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CORE OVERSHOOTING UNDER THE LIGHT
OF FLUID DYNAMICS

M. Rieutord1

Abstract. We discuss the possible contraints that are brought about
by a fluid mechanical analysis of the overshooting phenomenon at the
interface of convective cores and radiative envelopes of early-type stars.
We investigate an improvement of Roxburgh’s criterion by taking into
account the viscous dissipation but show that this criterion remains
not stringent enough to be predictive. We then discuss the thickness of
the overshooting layer and show that all estimates, including the one
of Zahn (1991), lead to a very thin mixing layer typically less than a
percent of the pressure scale height.

1 Introduction

Overshooting and penetrative convection are describing the extension of stellar
convective regions beyond the limits predicted by the Schwarzschild criterion. We
recall that this criterion says that the fluid is convectively unstable as soon as
the actual temperature gradient exceeds (in absolute value) the adiabatic gradi-
ent. Along a similar line, the mixing-length approach of stellar convection assumes
that potential energy is locally transformed into kinetic energy. According to this
simple model, convection ceases as soon as the driving ceases. Hence, convective
flows should not go beyond the boundaries given by the Schwarzschild criterion.
This property of the mixing-length theory is of course a shortcoming of the model
since inertia of the fluid let the flows go beyond the driving region. Previous work
work (e.g. Browning et al. 2004, and references therein) have defined penetra-
tive convection as the extent of convective region where the temperature gradient
remains adiabatic, while the overshoot layer is the place mixed by flows triggered
by a neighbouring convective flow. This layer is beyond the region of penetrative
convection and endowed with a stable temperature gradient.
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Penetrative convection and overshooting have a different impact on stars. In
addition to extending the mixed fluid beyond the Schwarzschild boundary, pene-
trative convection slightly modifies the stellar structure by extending the quasi-
constant entropy regions of the star. Overshooting is thought as a mixing process
not efficient enough to impose an adiabatic temperature gradient, but which
impacts a larger region, beyond the convective penetration. To simplify the word-
ing, we shall call hereafter the extension of the flows beyond the Schwarzschild
limit simply as overshooting, and make the distinction with penetrative convec-
tion when necessary.

From the point of view of stellar evolution, overshooting of convective cores
is crucial. Through the induced mixing, it makes a larger amount of material
available to nuclear reactions, which are active near the centre of the star. The
immediate consequence is that the main sequence of stars owning a convective core
(the so-called early-type stars) last longer than the duration predicted by models
not including overshoot. Although this effect was first thought to be negligible
(Saslaw & Schwarzschild 1965), detailed observations have accumulated evidences
in favour of an effective presence of core overshooting. Mixing material beyond the
Schwarzschild boundary of a convective core is necessary to explain the isochrone
of stellar clusters, the common birth of eclipsing binaries or the spectrum of eigen-
modes in SPB stars (Moravveji et al. 2015).

While the Schwarzschild boundary is easy to predict, the right way of find-
ing the extension of the overshooting region is still an open question. Basi-
cally two recipes are currently used in 1D stellar models: (i) the core is plainly
extended by some fraction of the local pressure scale height (typically 20%), or
(ii) the neighbouring radiative layer is endowed with a turbulent diffusion that
decays exponentially with the distance to the core boundary. This latter recipe
was originally proposed by Freytag et al. (1996) after the first hydrodynamical
investigation of overshooting. These recipes help interpret the data but have no
predictive power. We still cannot predict how overshooting varies, with the mass,
the age or the metallicity of stars.

A possible way of investigating the properties of overshooting layers is the use
of direct numerical simulations. Such 3D simulations are not very common. After
the pioneering work of Freytag et al. (1996) in two-dimensions, 3D simulations
of convective overshoot in a belowing layer was undertaken by Brummell et al.
(2002) who did not observe any penetration but just overshoot. Then, Brown-
ing et al. (2004) investigated core overshooting of an A-star with 3D simulations
in spherical geometry. They noted the difficulty of precisely defining the size of
the overshooting layer. More recently, Gilet et al. (2013) also considered over-
shooting through 3D simulations of core convection. In this work the authors
show that mixing between the stable radiative envelope and the convective core
occurs through turbulent entrainment thus underlining the importance of shear
instabilities at this interface.

In the following we shall first review the approach of Roxburgh (1989) and
propose an improvement to this analysis that include viscous dissipation (Sect. 2).
We then present three phenomenological analysis of the dynamics in the layer and
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show that all lead to a very thin mixing layer (Sect. 3). Some perspectives end
the paper.

2 Reviewing the theory

2.1 No theory: Prescriptions

In most evolution codes, core overshooting is taken into account via one of the
two following prescriptions. The first one is the so-called “step overshooting”
(Moravveji et al. 2015) where the size of the core is just extended, via a step
function, by some fraction of the pressure scale height, namely δr = βHp. This
extension of the core enlarges the adiabatic part of the star (since convective cores
are almost isentropic).
The second prescription is the so-called “exponential overshooting” where mix-

ing beyond the Schwarzschild boundary of the core is assumed to be due to some
turbulent diffusion, modelled by a turbulent diffusivity of the form:

Dov(z) = Dc exp

(
− 2z

fovHp

)
(2.1)

where Dc is a diffusion coefficient and z = r − Rcore. For stars with 3.13M� ≤
M ≤ 3.25M� and Z ∈ [0.014, 0.028], Moravveji et al. (2015) found that seismic
data are well fitted with fov ∼ 0.0175 and 1.75 ≤ logDc ≤ 2 with Dc in cm2/s.
These authors find that the exponential overshooting gives better results than step
overshooting.

2.2 Roxburgh criterion

Let us now briefly present the first criterion that has been proposed given some
general properties of fluid flows in the overshooting layer, namely Roxburgh cri-
terion (Roxburgh 1989). The idea is to start from the entropy equation of fluid
mechanics, namely

ρT
Ds

Dt
= div(χ�∇T ) +D + ρε (2.2)

χ is the heat conductivity and ε the energy production per unit mass. After some
manipulation of this equation and integration over a volume (V) limited by a
surface (S) that includes the core, we get

∫
(S)

〈ρs�v〉 · d�S =
∫
(V )

〈
div(χ�∇T ) +D + ρε

T

〉
dV (2.3)

where we considered a statistically steady state of the fluid flows and where 〈·〉
indicates an ensemble average.
We now consider a non-rotating non-magnetic star, spherically symmetric in

its steady state. We introduce �Fr and �Fn, respectively the radiative flux insured
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by the diffusion of photons, and the flux produced by the nuclear reactions. They
are such that �Fr = −χ�∇T and div �Fn = ρε. Because of spherical symmetry we
can express the total and radiative luminosities as L(r) = 4πr2 �Fn ·�er and Lr(r) =
4πr2 �Fr · �er. In the core the difference, Lc = L− Lr, is the convective luminosity.
Taking the bounding surface (S) as a sphere of radius r0 where temperature is T0
and located well outside the energy production region, (2.3) may be written:

T0

L∗

∫ r0
0

〈Lc(T−1)′〉dr = L∗ − Lr − 4πr
2
0T0〈ρsvr〉

L∗
+
T0

L∗

∫
(V )

〈D
T

〉
dV (2.4)

where L∗ is the luminosity of the star.
Beyond the core and beyond the overshooting flows the radiative luminosity

just equals the total luminosity of the star, while the radial entropy flux is pre-
sumably negligible. If we further neglect the second order correlations, then we
may further simplify (2.4) into the following final form:∫ r0

0

〈Lc〉(〈T 〉−1)′dr =
∫
(V )

〈D〉
〈T 〉 4πr

2dr · (2.5)

2.3 Discussion of Roxburgh’s criterion

The transformation of (2.5) into a criterion on core overshooting is obtained after
two further assumptions. First we need to specifiy the value of the temperature
gradient in the overshooting region. We know that this gradient is subadiabatic
but if the mixing is vigorous enough it can be assumed adiabatic. Let us adopt
this limiting case. The second assumption is to neglect, altogether the RHS of
(2.5). With this last assumption, every term is known and r0 need to be searched
as the first zero of the non-dimensional function

F (r) =
T0

L∗

∫ r
0

〈Lc〉(〈T 〉−1)′dx . (2.6)

As an illustration we show in Figure 1 a plot of the function F (r) for a 3.25M�
CESAM model of the star KIC10526294. In this case the predicted extension of
the core with Roxburgh criterion is 71% of the local pressure scale height. Other
values computed for different masses are shown in Table 1. There we see that the
overshooting distance computed with this model is much larger than the expected
values derived from comparison to observations (0.2Hp). This is a well-known
result (Maeder 2009).

2.4 Estimates of the viscous dissipation

Roxburgh (1989) insisted on the fact that the value of r0 defined as the first zero
of F (r), is just an upper bound of the actual outer radius of the overshoot layer.
Obviously this upper limit is not stringent. In view of the list of approximations
that have been made to derive (2.6), we may wonder if taking into account the
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Fig. 1. Solid line: F (r)-function (2.6) for the 3.25M� model (see Table 1). The vertical
dotted line marks the position of the Schwarzschild limit, and the solid vertical line marks

the limit of the overshooting region according to Roxburgh criterion. Effect of dissipation

D1 (dotted) and D2 (dashed) models are also shown. The thick segment shows a 0.2Hp
overshoot.

Fig. 2. Meridional flow of the convection cell that appears at the threshold of instability

in a sphere when the fluid is heated by a uniform distribution of heat sources.

viscous dissipation gives a more stringent criterion. The new function to consider
is

F (r) =
T0

L∗

∫ r
0

〈Lc〉(〈T 〉−1)′dx− T0
L∗

∫ r
0

〈D〉
〈T 〉 4πr

2dr. (2.7)

We note that since the viscous dissipation is strictly positive, its effect is indeed
to reduce the value of r0 and to give a more stringent criterion.

There are various ways of estimating the power dissipated by viscosity in a
turbulent flow. Let us now discuss some possibilities.
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Table 1. Overshooting distance according to Roxburgh’s criterion without viscous

dissipation for a few stellar models.

Mass Code Age (Myrs) rSchw dinviscRox /Hp
1.5 MESA 0 0.093 0.26
3 MESA 0 0.138 0.53
3 CESAM 0 0.151 0.58
5 MESA 0 0.171 0.67
5 CESAM 0 0.174 0.62
3.25 CESAM 60 0.143 0.71

2.4.1 A mixing-length argument

In homogeneous, statistically steady turbulence of an incompressible fluid, we know
(Davidson 2004) that turbulent dissipation, 〈ε〉 in Kolmogorov theory, is related
to the most energetic scale, the integral scale �0, by

〈D〉 = ρ〈ε〉 = ρCε v
3

�0
(2.8)

where v is the rms velocity of the most energetic eddies. Cε is an a priori universal
constant of homogeneous isotropic turbulence whose value is around 0.5 (Vassilicos
2015).
In the mixing-length approach of stellar convection we may identify v with the

largest value of the mixing-length velocities and �0 with the mixing length itself.
We recall that in the mixing length scenario, a fluid parcel reaches a velocity v
after the work of the buoyancy over a distance equal to the mixing length.

The difficulty is here to evaluate the ratio v3/�0. If �0 is the mixing-length, in
the regime of efficient convection1 (high Péclet number), this ratio is independent
of the mixing-length; actually

v3

�0
= (∇r −∇ad)g

2ρκδ

4P
(2.9)

However, this ratio is still plagued by the limitations of the MLT. It is local and
zero where the driving is zero. For instance at the centre of the core, it predicts
zero viscous dissipation (gravity vanishes there), which is certainly not the case.
We shall therefore set the velocity v to the maximum velocity given by the

mixing-length model, which we expect to be the typical velocity of the most
energetic structures (those where the buoyancy has worked the most!). As for
the integral scale �0, we’ll set it to the radius of the core which is the largest
possible length for an eddy.

1 In convective cores, the mixing-length parameter U is very small, typically ∼ 10−10, signing
for a very effective convection regime.
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We recall that small amplitude convection in a full sphere, driven by internal
heating, leads to an � = 1 (in the spherical harmonic expansion) cell that has
maximum velocity at the centre of the sphere (see Fig. 2). Even if core convection
is expected to be highly turbulent, it is plausible that the most energetic structures
have a size comparable to that of the core and that much energy is borne by the
� = 1 “mode”, as actually suggested by the simulations of Gilet et al. (2013) and
their Figure 5a.

Thus we tested two expressions for the dissipation. The first is simply to say
that

〈D〉 = D1 = ρCε v
3
max

rcore
(2.10)

while the second takes the maximum value of the MLT prediction (2.9) for v3/�0,
so

〈D〉 = D2 = ρCε max
over the core

(
(∇r −∇ad)g

2ρκδ

4P

)
(2.11)

We tested the Roxburgh criterion including viscous dissipation with the two
foregoing dissipation models, using the recently analysed, slowly rotating SPB star
KIC10526294 of Moravveji et al. (2015).

Figure 1 shows where the function F (r) of (2.7) first vanishes beyond the core
radius as given by the Schwarzschild criterion. Without any dissipation, Roxburgh
criterion gives an overshoot layer that extends over 0.715Hp. When dissipation
model D1 is included this thickness is reduced to 0.47Hp. When the second model
D2 is used, the layer is slightly thicker at 0.54Hp. The foregoing calculation
shows that accounting of viscous dissipation makes Roxburgh’s criterion slightly
more stringent, although viscous dissipation is not precisely known. The ensuing
question is: can we do better?

2.4.2 Use of laboratory experiments

Another possibility for evaluating viscous dissipation is to use the results of labora-
tory experiments. These experiments are usually in the Boussinesq regime where
variations of density between top and bottom are of small amount. Nevertheless,
if the core is not too big, this might be an acceptable solution. For instance, in
a 1.5M� star, MESA gives a ratio ρs/ρc ∼ 1.3 between the surface and central
density of the core. This is not very large and Boussinesq approximation may be
used as a first step.

Using this approximation, it may be shown that local dissipation in the bulk
of the flow is given by

D = ρ ν
3

H4
(Nu− 1)Ra/P2 (2.12)
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Nu is the Nusselt number, Ra Rayleigh number and P the Prandtl number (Chillà
& Schumacher 2012). H refers to the height separating the cooled and heated
plates and ν is the kinematic viscosity.
From the foregoing expression we see that an evaluation of the Rayleigh number

and of the height of the box are needed.
As far as the Rayleigh number is concerned, we shall follow Jones et al. (2009),

who give the following definition for the Rayleigh number

Ra =
GMd∆s

νκcp

where ∆s is the entropy drop across the spherical shell of thickness d, which
remains to be specified. The entropy gradient is

∂s

∂r
=
cpN

2

gδ
with δ = −

(
∂ ln ρ

∂ lnT

)
P

.

We assume ∆s = d
cpN

2

gδ
and hence

Ra =
r2d2N2

νκδ
(2.13)

and we deduce

D = ρκN2 r
2d2

H4
Nu (2.14)

using Nu � 1. H is the height of the experimental box. d is the distance over
which the unstable entropy gradient works. We thus choose H = d = r so that

D = ρκN2Nu (2.15)

At this stage we may evaluate the Rayleigh number from (2.13) with d = r. It
turns out that the maximum value reached over the convective core is ∼ 1020.
We note that experiments of Chillà & Schumacher (2012) have reached Rayleigh
numbers of order Ra ∼ 1017, which is not so far for the astrophysical value. With
such experiments, Chillà & Schumacher (2012) have obtained scaling laws for the

heat flux as represented by the Nusselt number, namely Nu � 0.05Ra1/3. Other
experiments like the one of Niemela et al. (2000) find a similar scaling law namely
Nu � 0.124Ra0.309. Unfortunately, in these experiments, convection is forced by
the boundary layers. Hence, the Nusselt tend to scale like Ra1/3 (e.g. Rieutord
Rieutord 2015).
If the forcing is in the bulk, as it is by the nuclear heat sources in the core,

Kraichnan (1962) and Spiegel (1971) have shown that we should expect Nu =
Nu0(RaP)1/2 also called the ultimate regime of convection, since in this case even
the boundary layers are turbulent. In such a case, the Nusselt number is inde-
pendent of ν and κ and we actually retrieve the assumption used before, namely
D ∼ v3/�0. Unfortunately, no laboratory experiment has reached this regime.
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Lohse & Toschi (2003) have studied the ultimate regime numerically, but with
Ra ∈ [106, 107]. They find Nu0 � 4 × 10−3. Since in the core Ra ∼ 1020 and
P ∼ 2 × 10−6, Nu ∼ 5.7 × 104, which we can combine with (2.15) where we take
the maximum value of N2 over the core in order to avoid the vanishing of the
dissipation at the centre. Summarizing we can take

D ∼ 5.7× 104ρκN3max
Such an estimate leads to a dissipation power that is about ten times less than
the previous estimates. However, it is likely that the law of Lohse & Toschi (2003)
is quite approximate with a too little range in Rayleigh number. Very recent
experimental work on the ultimate regime by He et al. (2016) is also inconclusive
because the explored range in Ra and P is too small.

2.4.3 Discussion

Roxburgh criterion combined with an estimate of the viscous dissipation inside the
convective core was expected to give a more realistic constraint on the extension
of the overshoot region in the radiative envelope of the star. The expected extent
has been reduced but not to a value such that it can be used to make predictions
with the models. The main result of the foregoing investigation is that viscous
dissipation is not enough. Other terms need to be considered. These are the
turbulent correlations and most probably their spatial variations within the over-
shoot layer.

3 Approaching the local dynamics of the overshooting layer

3.1 Zahn’s approach

Let us now consider the approach of Zahn (1991) to the overshooting core. We
still assume a spherical symmetry of the problem. In the core we have

L

4πr2
= Fc − χdTa

dr
(3.1)

if we assume the temperature gradient to be quasi-adiabatic. If we now assume
that this is also true in the overshooting layer then we may write at first order
that

Fc(r) = F
′(rc)(r − rc) (3.2)

where rc is the core radius according to Schwarzschild’s criterion. This equation
just says that at the core radius the luminosity is wholly carried by radiative
diffusion over the adiabatic gradient. It also says that beyond the Schwarzschild
core radius, the convective flux has to be negative because the conductivity is high



162 Astro Fluid 2016

and the adiabatic gradient carries too much heat. Then, following Zahn (1991),
we write Fc = fρcpVrT

′ and

c

2

dV 2r
dr
=
T ′

T
gδ (3.3)

where f and c are O(1) dimensionless coefficients and T ′ is the amplitude of the
temperature fluctuations. (3.3) is integrated replacing T ′ by its expression with
respect to the convective flux, itself given by (3.2). Integrating from the core radius
rc (given by Schwarzschild) to the limit of the overshooting region we obtain:

ro − rc = (cf)1/2V 3/2o
√

2ρcpT

3g|F ′(rc)|δ (3.4)

where Vo is the initial vertical velocity at rc, in other words this is the velocity
with which the fluid elements are launched into the stably stratified region. cp, T
and ρ are also taken at this place. The absolute value is needed because F ′(rc) < 0
since the convective flux is decreasing outwards. In (3.4), all quantities are well
defined except Vo and the product cf .
To evaluate Vo we may proceed as follows. If the general mean flow is given

by the cell shown in Figure 2, the vertical velocity at the boundary is given by
turbulent entrainment, so that we can write Vo ∼ αVh. The entrainment constant
α is of order 0.1 (Rieutord & Zahn 1995). We then remark that in such a cell the
ratio between the central velocity and the surface velocity is ∼ 0.45. The central
velocity is however the maximum velocity in the convective cell. We shall identify
this velocity with the maximum velocity that is given by the MLT in the core,
on the argument that MLT gives the right order of magnitude for the flows. We
therefore take Vo ∼ 0.045V maxMLT. With this evaluation and setting cf = 1, we find
that |ro − rc| ∼ 0.005Hp, leading to a very thing mixing layer.

3.2 A layer at Richardson marginal stability

We first explore another scenario that assumes the following hypotheses: (i) The
core mean flow has the shape given by Figure 2, (ii) the interface is made unstable
by the local shear, (iii) instabilities create a mixing layer of thickness δ and the
layer is at marginal stability according to Richardson criterion.
Since entropy is minimum at the interface and since the Brunt-Väisälä fre-

quency squared is proportional to the entropy gradient, at first order we have
N2 = (N2)′δ, where (N2)′ is the derivative of N2 taken at the Schwarzschild
radius. The shear U ′ is obviously of order Vs/δ, where Vs is the surface velocity
of the cell. Marginal stability of Richardson criterion imposes that U ′2 ∼ 4N2.
Combining the foregoing relations gives the expression of the thickness of the shear
layer, namely

δ3 =
V 2s
4(N2)′

(3.5)
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Taking for Vs = 0.45Vmlt we find that δ ∼ 0.002Hp for our stellar model of 3.25M�.
This is again rather thin.

3.3 A possible extension of the mixing layer

However, within the shear layer small vortices are not sensitive to stratification if
their scale is less than

� =

√
κ

N
∼ 3 km (3.6)

At this scale the velocity of the vortices should be related to that of the big vortices
by

v� = (�/L)
1/3
VL (3.7)

according to the Kolmogorov cascade, L being the scale of the large vortices (the
integral scale). Small vortices can change the entropy profile as long as their Pclet
number is larger than unity, namely

v��/3 > κ . (3.8)

We look for the scale of the large vortices that is such that associated small vortices
make a turbulent diffusion that overtakes heat diffusion. (3.7) and (3.8) yield

�VL (�/L)
1/3
> 3κ (3.9)

which immediately shows that the scale of the large vortices is bounded if their
velocity is bounded. Indeed, if they are too large the velocity they generate at the
fixed scale (3.6), is too small and the ensuing turbulent diffusion cannot beat the
heat diffusion of the fluid. Still noting that the Brunt-Väisälä frequency squared
grows linearly with the scale, namely N2 = (N2)′L, we find that

L = (VL/3)
3/2
[
(N2)′κ

]−1/2
(3.10)

Taking VL = 0.045V
max
MLT, we find L ∼ 0.001Hp for our stellar model. So the order

of magnitude of the thickness of the mixing layer is not changed by this additional
phenomenon.

4 Conclusions

In this first study of the overshooting penetrative convection phenomenon we first
assess the approach of Roxburgh (1989). We confirm what was already known,
namely that Roxburgh criterion is a loose upper limit for the thickness of the
overshooting layer. We tried to make this criterion more stringent by including the
effects of viscous dissipation. We find that this implies a reduction of the thickness
of the layer of 35% for the stellar model that we considered. So the criterion
is more stringent but the evaluation of the viscous dissipation is difficult and
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therefore is an additional source of uncertainties. This investigation nevertheless
underlines the importance of the global shape of the mean flow, which is not
given by the mixing-length approach. We then focused on the dynamics of the
overshooting layer, assuming that the convective flow in the core is in the first place
looking like an � = 1-cell. Evidence for the probable existence of such a mean flow
comes from both laboratory (e.g. Tsuji et al. 2005) and numerical (Gilet et al.
2013) experiments. Assuming such a shape implies that the overshooting layer
is mixed by shear instabilities rather than by the direct impingement of buoyant
plumes. This leads to a very thin layer, at maximum a percent of the pressure
scale height, that is totally mixed. Thus, the layer of penetrative convection is
very thin according to this model. This means that the hydrostatic structure of
the star is certainly not changed by this layer. This also means that the detection
of such a layer by asteroseismology will be difficult.
The importance of core overshooting is however in the implied mixing between

core and envelope. The next step is therefore an ab initio evaluation of the mixing
rate at such an interface. We see three mechanism that are potentially contributing
to this mixing: a large-scale flow in the radiative zone driven by the large-scale
flow inside the core, turbulent diffusion by small eddies at the interface and last
but not least, gravity or gravito-inertial waves excited by the interface. All these
mechanisms require a detailed study to evaluate their relative importance and in
fine their dependence with the global parameters of the star.

I am very grateful to Stéphane, Sacha, Corinne and Bérengère for the organization of
this meeting, which reminded me the many enlightening and joyful discussions I had with
Jean-Paul who had the secret of making science with pleasure.
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