray
x‖x⊥

Southward ray

x‖
x⊥

Inward ray

θ(i)

θ(r)

Figure 2: Four propagation directions of the rays in a closed domain. The local vectors
attached to each ray are the orientations of the local frames (𝑥 ‖ , 𝑥⊥).

by (see Le Dizès & Le Bars 2017)

𝑣𝜙 = ±i𝑣 ‖ . (3.4)

The sign corresponds to the sign of the projection of the local unit vector 𝒆 ‖ onto the global
unit vector 𝒆𝑟 .
The inviscid singularity that gives rise to the self-similar viscous solution is recovered by

taking the limit Z → ∞ in (3.1)

𝑣 ‖ →
1
√
𝑟
𝐶0𝑥

−𝑚
⊥ 𝐸𝑚/3 as Z → +∞. (3.5)

As we shall see, it is also useful to introduce the streamfunction 𝜓 that can be defined for
axisymmetric flows by

𝑣 ‖ = 𝜖
1
𝑟

𝜕𝜓

𝜕𝑥⊥
, 𝑣⊥ = −𝜖 1

𝑟

𝜕𝜓

𝜕𝑥 ‖
, (3.6a, b)

where 𝜖 = 1 for the rays propagating northward and southward and 𝜖 = −1 for the rays
propagating inward and outward (see figure 2). Equation (3.6a) can be integrated to give at
leading order

𝜓 = 𝜖
√
𝑟
𝐶0𝐸

1/3

𝑚 − 1 𝐻𝑚−1(𝑥 ‖ , 𝑥⊥). (3.7)

Note that the streamfunction 𝜓 is 𝐸1/3 smaller than the parallel velocity 𝑣 ‖ .
The above expressions are valid for 3D axisymmetric geometries. For 2D configurations,
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3D libration 2D symmetric forcing 2D antisymmetric forcing

|𝐶0 | 𝐸1/12

8(2 sin \𝑐)1/2 (2/[)1/4
([ sin \𝑐)3/2 𝐸1/12

8(2 sin \𝑐)1/2 (2/[)1/4
𝐸1/12

8(2 sin \𝑐)1/2 (2/[)1/4
[ sin \𝑐

Table 1: Absolute value of the complex amplitude 𝐶0 for different forcings.

the term
√
𝑟 is not present in the velocity and streamfunction expressions. We get

𝑣
(2𝐷)
‖ = 𝐶0𝐻𝑚(𝑥 ‖ , 𝑥⊥), (3.8a)

𝜓 (2𝐷) = 𝜖
𝐶0𝐸

1/3

𝑚 − 1 𝐻𝑚−1(𝑥 ‖ , 𝑥⊥). (3.8b)

The velocity component 𝑣𝑦 perpendicular to the (𝑥, 𝑧) plane differs from 𝑣
(2𝐷)
‖ by a ±𝜋/2

phase factor, as the relation (3.4) between 𝑣𝜙 and 𝑣 ‖ in 3D.
There are free parameters in the self-similar solution (3.1): the singularity strength 𝑚 and

the amplitude𝐶0. These parameters depend on the nature of the forcing. For a viscous forcing,
that is a forcing induced by Ekman pumping, these parameters can be obtained in closed
form for the northward and southward beams generated from the critical latitude (Le Dizès &
Le Bars 2017; Le Dizès 2022). For a librating sphere, they are given by (Le Dizès & Le Bars
2017)

𝑚 = 5/4, (3.9)
and

𝐶0 =
𝐸1/12

8(2 sin \𝑐)1/2(−2^𝑐)1/4
𝑒i𝜋/2 for the northward beam, (3.10a)

𝐶0 =
𝐸1/12

8(2 sin \𝑐)1/2(−2^𝑐)1/4
𝑒i3𝜋/4 for the southward beam, (3.10b)

where ^𝑐 is the curvature at the critical latitude. These expressions can be applied to our
geometry for the three forcings (2.6, 2.10 and 2.11) imposed on the inner core. Considering
the different non-dimensionalisation of lengths adopted by Le Dizès & Le Bars (2017) and
this work (the radial distance of the critical latitude to the rotation axis vs the outer radius),
the absolute value of the complex amplitude 𝐶0 should be adapted as indicated in table 1
for the three forcings. Note that the curvature at the critical latitude ^𝑐 is −1/[ with our
non-dimensionalisation. The factor [ sin \𝑐 is the distance of the critical latitude to the axis
𝑂𝑧.
Note that the amplitude 𝐶0 of the parallel velocity scales as 𝐸1/12. This scaling has been

validated byHFRL22 forEkmannumbers down to 10−10. The amplitude of the streamfunction
is weaker and of order 𝐸5/12.

3.1.2. Reflections on the boundaries and on the axis
The reflection of a self-similar wave beam on a boundary has been discussed in Le Dizès
(2020) and HFRL22. Le Dizès (2020) showed that the wave beam keeps its self-similar
form when it reflects on a boundary. More precisely if the incident beam is written as
𝑣
(𝑖)
‖ = 𝐶

(𝑖)
0 𝐻𝑚(𝑥 (𝑖)‖ , 𝑥

(𝑖)
⊥ ), the reflected beam can also be written as 𝑣 (𝑟 )‖ = 𝐶

(𝑟 )
0 𝐻𝑚(𝑥 (𝑟 )‖ , 𝑥

(𝑟 )
⊥ )
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with
𝑥
(𝑟 )
‖𝑏

𝑥
(𝑖)
‖𝑏

= 𝛼3,
𝐶

(𝑟 )
0

𝐶
(𝑖)
0

= 𝛼𝑚−1, (3.11a, b)

where the subscript 𝑏 indicates values taken at the reflection point. The reflection factor 𝛼 at
the reflection point is given by

𝛼 =
sin \ (𝑟 )

sin \ (𝑖)
(3.12)

where \ (𝑟 ) and \ (𝑖) are the angles of the reflected and incident beams with respect to the
boundary (see figure 2). This factor is smaller than 1 (resp. larger than 1) when there is a
contraction (resp. expansion) of the beam. A reflection on a boundary then just modifies the
travelled distance from the source and the amplitude of the beam. In particular it has no effect
on its phase.
Note however that this reflection law implicitly assumes that the beam is not forced at the

boundary where it reflects. This in particular implies a simple relation on the streamfunction
of the incident and reflected beams at the boundary that can be written as

𝜓 (𝑟 ) (𝑥 (𝑟 )‖𝑏 , 𝑥
(𝑟 )
⊥𝑏 ) + 𝜓 (𝑖) (𝑥 (𝑖)‖𝑏 , 𝑥

(𝑖)
⊥𝑏) = 0. (3.13)

We shall see below that this relation is no longer valid when we get very close to an attractor.
The crossing of the wave beam with the rotation axis is of different nature. In the 3D

axisymmetric geometry, the self-similar solution diverges on the axis, but it can nevertheless
be continued as if there was a reflection. The relation between the incident and reflected
beams is obtained by a condition of matching with the solution obtained close to the axis (see
Le Dizès & Le Bars 2017). We obtain in that case a phase shift of 𝜋/2 between the reflected
and incident beams:

𝑥
(𝑟 )
‖𝑏 = 𝑥

(𝑖)
‖𝑏 , 𝐶

(𝑟 )
0 = 𝑒i𝜑𝐶

(𝑖)
0 , (3.14a, b)

with 𝜑 = 𝜋/2.
In the 2D configurations, the condition of reflection to apply on the axis 𝑂𝑧 is directly

related to the property of symmetry of the forcing. On the axis 𝑂𝑧, the projections of
propagation directions of the incident and reflected rays onto the global unit vector 𝒆𝑥 are of
opposite sign. According to the formula (3.4), we then have the following relations

𝑣
(𝑟 )
𝑦 = ±i𝑣 (𝑟 )‖ , 𝑣

(𝑖)
𝑦 = ∓i𝑣 (𝑖)‖ . (3.15a, b)

For the 2D symmetric forcing (2.10) where 𝑣𝑦 is forced in a symmetric way about the axis
𝑂𝑧, we have 𝑣 (𝑟 )𝑦 = 𝑣

(𝑖)
𝑦 . Therefore, the parallel velocities are of opposite sign, which means

𝜑 = 𝜋, (3.16)

in (3.14). For the 2D antisymmetric forcing (2.11) with 𝑣 (𝑟 )𝑦 = −𝑣 (𝑖)𝑦 , the parallel velocity is
unchanged which means that

𝜑 = 0. (3.17)

In order to consider a quarter of the domain in the (𝑟, 𝑧) or (𝑥, 𝑧) plane, the horizontal axis
𝑂𝑟 (or 𝑂𝑥) has also to be considered as a place of reflection. Applying the same approach,
we can easily show that no phase shift is created between reflected and incident beams on
this axis for all the three forcings.
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3.1.3. Propagation of critical-latitude beams
Having provided the structure of the wave beam and how it reflects on the boundaries and the
axis, we are now in a position to analyse its propagation in a closed geometry. As explained
above, we consider a frequency such that the rays emitted from the critical latitude on the
inner core end up on an attractor. Our objective is to obtain the property of the self-similar
beam centred on the critical ray as it moves towards the attractor. An example of critical ray
is shown in figure 3 where the ray (blue lines) propagates northward from the critical latitude
and spirals into one side of the attractor (red lines). In the following, we use this figure for
explanation purposes but the methodology is applicable for any type of wave patterns.
The reflection positions on the axes and the boundaries during every loop are indicated as

𝑃 𝑗 ,𝑛, where 𝑗 denotes the reflection position and ranges from 0 to 𝐽−1 (𝐽 = 8 in figure 3). The
index 𝑛 denotes the number of the cycle and ranges from 1 to∞. For example, the reflection
points on the rotation axis are 𝑃1,1, 𝑃1,2, ... and 𝑃1,∞. To simplify the formula we assume
that the initial point of a cycle is the position 𝐽 of the former cycle, that is 𝑃0,𝑛+1 = 𝑃𝐽 ,𝑛.
The critical latitude corresponds to 𝑃0,1. The critical ray follows the following path during
propagation

𝑃0,1𝑃1,1 · · · 𝑃𝐽−1,1 → 𝑃0,2𝑃1,2 · · · 𝑃𝐽−1,2 → · · · → 𝑃0,∞𝑃1,∞ · · · 𝑃𝐽−1,∞. (3.18)

The critical ray ends up on the attractor denoted by 𝑃0,∞𝑃1,∞ · · · 𝑃𝐽−1,∞ after an infinite
number of cycles.
The solution obtained by propagating the self-similar beam along the critical ray is

expected to be composed of as many contributions as the number of segments between
two reflection points. We use the subscript ( 𝑗 , 𝑛) to denote the parameters associated with
the segment 𝑃 𝑗 ,𝑛𝑃 𝑗+1,𝑛 (with 𝑗 between 0 and 𝐽 − 1). Finding the parameters characterising
this contribution requires tracking the variation of the travelled distance and of the amplitude
during all the previous reflections. For this purpose, it is useful to write the travelled distance
𝑥 ‖ 𝑗 ,𝑛 as

𝑥 ‖ ( 𝑗 ,𝑛) = 𝐿
(𝑠)
𝑗 ,𝑛

+ 𝑥 ′‖ ( 𝑗 ,𝑛) (3.19)

where 𝑥 ′‖ ( 𝑗 ,𝑛) is the distance from 𝑃 𝑗 ,𝑛 and 𝐿 (𝑠)
𝑗 ,𝑛
is the distance of the source 𝑃 (𝑠)

𝑗 ,𝑛
from 𝑃 𝑗 ,𝑛.

The condition of reflection (3.11) applied in 𝑃 𝑗+1,𝑛 implies that

𝐿
(𝑠)
𝑗+1,𝑛 = (𝐿 (𝑠)

𝑗 ,𝑛
+ 𝐿 𝑗 ,𝑛)𝛼3𝑗+1,𝑛 , (3.20)

where 𝐿 𝑗 ,𝑛 is the length of the segment ( 𝑗 , 𝑛) and 𝛼 𝑗+1,𝑛 is the reflection factor at 𝑃 𝑗+1,𝑛.
Concerning the amplitude𝐶 𝑗 ,𝑛 of the self-similar solution, we obtain from (3.11b) with (3.9)

𝐶 𝑗+1,𝑛 = 𝐶 𝑗 ,𝑛𝛼
1/4
𝑗+1,𝑛𝑒

i𝜑 𝑗+1 , (3.21)

where 𝜑 𝑗 is the phase shift obtained at the reflection at 𝑃 𝑗 ,𝑛. For the critical ray shown in
figure 3, this phase shift is null except for 𝑗 = 1 (because the reflection is on the axis), for
which it can be either 𝜋/2 (3D case), 𝜋 (2D symmetric case) or 0 (2D antisymmetric case).
In the following, we shall consider the solution in a section perpendicular to the segments

(0, 𝑛). It is therefore useful to consider the evolution of the beam after each cycle for this
particular segment as a function of 𝑛. Using (3.20), we can write

𝐿
(𝑠)
0,𝑛+1 ≡ 𝐿

(𝑠)
𝐽 ,𝑛

= (𝐿 (𝑠)
0,𝑛 + Λ𝑛)𝛼3𝑛, (3.22)

with

Λ𝑛 = 𝐿0,𝑛 +
𝐿1,𝑛

𝛼31,𝑛
+

𝐿2,𝑛

𝛼31,𝑛𝛼
3
2,𝑛

+ · · · +
𝐿𝐽−1,𝑛

𝛼31,𝑛𝛼
3
2,𝑛 · · · 𝛼

3
𝐽−1,𝑛

, (3.23)
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Figure 3: Schematic of propagation of a critical ray towards an attractor for
[ = 0.35, 𝜔 = 0.824

.

and
𝛼𝑛 = 𝛼1,𝑛𝛼2,𝑛 · · · 𝛼𝐽 ,𝑛 . (3.24)

Similarly, we obtain

𝐶0,𝑛+1 ≡ 𝐶𝐽 ,𝑛 = 𝐶0,𝑛𝛼
1/4
𝑛 𝑒i𝜑 , (3.25)

with
𝜑 = 𝜑1 + 𝜑2 + · · · + 𝜑𝐽 . (3.26)

Note that 𝛼𝐽 ,𝑛 = 𝛼0,𝑛+1 and 𝜑𝐽 = 𝜑0. For the first segment of the first cycle, the source is at
𝑃0,1, so 𝐿0,1 = 0 and the amplitude 𝐶0,1 is given by the expression (3.10) of 𝐶0.
Although a given parameter 𝛼 𝑗 ,𝑛 can be larger than 1, the product (3.24) that defines 𝛼𝑛 is

necessarily smaller than 1 (for 𝑛 sufficiently large) because the critical ray converges toward
an attractor. Its limit value 𝛼∞ corresponds to the contraction factor of the attractor. The
amplitude of the beam therefore goes rapidly to zero as one gets close to the attractor. This
guarantees that, although the various contributions superimpose on each other close to the
attractor, the sum will remain finite on the attractor. The expression obtained by summing all
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Figure 4: Results corresponding to the 3D libration of the inner core for [ = 0.35 and
𝜔 = 0.8102.

the contributions coming from the segments (0, 𝑛) with 𝑛 ranging from 1 to ∞ is then well
defined. It can be written as

𝑣 ‖ ∼
∞∑︁
𝑛=1

𝑣 ‖ (0,𝑛) , 𝜓 ∼
∞∑︁
𝑛=1

𝜓0,𝑛 (3.27)

for the parallel velocity and the streamfunction respectively. These expressions are expected
to provide an asymptotic solution close to segments (0, 𝑛). In the following, they will be
referred to as the critical-latitude solution. In the next section, they are plotted and compared
to numerical solutions.

3.2. Results
The numerical solutions are obtained for Ekman numbers as low as 10−11 for which the scale
separation between the wave beams and the domain size is clear. For simplicity, the velocity
components 𝑣𝜙 in 3D and 𝑣𝑦 in 2D are used for comparison. Other velocity components
follow a similar trend.
We consider the wave pattern with two coexisting attractors in a spherical shell as discussed

by Tilgner (1999) and Rieutord et al. (2001). The aspect ratio and the frequency for this case
are [ = 0.35 and 𝜔 = 0.8102 respectively. The forcing is imposed on the inner core. The
numerical result of the 3D libration at 𝐸 = 10−11 illustrated by the amplitude of 𝑣𝜙 is shown
in figure 4a. The wave pattern is consistent with the ray paths from the critical latitude
on the forced inner core (see figure 4b). The ray propagating northward from the critical
latitude (in blue color) converges onto the polar attractor 𝑃 (𝑃)

0,∞ · · · 𝑃 (𝑃)
7,∞, while that propagating

southward from the critical latitude (in green color) converges onto the equatorial attractor
𝑃
(𝐸)
0,∞ · · · 𝑃 (𝐸)

5,∞. The corresponding 2D results are not shown because the wave pattern and the
ray paths are the same for the same aspect ratio and frequency. However, one should note that
the phase shift 𝜑 varies for different attractors and forcings. For the polar attractor with one
vertex on the axis 𝑂𝑧, the phase shifts are 𝜋/2, 𝜋 and 0 for the 3D libration, 2D symmetric
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and antisymmetric forcings, respectively. For the equatorial attractor, there is no phase shift
for any of the forcing as this attractor does not touch the axis 𝑂𝑧.
Two cuts crossing the two attractors are chosen in order to validate the critical-latitude

asymptotic solution given by equation (3.27). Figures 5 and 6 compare the velocity profiles
between the asymptotic solutions and the numerical solutions at 𝐸 = 10−11 on the cuts 𝑆1
and 𝑆2 respectively (see figure 4). The cut 𝑆1 on the polar attractor is only crossed by the ray
propagating northward from the critical latitude (blue lines in figure 4b), while the cut 𝑆2 on
the equatorial attractor is only crossed by the ray propagating southward (green lines in figure
4b). In figures 5 and 6, the vertical lines show the positions of the northward and southward
critical rays when they cross 𝑆1 and 𝑆2 respectively. These critical positions correspond to
different successive loops. From the rightmost critical position (𝑟1) to the leftmost one (𝑟∞),
the critical ray propagates from the first loop (𝑛 = 1) to the final loop (𝑛 = ∞) and from
the critical latitude to the final attractor. The critical-latitude solutions on these two cuts 𝑆1
and 𝑆2 are built by propagating the self-similar solutions from the critical latitude northward
and southward respectively, by using the infinite sum of self-similar solutions (3.27); see the
dashed lines in figures 5 and 6 respectively. Since the amplitude decreases exponentially the
summation is conducted to a large enough number of loops in order to ensure convergence
(around 150 loops in practice). The amplitudes are rescaled according to table 1, in order to
make sure that the wave beams from the critical latitude possess the same amplitudes for all
the three forcings. Note that the radial dependence of the 3D configuration is removed by
multiplying the velocity with

√
𝑟 .

Around the first critical position 𝑟1, the wave beam from the critical latitude are within
the first loop and have not experienced any contraction or expansion on the boundaries.
It takes the same shape for all the three forcings and the self-similar solution agrees with
the numerical solution very well for both two cuts and all the three forcings, as shown by
the profiles around 𝑟1 in figures 5 and 6. After one loop, the wave beam moves on to the
next critical position 𝑟2. The amplitude decreases as expected. The agreement between the
self-similar solution and the numerical solution is still good; see the profiles around 𝑟2 in
figures 5 and 6. However, its shape is now dependent on the phase shift it has experienced
during the first loop. For the polar attractor on 𝑆1, the profile around 𝑟2 changes compared
to that around 𝑟1 for the 3D libration and 2D symmetric forcing since there is a nonzero
phase shift for both these cases (see figures 5(𝑎𝑏𝑐𝑑)). The profiles between 𝑟1 and 𝑟2 remain
similar for the 2D antisymmetric forcing since there is no phase shift (figure 5(𝑒 𝑓 )). For the
equatorial attractor on 𝑆2, there is no phase shift and the profiles remain similar from 𝑟1 to
𝑟2 as shown in figure 6 for all the three forcings. A similar behaviour can be observed from
the critical position 𝑟2 to the next position 𝑟3. Interestingly, the equatorial attractor profiles
on 𝑆2, which do not cross the rotation axis and therefore do not alter the phase, are almost
the same for all forcing types.
When the wave beam moves on to the position of the attractor (𝑟∞), successive critical

positions become very close to each other and the profiles from different loops are not well
separated. Finally, the wave beam just propagates on the attractor and the summation of the
self-similar solutions is conducted there. As shown by the profiles around the positions of
the attractors 𝑟∞ in figures 5 and 6, the attractor with a nonzero phase shift is weak (figure
5(𝑎𝑏𝑐𝑑)), while that without phase shift is strong (figures 5(𝑒 𝑓 ) and 6). This phenomenon
can be explained by the summation of the self-similar solutions on the attractor.When there is
a phase shift on the attractor path, the self-similar solutions of successive loops with different
phases cancel out, which makes the local solution in the vicinity of the attractor negligible
after summation. Otherwise, the self-similar solutions with the same phase accumulate on
the attractor, which makes the solution much stronger. For the weak polar attractor (𝑟∞ in
figure 5(𝑎𝑏𝑐𝑑)), the critical-latitude solution (3.27) is consistent with the numerical solution.
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Figure 5: Comparison of velocity profiles between the critical-latitude asymptotic
solutions and the numerical solutions on the cut 𝑆1 of the polar attractor shown in figure 4

at 𝐸 = 10−11 for three forcings: (𝑎𝑏) 3D libration (phase shift 𝜑 = 𝜋/2); (𝑐𝑑) 2D
symmetric forcing (phase shift 𝜑 = 𝜋); (𝑒 𝑓 ) 2D antisymmetric forcing (no phase shift).

(𝑎𝑐𝑒) are the real parts; (𝑏𝑑𝑓 ) are the imaginary parts.

However, for the strong polar attractor (𝑟∞ in figure 5(𝑒 𝑓 )), the asymptotic solution does
not perform as well as for the positions far from the attractor. This deviation is much more
obvious for the strong equatorial attractor (𝑟∞ in figure 6), where the amplitudes are largely
overestimated and the critical-latitude solution (3.27) deviates from the numerical solutions
gradually as the ray converges towards the attractor.
In order to investigate what is happening around the attractor, the velocity amplitude

scalings with Ekman number of both the critical-latitude asymptotic solution (3.27) and
the numerical solution at the critical positions on the cuts 𝑆1 and 𝑆2 are shown in figure 7
for the 3D libration. Similar behaviour can be observed for the other two forcings and are
not shown here. The critical-latitude solution (3.27) and the numerical solution at the first
critical position 𝑟1 follow the expected scaling 𝐸1/12, which validates the Ekman number
scaling of the wave beams from the critical latitude for a libration frequency different from
that in HFRL22. Then the amplitude on 𝑆1 (weak polar attractor with phase shift) decreases
to a weaker level as the ray gets closer to the position of the attractor 𝑟∞ and the scaling is
eventually closer to 𝐸1/6. The scaling 𝐸1/6 around 𝑟∞ is more obvious for the other cut 𝑆2
of the strong equatorial attractor without phase shift. However, the corresponding prefactor
is over-predicted by the critical-latitude solution.
The change of scaling of the critical-latitude solution could have been anticipated from

expression (3.25) for its amplitude. We have seen that because 𝛼𝑛 < 1, the amplitude of the
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Figure 6: Same caption as in figure 5 but on the cut 𝑆2 of the equatorial attractor. There is
no phase shift for all the three forcings.

self-similar beam decreases as it gets closer to the attractor. But the beam has also a finite
width of order 𝐸1/3, so the contributions obtained from each cycle superimpose on each
other when the critical ray gets at a distance of this order from the attractor. This stops the
decreasing of the amplitude after a number 𝑛𝑠 of cycles that can be approximately estimated
by (log 𝐸1/3)/(log𝛼∞) which corresponds to the number of contraction needed to go from
1 to 𝐸1/3 with the contraction factor 𝛼∞. The amplitude 𝐶0,𝑛𝑠 has then decreased from its
initial value 𝐶0 by a factor 𝛼1/41 𝛼

1/4
2 · · · 𝛼1/4𝑛𝑠 , which is close to 𝛼

𝑛𝑠/4
∞ ≈ 𝐸1/12 . The velocity

amplitude of the critical-latitude solution is therefore expected to become 𝑂 (𝐸1/12) smaller
close to the attractor and therefore of order 𝐸1/6, as observed.
The amplitude of the streamfunction of the critical-latitude solution also decreases from

𝑂 (𝐸5/12) to 𝑂 (𝐸1/2) as we get close to the attractor. Then, it becomes of the order of the
Ekman pumping (see Appendix B). This means that the hypothesis of no Ekman pumping
that has been used to obtain the reflection laws of the beam in §3.1.2 breaks down. In
particular, relation (3.13) should not be valid close to the attractor. We suspect that the
discrepancies observed close to the attractor between the critical-latitude solution and the
numerical solution are due to this effect.
In the next section, we develop a new asymptotic theory to describe the solution close to

the attractor. This theory, that takes into account the Ekman pumping close to the attractor,
is based on ideas originally developed by O05.
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Figure 7: Velocity amplitude scalings of the critical-latitude solution (𝑎𝑏) and the
numerical solution (𝑐𝑑) at the critical positions on the cuts 𝑆1 (𝑎𝑐) and 𝑆2 (𝑏𝑑) for the 3D
libration and at the Ekman numbers [10−11, 10−6]. 𝑟1, 𝑟2, · · · and 𝑟∞ are the critical

positions shown in figures 5 and 6.

4. Solution close to the attractors
4.1. Asymptotic theory

In order to apply the results of O05, we first consider 2D configurations without phase shift
or reflection on the axis. In this framework, the inviscid problem can be solved using the
2D streamfunction only and a global solution for the streamfunction is obtained as a sum of
two functions which are constant along the characteristics of the problem (e.g. Maas & Lam
1995).
In the present work, we are looking for a solution localised near an attractor, say

𝑃0,∞ · · · 𝑃𝐽−1,∞ as illustrated in figure 3, which can be written as a sum of local solutions
𝜓
(2𝐷)
𝑗 ,∞ (𝑥⊥ 𝑗 ,∞) valid close to the segment ( 𝑗 ,∞) only. In the 2D inviscid framework, these
local solutions just mean that the solution is transported from 𝑃 𝑗 ,∞ to 𝑃 𝑗+1∞ along the lines
𝑥⊥ 𝑗 ,∞ = 𝐶𝑠𝑡 without modification. Whereas the critical-latitude solution was reflected on
boundary without modification, the solution constructed by O05 is directly forced by the
boundary condition in the neighborhood of the attractor. Close to a point 𝑃 𝑗∞, the solution is
expected to be composed of the incident solution 𝜓 (2𝐷)

𝑗 ,∞ (𝑥⊥ 𝑗 ,∞) and of the reflected solution
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𝜓
(2𝐷)
𝑗+1,∞(𝑥⊥ 𝑗+1,∞) and satisfies the boundary condition on the surface :

𝜓
(2𝐷)
𝑗 ,∞ (𝑥⊥ 𝑗 ,∞) + 𝜓

(2𝐷)
𝑗+1,∞(𝑥⊥ 𝑗+1,∞) = 𝜓

(𝐸𝑃)
𝑗 ,∞ , (4.1)

where the condition of being on the surface close to 𝑃 𝑗 ,∞ means that

𝑥⊥ 𝑗+1,∞ = 𝛼 𝑗 ,∞𝑥⊥, 𝑗 ,∞. (4.2)

In (4.1), 𝜓 (𝐸𝑃)
𝑗 ,∞ is the value of the streamfunction prescribed at 𝑃 𝑗 ,∞. In our case, this

prescribed value is given by the Ekman pumping at the surface (or is zero if there is no
Ekman pumping).
If we apply these conditions at each point 𝑃0,∞, 𝑃1,∞ · · · 𝑃𝐽−1,∞ of the attractor, we end

up, after a complete cycle, with an equation for each 𝜓 𝑗 ,∞ which can be written as

𝜓
(2𝐷)
𝑗 ,∞ (𝛼∞𝑥⊥ 𝑗 ,∞) − 𝜓

(2𝐷)
𝑗 ,∞ (𝑥⊥ 𝑗 ,∞) = 𝜖 𝑗 ,∞𝛿, (4.3)

with

𝛿 =

𝐽/2∑︁
𝑘=1

(𝜓 (𝐸𝑃)
2𝑘,∞ − 𝜓

(𝐸𝑃)
2𝑘+1,∞) , (4.4)

and
𝛼∞ = 𝛼1,∞𝛼2,∞ · · · 𝛼𝐽 ,∞, (4.5)

wherewe have used the fact that the point 𝑃 𝑗+𝐽 ,∞ corresponds to the point 𝑃 𝑗 ,∞ (implying that
𝜓 𝑗 ,∞ = 𝜓 𝑗+𝐽 ,∞ and 𝜓 (𝐸𝑃)

𝑗+𝐽 ,∞ = 𝜓
(𝐸𝑃)
𝑗 ,∞ ). The parameter 𝜖 𝑗 ,∞ is the sign in the streamfunction

definition (3.6). The parameter 𝛼∞ is the contraction factor of the attractor. Equation (4.3) is
a functional constraint on the inviscid solution close to a 2D attractor. It is identical to the
equation (3.17) of O05.
The general solution of this equation can be written as

𝜓
(2𝐷)
𝑗 ,∞ (𝑥⊥ 𝑗 ,∞) =

𝜖 𝑗 ,∞𝛿

ln𝛼∞
ln |𝑥⊥ 𝑗 ,∞ | +

+∞∑︁
𝑛=−∞

ℎ±𝑛 |𝑥⊥ 𝑗 ,∞ |
2𝑛𝜋i
ln 𝛼∞ , (4.6)

where the ± sign is for positive or negative 𝑥⊥ 𝑗 ,∞. Interestingly, the dominant logarithmic
part of this solution has a simple expression that only depends on the contraction factor 𝛼∞
and the forcing term 𝛿. This part corresponds to a particular solution of (4.3) while the sum
is a general homogeneous solution. Contrarily to O05, we shall not try to determine this
homogeneous solution. We shall only keep the dominant logarithmic term to describe the
inviscid solution close to the attractor. This hypothesis is not justified from an asymptotical
point of view but O05 showed that the correction associated with the homogeneous part was
very small for his case.
If we only keep the particular solution, we then get a simple inviscid expression for the

parallel velocity which is

𝑣
(2𝐷)
‖ 𝑗 ,∞ ∼ 𝛿

ln𝛼∞
𝑥−1⊥ 𝑗 ,∞. (4.7)

As already explained above, this singular behavior can be smoothed by viscosity by
introducing the self-similar solution of Moore & Saffman. The viscous solution that matches
with the singular behavior (4.7) is

𝑣
(2𝐷)
‖ 𝑗 ,∞ ∼ 𝐶

(𝐴)
0 𝐻1(𝑥 ‖ 𝑗 ,∞, 𝑥⊥ 𝑗 ,∞), (4.8)
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with

𝐶
(𝐴)
0 =

𝛿

ln𝛼∞
𝐸−1/3, (4.9)

where 𝐻𝑚(𝑥 ‖ , 𝑥⊥) has been defined in (3.1).
In the above expression, the virtual source of the beam, that is the position where 𝑥 ‖ 𝑗 ,∞ = 0

is however not known. This position can be obtained by using the argument developed in
§3.1.3 for the critical-latitude solution. In particular, if as above, 𝑥 ‖ 𝑗 ,∞ is written as

𝑥 ‖ 𝑗 ,∞ = 𝐿
(𝑠)
𝑗 ,∞ + 𝑥 ′‖ 𝑗 ,∞ (4.10)

with 𝑥 ′‖ 𝑗 ,∞ = 0 at 𝑃 𝑗 ,∞, the distance 𝐿
(𝑠)
𝑗 ,∞ satisfies the equations (3.20) and (3.22) with

𝑛 → ∞. For the first segment between 𝑃0,∞ and 𝑃1,∞, we then get using (3.22)

𝐿
(𝑠)
0,∞ = (𝐿 (𝑠)

0,∞ + Λ∞)𝛼3∞, (4.11)

that is

𝐿
(𝑠)
0,∞ = Λ∞

𝛼3∞
1 − 𝛼3∞

, (4.12)

where Λ∞ and 𝛼∞ are given by (3.23) and (3.24) with 𝑛 → ∞.
It is worth noting that the amplitude of the attractor solution does not change along the

cycle. This is due to the particular value of the index of 𝑚 of the self-similar solution, that is
𝑚 = 1 for the attractor solution, which guarantees that the amplitude does not change when
the beam reflects on the boundary, as prescribed by the reflection law (3.11b).
For the 3D configurations or when there is a phase shift during a cycle, the above

considerations have to be modified. First note that in 3D axisymmetric geometries, the
streamfunction is not identically propagated along characteristics as it is in 2D. It evolves
according to a propagator defined by the Riemann function, which is a Legendre function of
index -1/2 for axisymmetric solutions considered here (but see §2.3.2 of Rieutord et al. 2001,
for more details). In other words, there is no simple global expression of the inviscid solution
for the streamfunction in 3D. However, if the solution varies on small scales compared to the
distance to the axis, the propagation is almost as in 2D: in that case, an approximate local
solution can be obtained far from the axis in the form

𝜓 =
√
𝑟�̃�(𝑥⊥) , 𝑣 ‖ =

�̃� ‖ (𝑥⊥)√
𝑟

, (4.13)

where the
√
𝑟 factor guarantees that these approximations are valid up to second order

corrections. The same analysis as above can then be performed for �̃� as long as we are far
from the axis. This leads to a 3D expression for the local solution near an attractor without
phase shift which is directly obtained from (4.8) as

𝑣 ‖ 𝑗 ,∞ ∼
𝐶

(𝐴)
0√
𝑟
𝐻1(𝑥 ‖ 𝑗 ,∞, 𝑥⊥ 𝑗 ,∞), (4.14)

with 𝐶 (𝐴)
0 given by (4.9) but with an expression of 𝛿 slightly different

𝛿 =

𝐽/2∑︁
𝑘=1

©«
𝜓
(𝐸𝑃)
2𝑘,∞√
𝑟2𝑘,∞

−
𝜓
(𝐸𝑃)
2𝑘+1,∞√
𝑟2𝑘+1,∞

ª®¬ . (4.15)

For the solution along the first segment 𝑃0,∞𝑃1,∞, 𝑥 ‖0,∞ is still defined by (4.10) and (4.12).
For the attractor without reflection on the axis, it is the expressions (4.8) for 2D
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configurations and (4.14) for 3D configurations that we shall use and compare to our
numerical data.
We now want to consider the case of an attractor touching the axis. For the critical-latitude

solution, we have seen that a phase shift could be generated as the beam reflects on the axis.
A similar phenomenon is expected for the attractor solution. Let us first consider the 2D
configurations. We have seen that in that case, the presence of a phase shift depends on the
symmetry of the forcing with respect to the 𝑧 axis. A phase shift of 𝜑 = 𝜋 is expected for a
symmetric forcing, while no phase shift is present for an antisymmetric forcing. This is easily
understood as changing 𝑥 into−𝑥 changes 𝑥⊥0,∞ into 𝑥⊥1,∞. The local solutions𝜓 (2𝐷)

0,∞ (𝑥⊥0,∞)
and 𝜓 (2𝐷)

1,∞ (𝑥⊥1,∞), valid close to the two lines 𝑥⊥0,∞ = 0 and 𝑥⊥1,∞ = 0 respectively, should
therefore satisfy the same symmetry as the forcing, that is,

𝜓
(2𝐷)
1,∞ (𝑥⊥1,∞) = 𝜓

(2𝐷)
0,∞ (𝑥⊥0,∞) (4.16)

for the symmetric forcing and

𝜓
(2𝐷)
1,∞ (𝑥⊥1,∞) = −𝜓 (2𝐷)

0,∞ (𝑥⊥0,∞) (4.17)

for the antisymmetric forcing, when 𝑥⊥0,∞ = 𝑥⊥1,∞. For the antisymmetric case, the axis
is therefore as a vertical boundary without Ekman pumping [compare (4.17) to (4.1)]. The
same solution as for a 2D attractor not refecting on the axis can therefore be used. For the
symmetric case, this is no longer the case as, owing to (4.16), (4.3) now becomes

𝜓
(2𝐷)
𝑗 ,∞ (𝛼∞𝑥⊥ 𝑗 ,∞) + 𝜓

(2𝐷)
𝑗 ,∞ (𝑥⊥ 𝑗 ,∞) = 𝜖 𝑗 ,∞𝛿, (4.18)

if there is an even number of reflections on the axis. A particular solution to this equation is
just 𝜓 (2𝐷)

𝑗 ,∞ (𝑥⊥ 𝑗 ,∞) = 𝜖 𝑗 ,∞𝛿/2 so there is no logarithmic singularity in the solution anymore.
Thus, the inviscid expression (4.7) is not obtained, neither its viscous counterpart (4.8).
In 3D, as a phase shift of 𝜋/2 appears when the ray reflects on the axis, a similar

phenomenon is expected if the number of reflections on the axis is not a multiple of 4. In
that case, no logarithmic singularity should be present in the function �̃� 𝑗 ,∞, and the analysis
performed above should also break down. A weaker attractor solution is probably obtained
in that case which could explain why no significant attractor contribution was observed in
the numerical solution when there is a phase shift. Finding the correct asymptotic form of
the attractor solution in the presence of a phase shift is not an easy task. We leave it for future
studies, probably in a simpler geometry.

4.2. Results
We now try to assess the performance of the attractor solution discussed above and see
whether the rather poor performance of the critical-latitude solution (3.27) for the cases
without phase shift (the polar attractor forced by the 2D antisymmetric forcing in figure
5(𝑒 𝑓 ) and the equatorial attractors in figure 6) is improved. Since all the three forcings are
imposed on the inner core, only one vertex for each attractor is forced, namely 𝑃 (𝑃)

0,∞ for the
polar attractor and 𝑃 (𝐸)

0,∞ for the equatorial attractor (see figure 4b). The forcing term 𝛿 (4.4,
4.15) can be simplified to

𝛿 =

{
𝜓
(𝐸𝑃)
0,∞ , 2D;

𝜓
(𝐸𝑃)
0,∞ /√𝑟0,∞, 3D.

(4.19)

The values of the Ekman pumping at the positions 𝑃 (𝑃)
0,∞ and 𝑃

(𝐸)
0,∞ correspond to the formulae

of the inner core in table 2 of Appendix B. As shown in figure 8, the attractor solution (in



23

0.1550 0.1575 0.1600 0.1625 0.1650 0.1675 0.1700 0.1725
−1.0

−0.5

0.0

0.5

1.0

1.5

R
ev

y

(a)

r1r2r3r∞· · ·

numerical solution

critical-latitude solution

attractor solution

0.1550 0.1575 0.1600 0.1625 0.1650 0.1675 0.1700 0.1725

−0.5

0.0

0.5

1.0

1.5

I
m
v y

(b)

r1r2r3r∞· · ·

numerical solution

critical-latitude solution

attractor solution

0.408 0.410 0.412 0.414 0.416 0.418
r

−1

0

1

R
ev

φ

(c)

r1r2r3r∞· · ·
numerical solution

critical-latitude solution

attractor solution

0.408 0.410 0.412 0.414 0.416 0.418
r

−1.5

−1.0

−0.5

0.0

0.5

I
m
v φ

(d)

r1r2r3r∞· · ·

numerical solution

critical-latitude solution

attractor solution

Polar attractor S1, 2D antisymmetric forcing, ϕ = 0

Equatorial attractor S2, 3D libration, ϕ = 0

Figure 8: Comparison of velocity profiles between the numerical solution, the
critical-latitude solution and the attractor solution at 𝐸 = 10−11: (𝑎𝑏) the cut 𝑆1 of the
polar attractor forced by the 2D antisymmetric forcing; (𝑐𝑑) the cut 𝑆2 of the equatorial
attractor forced the 3D libration (the other 2D forcings for the equatorial attractor show the

same results as (𝑐𝑑)).

red color) performs much better than the previous critical-latitude solution. It demonstrates
the necessity of including the Ekman pumping into the asymptotic solution as one gets
close to the attractor, especially for the strong attractors without phase shift. However, it is
unnecessary for the weak attractors with phase shift as shown by 5(𝑎𝑏𝑐𝑑), since there is no
logarithmic singularity.
Note that we now face the problem of defining a transition between the critical-latitude

solution valid during the first cycles and the attractor solution eventually valid close to the
attractor. While we do not discuss this aspect of the problem in this paper, further studies
would be required to clarify this transition.
The forcings considered up to now were imposed on the inner core, which excites the wave

beams from the critical latitude on the inner core. These wave beams propagate towards the
attractors and coexist with them. In order to further validate the attractor solution, it is helpful
to consider a configuration where the attractor is not affected by the propagation of the wave
beams from the forced critical latitude. Fortunately, such configuration exists for the same
aspect ratio and frequency but with the forcing imposed on the outer core. The wave pattern
of the 3D libration on the outer core is shown in figure 9a, which can be compared to the
ray paths in figure 9b. Since only the critical latitude on the outer core is forced, the only
option for the initial propagation direction is pointing into the bulk. As shown in figure 9b,
this ray (in cyan color) propagates onto the polar attractor. The corresponding wave beam
from the critical latitude on the outer core should possess 𝐸1/5 width and 𝐸1/5 amplitude
(Kerswell 1995; Lin & Noir 2020), but it will not be our concern here. More importantly,
figure 9a shows that the equatorial attractor is still present although it is not connected to the
ray emerging from the critical latitude on the outer core. It should thus be directly forced by
the Ekman pumping at the positions of the attractor on the outer core. The attractor solution
can be built for this attractor since there is no phase shift associated with it. Because the
vertices 𝑃 (𝐸)

2,∞, 𝑃
(𝐸)
3,∞ and 𝑃

(𝐸)
5,∞ of the equatorial attractor are forced, the forcing term 𝛿 (4.4,
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Figure 9: Results corresponding to the 3D libration of the outer core for [ = 0.35 and
𝜔 = 0.8102.

4.15) can be simplified to

𝛿 =

{
𝜓
(𝐸𝑃)
2,∞ − 𝜓

(𝐸𝑃)
3,∞ − 𝜓

(𝐸𝑃)
5,∞ , 2D;

𝜓
(𝐸𝑃)
2,∞ /√𝑟2,∞ − 𝜓

(𝐸𝑃)
3,∞ /√𝑟3,∞ − 𝜓

(𝐸𝑃)
5,∞ /√𝑟5,∞, 3D.

(4.20)

The values of the Ekman pumping at the positions 𝑃 (𝐸)
2,∞, 𝑃

(𝐸)
3,∞ and 𝑃

(𝐸)
5,∞ correspond to

the formulae of the outer core in table 2 of Appendix B. Figure 10 shows the comparison
between the attractor solutions and the numerical solutions for the three forcings at three
Ekman numbers. The amplitudes of the three forcings are rescaled. Good performance of the
attractor solution is observed. As the Ekman number decreases, the agreement between the
two solutions becomes better. The small ripples on the negative side of the similarity variable
at the low Ekman numbers are wave beams from the critical latitude on the unforced inner
core. They are much weaker and the accumulation of them on the attractor remain negligible
compared to the attractor beam. Figure 11 shows the Ekman number scalings of the attractor
beams with a beamwidth and a velocity amplitude in 𝐸1/3 and 𝐸1/6 respectively, as expected.
To summarise,we have seen that the solution close to an attractorwithout phase shift iswell-

described by our asymptotic solution obtained by keeping only the logarithmic singularity
contribution of the inviscid expression of the streamfunction. This has been observed for all
types of forcing, in 2D and in 3D, and for configurations where the attractor is connected to
the critical latitude or not.

5. Conclusion
Using asymptotic analysis and numerical integration, we have studied the linear harmonic
solution obtained in a rotating spherical shell by librating the inner or outer core for very
small Ekman numbers. We have considered a shell aspect ratio and a forcing frequency
such that the ray beams converge towards either a polar attractor touching the vertical axis,
or an equatorial attractor not touching the vertical axis. Both 3D axisymmetric and 2D
configurations with different types of forcing have been considered to analyse the effect of
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Figure 10: Comparison of velocity profiles between the attractor solutions and the
numerical solutions on the cut 𝑆2 of the equatorial attractor excited by the three forcings

imposed on the outer core at three Ekman numbers.

the geometric singularity on the axis (obtained in 3D) and the influence of a phase shift
(present in the polar attractor in 3D and in 2D with a symmetric forcing).
We have focused our interest on the concentrated internal shear layers that appear along

the ray emitted from the critical latitude on the inner core, and close to the attractors.
We have first shown, that, when the forcing is performed on the inner core, the dominant

part of the solution is associated with a critical latitude beam. We have shown that the
characteristics of this beam are obtained by propagating the self-similar solution issued from
the critical latitude on the inner core, as in an unbounded geometry (Le Dizès & Le Bars
2017) or for periodic ray paths (HFRL22). This self-similar solution has a width in 𝐸1/3,
a well-defined velocity amplitude in 𝐸1/12, and a velocity structure corresponding to the
singularity index 𝑚 = 5/4. As it propagates and reflects on boundaries (and possibly on the
axis), its amplitude decreases down to 𝐸1/6 until it reaches one of the two attractors.
We have then observed that the numerical solution departs from the asymptotic critical-

latitude solution when we get close to the attractor, for some of the attractors. We have seen
that the departure was present when the rays do not exhibit a phase shift along the attractor,
that is for the equatorial attractor and for the polar attractor in 2D with an antisymmetric
forcing. We have then constructed a new asymptotic solution to describe the solution close
to such an attractor, using results from O05. The main idea is based on the derivation of
an inviscid functional equation for the streamfunction obtained by propagating the solution
on a complete cycle on the attractor taking into account contraction/expansion as well as
Ekman pumping from the boundaries. The equation that is obtained when there is no phase
shift is the equation obtained by O05. We have solved this equation by keeping only the
logarithmic singular part. When smoothed by viscosity, this singular behavior leads to a
self-similar expression for the velocity with a singularity index 𝑚 = 1 and an amplitude
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Figure 11: Ekman number scalings of the equatorial attractor excited by the three forcings
imposed on the outer core: (𝑎) beam width measured by the distance of the peaks of the

profiles in figure 10; (𝑏) velocity amplitude taken at the critical position.

in 𝐸1/6. Contrarily to the critical-latitude solution, the amplitude of this attractor solution
depends on the Ekman pumping at the locations where the attractor touches the boundaries.
We have shown that it describes correctly the numerical solution close to the attractor for all
the attractors without phase shift.
From an asymptotic point of view, it would now be useful to obtain a solution which

describes both the critical solution and the attractor solution in order to understand how the
index characterising the self-similar solution changes from 𝑚 = 5/4 and 𝑚 = 1.
When the attractor exhibits a phase shift, the analysis of O05 cannot be completely applied.

We have seen that a different functional equation is obtained for the streamfunction which
does not possess any logarithmically singular solution. We suspect that the amplitude of the
solution is weaker in that case which could explain why its contribution is not visible in the
numerical solution close to the attractor. Obtaining an asymptotic expression describing the
solution in that case still constitutes one of the important remaining issues.
Acknowledgements. J. He acknowledges China Scholarship Council for financial support (CSC
202008440260). Centre de Calcul Intensif d’Aix-Marseille is acknowledged for granting access to its
high performance computing resources.
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Appendix A. Verification of the spectral codes
The spectral codes are verified against the open-source spectral-element software NEK5000
(Fischer 1997) (NEK5000 Version 19.0, Argonne National Laboratory, Illinois; available at
https://nek5000.mcs.anl.gov). This code has already been used in the context of inertial wave
propagation (Favier et al. 2014). Linear temporal simulations with the time-harmonic forcing
are implemented by NEK5000. After enough number of periods, the time-harmonic steady
state is reached and the results at different instants are extracted to compare with the real and
the imaginary parts of the spectral results. Since it is almost impossible to reach the very low
Ekman number 10−11 when solving the initial value problem with Nek5000, the comparison
is done at the relative high Ekman number 10−6. The simulations are run for all the three
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Figure 12: Comparison between the direct numerical results given by Nek5000 and the
spectral codes: (𝑎) 3D libration; (𝑏) 2D symmetric forcing; (𝑐) 2D antisymmetric

forcing. The combination of the aspect ratio and forcing frequency is ([, 𝜔) = (0.35,
√
2).

forcings considered in this work. In the 3D configuration, the simulation is run in the upper-
right quarter of an annulus, with the axisymmetric and symmetric boundary conditions set
on the two straight boundaries respectively. In the 2D configuration, the simulations are run
in the upper half of an annulus, with symmetric boundary conditions set on the two straight
boundaries. One of the curved boundaries is subject to the harmonic forcing, while the other
is subject to the no-slip boundary condition. The aspect ratio and the forcing frequency are
chosen to be 0.35 and

√
2 respectively, so that the wave pattern is a simple periodic orbit as

in HFRL22. The comparisons are shown in figure 12. The results of NEK5000 are shown on
the left side, while those of the spectral codes are shown on the right side. They agree with
each other very well.
On the other hand, the convergence of the spectral codes is verified by the spectra of the

spherical harmonic (or Fourier) components and the Chebyshev coefficients, as in Rieutord
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Figure 13: Spectra of the spherical harmonic components (𝑎) and the Chebyshev
coefficients (𝑏) at 𝐸 = 10−11 with the resolution (𝑁, 𝐿) = (2500, 8000). For each 𝑙 or 𝑛,
the maximum value over the other spectral component is taken. The forcing corresponds
to the 3D libration imposed on the inner core. The aspect ratio is [ = 0.35 and the forcing

frequency is 𝜔 = 0.8102.

& Valdettaro (1997). Figure 13 shows the spectra for the 3D libration imposed on the inner
core with the aspect ratio 0.35 and forcing frequency 0.8102 at the lowest Ekman number
10−11. The 2D results are similar and omitted.

Appendix B. Ekman pumping
The viscous forcing generates an Ekman layer adjacent to the boundary. The Ekman pumping
plays a role in the generation of wave beams in the bulk. In order to derive the formula of it,
it is convenient to use the streamfunction expression in the spherical or polar coordinates.

B.1. 3D configuration
Wefirst consider the libration imposed on the inner core. In the spherical coordinates (𝜌, \, 𝜙),
the streamfunction 𝜓 and the associated variable 𝜒 are defined as

𝑣𝜌 =
1

𝜌2 sin \
𝜕𝜓

𝜕\
, 𝑣 \ = − 1

𝜌 sin \
𝜕𝜓

𝜕𝜌
, 𝑣𝜙 =

𝜒

𝜌 sin \
. (B 1)

The governing equations (2.3) is recast to

− i𝜔𝐷2𝜓 + 2(cos \ 𝜕𝜒
𝜕𝜌

− sin \
𝜌

𝜕𝜒

𝜕\
) − 𝐸𝐷4𝜓 = 0, (B 2a)

−i𝜔𝜒 − 2(cos \ 𝜕𝜓
𝜕𝜌

− sin \
𝜌

𝜕𝜓

𝜕\
) − 𝐸𝐷2𝜒 = 0, (B 2b)

with the operator

𝐷2 =
𝜕2

𝜕𝜌2
− 1

𝜌2 tan \
𝜕

𝜕\
+ 1
𝜌2

𝜕2

𝜕\2
, (B 3)
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and the boundary conditions

𝜓 = 𝜕𝜓/𝜕𝜌 = 0, 𝜒 = [2 sin2 \ at 𝜌 = [, (B 4a)

𝜓 = 𝜕𝜓/𝜕𝜌 = 𝜒 = 0 at 𝜌 = 1. (B 4b)

The length scale of the Ekman layer is
√
𝐸 . The radial distance to the centre is rescaled as

�̂� = (𝜌 − [)/
√
𝐸. (B 5)

The streamfunction 𝜓 and the associated 𝜒 are expanded as to the leading order

𝜓 =
√
𝐸�̂� (1) ( �̂�, \), 𝜒 = �̂� (0) ( �̂�, \). (B 6)

In the leading order, the governing equations (B 2) become

− i𝜔𝜕2�̂� (1)

𝜕�̂�2
+ 2 cos \ 𝜕 �̂�

(0)

𝜕�̂�
− 𝜕4�̂� (1)

𝜕�̂�4
= 0, (B 7a)

−i𝜔�̂� (0) − 2 cos \ 𝜕�̂�
(1)

𝜕�̂�
− 𝜕2 �̂� (0)

𝜕�̂�2
= 0, (B 7b)

with the boundary conditions

𝜓 = 𝜕𝜓/𝜕𝜌 = 0, 𝜒 = [2 sin2 \, as �̂� = 0, (B 8a)

𝜕𝜓/𝜕𝜌 → 0, 𝜒 → 0, as �̂� → ∞. (B 8b)

The solution of the streamfunction is obtained as

𝜓 =
√
𝐸 i

[2 sin2 \
2

(
−𝑒−_+�̂�

_+
+ 1
_+

+ 𝑒−_−�̂�

_−
− 1
_−

)
, (B 9)

with _± defined as
_+ = (1 − 𝑖)

√︁
𝜔/2 + cos \ (B 10)

and

_− =

{
(1 − 𝑖)

√︁
𝜔/2 − cos \, 𝜔/2 > cos \,

(1 + 𝑖)
√︁
cos \ − 𝜔/2, 𝜔/2 < cos \.

(B 11)

When �̂� goes to +∞, the Ekman pumping is obtained as

𝜓 (𝐸𝑃) =
i[2 sin2 \
2

(
1
_+

− 1
_−

) √
𝐸. (B 12)

The Ekman pumping blows up at the critical co-latitude \𝑐 = arccos𝜔/2.
When the libration is imposed on the outer core, the boundary conditions become different

and the corresponding Ekman pumping can be obtained similarly, which is

𝜓 (𝐸𝑃) =
−i sin2 \
2

(
1
_+

− 1
_−

) √
𝐸. (B 13)

B.2. 2D configuration
In the 2D configuration, the governing equations (2.22) of the streamfunction and the
associated variable 𝜒 in the polar coordinates are solved asymptotically using the same
scaling 𝐸1/2 as in the 3D configuration. The expressions of the Ekman pumping generated by
different forcings are given in table 2. Note that 𝜗 in the 2D configuration has been replaced
by 𝜋/2 − \ in order to keep the similar expressions as in the 3D counterpart.
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3D libration 2D symmetric forcing 2D antisymmetric forcing

inner core i[2 sin2 \
2

(
1
_+

− 1
_−

) √
𝐸 i

2

(
1
_+

− 1
_−

) √
𝐸

i[ sin \
2

(
1
_+

− 1
_−

) √
𝐸

outer core −i sin2 \
2

(
1
_+

− 1
_−

) √
𝐸 −i

2

(
1
_+

− 1
_−

) √
𝐸 −i sin \

2

(
1
_+

− 1
_−

) √
𝐸

Table 2: Expressions of Ekman pumping 𝜓 (𝐸𝑃) generated by different forcings.

Note that, the Ekman pumping is 𝑂 (𝐸1/2), except at the critical latitude where the Ekman
pumping blows up.
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