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ABSTRACT

The understanding of the rotational evolution of early-type stars is deeply related to that of anisotropic mass and angular momentum
loss. In this paper, we aim to clarify the rotational evolution of rapidly rotating early-type stars along the main sequence (MS). We
have used the 2D ESTER code to compute and evolve isolated rapidly rotating early-type stellar models along the MS, with and
without anisotropic mass loss. We show that stars with Z = 0.02 and masses between 5 and 7 M� reach criticality during the main
sequence provided their initial angular velocity is larger than 50% of the Keplerian one. More massive stars are subject to radiation-
driven winds and to an associated loss of mass and angular momentum. We find that this angular momentum extraction from the outer
layers can prevent massive stars from reaching critical rotation and greatly reduce the degree of criticality at the end of the MS. Our
model includes the so-called bi-stability jump of the Ṁ − Teff relation of 1D-models. This discontinuity now shows up in the latitude
variations of the mass-flux surface density, endowing rotating massive stars with either a single-wind regime (no discontinuity) or
a two-wind regime (a discontinuity). In the two-wind regime, mass loss and angular momentum loss are strongly increased at low
latitudes inducing a faster slow-down of the rotation. However, predicting the rotational fate of a massive star is difficult, mainly
because of the non-linearity of the phenomena involved and their strong dependence on uncertain prescriptions. Moreover, the very
existence of the bi-stability jump in mass-loss rate remains to be substantiated by observations.
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1. Introduction

The evolution of the rotation rate of stars is one of the open chal-
lenges of current stellar physics. The rotation rate of a star indeed
depends on several un-mastered magneto-hydrodynamic mech-
anisms. The most important ones may be those that transport
and/or extract angular momentum within the stellar interior and
at the surface of the star, and in the first place the losses due
to radiation-driven winds, possibly modified by the presence of
a magnetic field. Angular momentum losses depend on various
phenomena but in particular on the mass loss distribution at the
surface of the star. It is clear that a strong mass loss at the equa-
tor of the star is more efficient at extracting angular momentum
than a strong mass loss at the pole. Moreover, the shape of a fast
rotating star strongly deviates from the spherical symmetry and
its spheroidal shape emphasises the anisotropy of the wind.

Until now, stellar evolution codes cope with this question
using more or less sophisticated recipes. Often, the spherical
symmetry of the models is coupled to a very simplified mod-
elling of mass and angular momentum loss where the star is
pealed off at a given rate (e.g. Woosley et al. 1993; Ekström et al.
2012). This rate may depend on some general parameters of the
star (luminosity, effective temperature, etc.).

In the present work we make a step forward in the mod-
elling of the rotational evolution of stars by using the 2D ESTER
models that have been designed by Espinosa Lara & Rieutord
(2013) and Rieutord et al. (2016). These models describe the 2D

steady structure of a rapidly rotating star. They can also be used
to investigate the rotational evolution of early-type stars along
the main sequence, using a simple method that we implement
here to compute the change in the hydrogen mass fraction in the
convective core of the model, and which provides an acceptable
description of the main sequence evolution. With these state-of-
the-art 2D models we have now access to the latitude variations
of surface quantities that matter for mass loss, namely effective
gravity and effective temperature, as the star evolves. We can
thus investigate in some details the consequences of the ensuing
anisotropic radiation-driven winds and in particular the effects
of a mass-flux jump at some effective temperature, as has been
suggested by Vink et al. (2001).

In a preliminary study, Gagnier et al. (2019, hereafter
referred to as Paper I) have revisited the concept of crit-
ical angular velocity for stars with strong surface radiative
acceleration. In this study, we first used the ω-model of
Espinosa Lara & Rieutord (2011) to derive an analytical expres-
sion for the critical angular velocity. Briefly, the ω-model
assumes that radiative flux and effective gravity are anti-parallel
and that the stellar mass is centrally condensed. We show that
up to 90% of the critical angular velocity, the ω-model flux does
not diverge more than 10% from the flux given by a full 2D-
model. Our new expression of the critical angular velocity differs
from that of Maeder & Meynet (2000) pioneer work, and turns
out to be very close to the Keplerian angular velocity for all MS
evolutionary stages, at least for stellar models of mass less that
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40 M�. We explain this small difference by the combined effects
of gravity darkening and reduced equatorial opacity caused by
the centrifugal force, and conclude that the standard Keplerian
angular velocity remains a very good approximation for criti-
cal angular velocity. Gagnier et al. (2019) also designed a local
mass-flux (ṁ) and angular momentum flux prescription based on
the modified CAK theory (Pauldrach et al. 1986) and calibrated
with Vink et al. (2001) 1D models. The discontinuity included in
our ṁ − Teff relation (the so-called bi-stability jump) makes the
mass-flux of rapidly rotating star controlled by either a single-
wind or a two-wind regime (respectively SWR and TWR). In
the SWR, we find a maximum mass-flux at the poles, while in
the TWR both mass and angular momentum losses are strongly
enhanced in equatorial regions. This 2D mass loss prescription
now opens the door to the present study of the main-sequence
evolution of rotation in rapidly rotating early-type stars.

This paper is organised as follows. In Sect. 2 we present the
ESTER code and describe the nuclear time evolution framework.
In Sect. 3 we concentrate on the rotational evolution of early-
type stars assuming that mass and angular momentum losses are
negligible, which is certainly valid for intermediate-mass stars
up to ∼7 M� at metallicity close to solar. In Sect. 4 we consider
evolution with mass loss and the associated angular momentum
loss, which is appropriate for more massive star evolution. Con-
clusions follow in Sect. 5.

2. The ESTER code

The ESTER code self-consistently computes the steady state of
an isolated rotating star. The models include the 2D axisymmet-
ric structure and the large-scale flows (differential rotation and
meridional circulation) driven by the baroclinicity of radiative
regions. A short description of the ESTER models can be found
in Paper I and more details in Espinosa Lara & Rieutord (2013)
and Rieutord et al. (2016).

2.1. A simplified scheme for temporal evolution on the main
sequence

As far as time evolution is concerned, we shall concentrate in this
study on the main sequence and assume that the star remains in a
quasi-steady state. We thus assume that the drivers of evolution
are weak enough that all adjustments to the steady state occur on
timescales that are much shorter than the ones imposed by the
drivers, namely nuclear burning and mass loss.

Since we consider only early-type stars, nuclear reactions
are located in the convective core, which is fully mixed. Focus-
ing on the evolution of rotation, we do not need a detailed
network of nuclear reactions and simplify the evolution of the
mass fraction of hydrogen X by considering its relation to the
nuclear energy production ε∗. Heat being essentially produced
by the transformation of protons into 4He nuclei, we assume that,
locally,

∂X
∂t

+ u · ∇X = −
4mpε∗

Q
, (1)

where mp is the proton mass,

Q = (4mp − mHe)c2 ' 4.3 × 10−12 J, (2)

is the energy released by the fusion of the four protons, and ε∗ =
εpp + εCNO is the nuclear energy production per unit mass from
both pp-chain and CNO cycle.

In order to get an expression for dXcore/dt, we need to calcu-
late the rate of change of the mass of hydrogen in the convective
core. As shown in Appendix A, we have

dXcore

dt
= −

4mpε∗

Q
, (3)

where ε∗ is the mass average of ε∗, namely

ε∗ =

∫
ε∗dM

Mcore
=

∫ π

0

∫ ηcore

0 ε∗ρrζr2 sin θdζdθ∫ π

0

∫ ηcore

0 ρrζr2 sin θdζdθ
=

Lcore

Mcore
· (4)

Lcore and Mcore are respectively the luminosity and the mass
of the convective core. ηcore is the core fractional radius, (ζ, θ) are
the spheroidal coordinates used to describe the star (its surface
is at ζ = 1) and rζ = ∂r/∂ζ comes from the Jacobian associated
with spheroidal coordinates (e.g. Rieutord et al. 2016). Finally,
the discretised time evolution of Xcore is given by

Xcore
n = Xcore

n−1 − ∆t
4mp

Q
ε∗, (5)

where n refers to the time-step of the computations. We now have
a “clock” in the code allowing us to monitor the evolution of
Xcore with time. In addition, we simplify the radial profile of the
mean molecular weight at the outer boundary of the convective
core by imposing a step-function.

To check that our simplifications provide an acceptable evo-
lution (especially in terms of lifetime on the MS), we com-
pare the time variation of the core hydrogen mass fraction of
the simplified ESTER set-up with the more realistic modelling
used in the stellar evolution Geneva code. Figure 1 shows the
evolution of Xcore/X0 at Z = 0.02 with initial chemical mix-
ture of Grevesse & Noels (1993), as a function of time for a
non-rotating 5 M� star computed with both the ESTER and the
Geneva code (Ekström, priv. comm.), where X0 is the initial
hydrogen mass fraction on the zero age main sequence (ZAMS).
The models are computed without convective overshoot (this is
true for all models in the paper), and without mass loss. The
result is that the time at which Xcore vanishes, is slightly over-
estimated by the ESTER code. The difference is typically 20%.
We accept such a difference since it is not our purpose to give
quantitative predictions, but to rather exhibit the main qualita-
tive features of fast rotation evolution in early-type stars. In the
rest of the paper, we use Xcore/X0 as a proxy of time evolution
on the MS.

2.2. The quasi-steady state approximation

As mentioned above, the star can be considered in quasi-steady
state if its relevant timescales are shorter than the timescales
imposed by the drivers. Here, the relevant timescale is the
Eddington-Sweet timescale TES, which corresponds to the time
required for the redistribution of angular momentum (i.e. for
baroclinic modes to be damped out, see Rieutord 2006) and
defined as

TES = TKH
GM

Ω2
eqR3

, (6)

where Ωeq is the equatorial angular velocity, and TKH =

GM2/(RL) is the Kelvin-Helmholtz timescale. The comparison
between the nuclear and mass loss timescales, Tnucl and Tml, and
the Eddington-Sweet timescale at ZAMS for ESTER 2D-models
of 5, 10 and 20 M� stars initially rotating at ωi = Ωeq,i/Ωk = 0.3
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Fig. 1. Evolution of Xcore as a function of time for models of 5 M�,
Z = 0.02 (GN composition, Grevesse & Noels 1993) computed with
ESTER using the simple scheme for hydrogen burning (Eq. (5)) and
with the Geneva code (Ekström, priv. comm.). These are non-rotating
models computed with no mass loss and no overshooting.

where Ωk is the Keplerian angular velocity is given in Table 1.
It shows that the Eddington-Sweet timescale is at least one order
of magnitude shorter than the nuclear timescale and at least two
orders of magnitude shorter than the mass loss timescale for our
simulations, meaning that the angular momentum has enough
time to be redistributed during the stellar evolution, and that the
quasi-steady state is a good approximation.

3. Evolution at constant mass and angular
momentum

As a first step, we concentrate on “low-mass” early-type stars
throughout the Main Sequence (MS). Indeed, for such stars, we
can neglect mass and angular momentum losses. This is a good
approximation for M . 7 M� (this limit actually depends on
the considered value of metallicity). We thus enforce constant
angular momentum and constant mass, namely

Lz =

∫
(V)

r2 sin2 θΩρdV = Cst and M =

∫
(V)
ρdV = Cst.

We compute 2D quasi-steady models with the ESTER code and
follow the nuclear evolution according to Eq. (5).

3.1. Evolution of surface stellar parameters

We first consider the main sequence evolution of surface stel-
lar parameters of a 5 M� model at two different metallicities
Z = 0.02 and Z = 10−3 (typical of Population II stars) and ini-
tially rotating at 50% of the critical angular velocity. Because
such stars exhibit very weak radiative acceleration, their criti-
cal angular velocity is derived from the Ω-limit, namely when
the centrifugal acceleration balances gravity at equator (e.g.
Paper I). In that case, the critical angular velocity is the Keple-

rian angular velocity Ωk =

√
GM/R3

eq. When this critical angu-
lar velocity is reached, the spin-up has to stop and the star loses
angular momentum such that it remains below and near criti-
cal rotation. This angular momentum loss is assumed to occur
through mechanical mass transfer into a decretion disc (e.g.,
Okazaki 2004; Krtička et al. 2011).

Table 1. Comparison between the Eddington-Sweet timescale TES, the
nuclear timescale Tnucl, and the mass loss timescale Tml for stars of dif-
ferent initial masses.

M/M� TES (yr) Tnucl (yr) Tml (yr)

5 6.4 × 106 1.1 × 108 1.78 × 1011

10 1.6 × 106 2.6 × 107 4.69 × 1010

20 5.9 × 105 9.6 × 106 9.1 × 108

Notes. These timescales are evaluated at ZAMS with an equatorial
angular velocity such that Ωeq = 0.3 Ωk. Metallicity is set to Z = 0.02.

To describe the evolution of the rotational properties of the
models, we focus on the evolution of the equatorial and polar
radii, Req and Rp, the surface flattening ε = 1 − Rp/Req, the ratio
of the equatorial angular velocity to the Keplerian one ω, and the
linear equatorial velocity Veq = ReqΩeq. Figures 2–5 display the
evolution of these quantities along the MS.

3.1.1. Stellar radius and surface flattening

The mean stellar radius is well known to increase along the MS,
the model with the lowest Z being more compact (e.g. Yoon et al.
2006; Ekström et al. 2011). Figure 2 shows that rotating stars
expand faster at the equator than at the pole. Indeed, the cen-
trifugal effect affects only weakly the polar regions, and does
not contribute to the polar radius growth; however, it does affect
the equator significantly. The different behaviour of polar and
equatorial radii can be seen in Fig. 3 where the flattening of the
star ε is plotted along the main sequence evolution. The rapid
expansion of the equatorial radius yields a rapid growth of ε for
the two values of Z. The stellar expansion due to nuclear evolu-
tion is slower for the less metallic star, since its keplerian angular
velocity Ωk decreases more slowly, leading to a slower growth
of ω and thus of ε.

3.1.2. Surface rotation

Figure 4 shows the evolution of the angular velocity ratio ω =
Ωeq/Ωk throughout the MS. The fact that it increases as Xcore/X0
decreases can be easily explained. Indeed, assuming slow rota-
tion, thus weak flattening and weak differential rotation, we can
estimate the moment of inertia of the star as

I =

∫
r2dm = AMR2, (7)

where A informs us on the stellar mass distribution. The smaller
A, the more centrally condensed the star. Figure 6 shows the
evolution of A = I/MR2 as a function of the stellar radius
along the MS for a 5 M� star initially rotating at ωi = 0.1
and with Z = 0.02. For this model, a rough fit shows that A
decreases as ∼R−0.76. Therefore, as the star evolves along the
MS, it becomes more and more centrally condensed. At con-
stant angular momentum L = AMR2Ω = Cst, and as the star
expands, Ω decreases as R−1.24. Ω thus decreases more slowly
than Ωk R−1.5, leading to an increased angular velocity ratio ω
throughout the MS. The foregoing remark shows that the natu-
ral trend of the evolution of rotation is an increase of ω, namely
an increase of criticality along the MS. The full calculation with
2D models confirms this behaviour at high rotation rate (Fig. 4).
Metallicity also plays a role in the evolution of ω: as mentioned
before, a less metallic star expands more slowly (see Fig. 2) and
thus Ωk decreases less rapidly, leading to a slower increase of ω.
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Fig. 2. Equatorial and polar radius as a function of the fractional abun-
dance of hydrogen in the convective core for a 5 M� star initially rotat-
ing at ωi = 0.5 for Z = 0.02 and Z = 10−3. The stellar radius in case
of no rotation has been added for comparison in full and dashed black
lines for Z = 0.02 and 10−3 respectively.
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Fig. 3. Same as Fig. 2, but for the surface flattening ε = 1 − Rp/Req.

We stress that the star does not rotate faster as it evolves through
the MS even thoughω increases. Actually, it is the opposite up to
the so-called hook at the end of the MS, as shown by Fig. 5. After
the hook, nuclear heat generation no longer compensates the
radiated energy leading the star to an overall contraction (Iben
1967). The conservation of angular momentum then leads to an
increase of equatorial angular velocity Ωeq.

3.1.3. Gravity darkening

The flattening of rapidly rotating stars gives rise to gravity dark-
ening, which reduces the flux at the equator (von Zeipel 1924).
Figure 7 shows the variation of the ratio between the local effec-
tive temperature and the polar effective temperature as a function
of colatitude for the 5 M� model with Z = 0.02, at ZAMS and
for various values of ωi. The latitudinal variation of this ratio
at Z = 10−3 is not shown because almost identical to the case
with Z = 0.02, with a relative difference never exceeding 0.3%.
The effective temperature drop between pole and equator is thus
almost exactly the same for the two metallicities, as expected
from Fig. 3 showing that both models have the same surface flat-
tening at ZAMS.
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of the equatorial critical angular velocity ω = Ωeq/Ωk.
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3.2. Initial angular velocity requirements for criticality

To appreciate the initial states (at ZAMS) that lead to the critical
velocity before the end of the MS, we compute a grid of models
with constant masses 5 ≤ M/M� ≤ 10 and with Z = 0.02 and
Z = 10−3, backward in time. Hence we start with models rotat-
ing near criticality (here we take ω = 0.9, i.e. quasi-criticality)
at various hydrogen mass fractions in the core (Xcore,c/X0), or
equivalently at various stage along the MS, and increase the
hydrogen mass fraction until Xcore = X0, namely until ZAMS
is reached.

Figure 8 shows the ZAMS angular velocity ratioωi needed to
reach quasi-criticality during the MS for various hydrogen mass
fractions in the core at quasi-criticality, as a function of the stel-
lar mass M/M�, when Z = 0.02. The more massive the star,
the smaller ωi is needed to reach critical rotation on the MS,
in particular for Xcore/X0 ≤ 0.5. Moreover, the smaller the frac-
tional abundance of hydrogen left in the convective core at quasi-
criticality, the smaller ωi needs to be. Indeed, as mentioned
before, stellar expansion tends to make the angular velocity ratio
ω increase as the star evolves through the MS. Therefore, the
smaller the fractional abundance of hydrogen left in the con-
vective core at quasi-criticality, the longer the evolution along
the MS and thus the more ω has increased. At ZAMS, the star
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therefore does not need to be rotating very rapidly to reach criti-
cality near the end of the MS.

We now take a look at the effect of lower metallicity on the
initial conditions required to reach criticality before the end of
the MS. The comparison between the ZAMS angular velocities
at equator in units of the equatorial critical angular velocity as
a function of the mass for Z = 0.02 and Z = 10−3 is shown in
Fig. 9. We clearly see that for a lower metallicity, the value of
the initial angular velocity required to reach criticality at a given
hydrogen content on the MS is higher than at higher metallicity.
This reflects the slower expansion of less metallic stars.

4. Evolution with angular momentum loss

We now consider stars more massive than ∼7 M� for which mass
loss from radiation-driven winds can no longer be neglected.

4.1. The critical angular velocity at the ΩΓ-limit

The critical angular velocity of massive stars is expected to
differ from the Keplerian angular velocity because of radia-
tive acceleration (see Maeder & Meynet 2000). Using the
θ-dependent radiative flux expression from the ω-model of
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Fig. 8. Values of the ZAMS angular velocity ratio ωi required to reach
quasi-criticality (ω = 0.9) at different values of the hydrogen mass frac-
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Espinosa Lara & Rieutord (2011), we have shown in Paper I
that, in this approximation, the angular velocity becomes criti-
cal when the rotation-dependent Eddington parameter at equator

ΓΩ(π/2) = Γeq

1 − Ω2R3
eq

GM

−2/3

, (8)

reaches unity, where

Γeq =
κ(π/2)L
4πcGM

, (9)

is the standard Eddington parameter at equator. The critical
angular velocity then reads

Ωc = Ωk

√
1 − Γ

3/2
eq . (10)

Thus, it is expected that the critical angular velocity is
reduced by radiative acceleration at the stellar surface. How-
ever, as shown in Paper I, this reduction is actually quite small
because of the combined effects of gravity darkening and opacity
reduction at equator. We further illustrate this property in Fig. 10
where we plot the evolution of Γeq and ΓΩ(π/2) for a 15 M�
ESTER 2D-model. Unlike the no-mass loss case discussed in
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Paper I, mass loss prevents the star from reaching criticality (see
below) making ΓΩ(π/2) always finite. For such a star, Γeq . 0.27,
implying that Ωc/Ωk & 0.93 all the time. This result shows that
the difference between critical and Keplerian angular velocity
remains small. Thus, we shall continue to express Ωeq as a frac-
tion of the equatorial Keplerian angular velocity Ωk to measure
the distance to criticality.

4.2. Mass and angular momentum loss

Similarly to the case of evolution without angular momentum
loss, we evolve the star with ESTER through the MS by decreas-
ing the fractional abundance of hydrogen in the convective core
Xcore/X0. However, at each step, we also remove some mass and
angular momentum off the star, for that we use the clock given
by the time evolution of Xcore in Eq. (3).

We estimate the mass-loss rate using the local mass-flux pre-
scription of Paper I, which can be seen as a local equivalent of the
modified CAK theory (Pauldrach et al. 1986) for rotating winds.
Although not clearly assessed by observations (see the discus-
sion in Paper I), we also include the bi-stability jump in our local
mass loss modelling.

The total mass and angular momentum loss rates for a rotat-
ing star read

Ṁ =

∫
ṁ(θ)dS and L̇ =

∫
˙̀(θ)dS . (11)

The area element at the stellar surface is

dS = 2πR2(θ)

√
1 +

R2
θ

R2(θ)
sin θdθ,

where R(θ) is the θ-dependent radius of the star and Rθ = ∂R/∂θ
(Rieutord et al. 2016). From Paper I, the local mass-flux is esti-
mated via

ṁ(θ) =
4
9
α(θ)k′(θ)1/α′(θ)

vth(θ)c

×

[
c

κe(1 − α)

(
|geff(θ)| −

κeF(θ)
c

)] α′ (θ)−1
α′(θ)

× F(θ)1/α′(θ), (12)

and the local angular momentum flux reads

˙̀(θ) = ṁ(θ)Ω(θ)R(θ)2 sin2 θ, (13)

where Ω(θ) is the θ-dependent surface angular velocity. In
Eq. (12), geff(θ) is the local gravito-centrifugal acceleration, F(θ)
is the local radiative flux, κe is the mass absorption coefficient for
electron scattering, and vth ≡ (2kBTeff/mFe)1/2 is the local iron
thermal velocity. α and k are the CAK force multiplier parame-
ters (FMPs), and α′ = α − δ where δ is another FMP related to
the effect of radial changes of ionisation when moving outward
in the wind. We assume δ not to vary on the stellar surface, and
equal to 0.1, a typical value for hot stars at metallicity close to
solar (Abbott 1982). We also use the parametrisation of α and k
at Z = 0.02 from Paper I, namely

α(Teff) =


0.45 if Teff ≤ 10 kK
1.5 × 10−5 Teff + 0.3 if 10 kK < Teff ≤ 20 kK
5 × 10−6 Teff + 0.5 if 20 kK < Teff ≤ 40 kK
0.7 if Teff > 40 kK,

(14)
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Fig. 10. Γeq and ΓΩ(π/2) as a function of the fractional abundance of
hydrogen in the convective core for a 15 M� ESTER 2D-model initially
rotating at ωi = 0.5, with and without mass loss (respectively solid and
dashed lines). The black line shows the evolution of Γeq for ω = 0. The
two vertical lines delineate the two phases of the two-wind regime (see
Sect. 4.5).

and

k(Teff) '


exp(−2.15 × 10−4 Teff + 2.41) if Teff ≤ 20 kK
−3.00 × 10−6 Teff + 0.22 if 20 kK < Teff ≤ T jump

eff

1.16 × 10−6 Teff + 0.08 if Teff > T jump
eff

.

(15)

T jump
eff

is the effective temperature of the bi-stability jump,
that is, the temperature below which Fe IV recombines into Fe
III, and is defined as (Vink et al. 2001)

T jump
eff

= 61.2 + 2.59〈ρ〉, (16)

where 〈ρ〉 is the characteristic wind density at 50% of the termi-
nal velocity of the wind. It is given by

log〈ρ〉 = −14.94 + 3.2Γe, (17)

where

Γe =
κeL

4πcGM
, (18)

is the classical Eddington parameter. In 1D, the Fe IV–Fe III
recombination theoretically leads to an increased global mass-
loss rate and a decreased terminal velocity of the wind. The
effective temperature at the surface of rotating stars is however
θ-dependent and the bi-stability jump can therefore occur locally
if there is a latitude on the stellar surface where Teff = T jump

eff
. We

note that Eq. (15) has been obtained assuming that the global
mass-loss rate in the non-rotating regime Ṁ = 4πR2ṁ is equiv-
alent to the one of Vink et al. (2001) (some caveats on the use
of this mass loss prescription for the calibration of k are dis-
cussed in Paper I). k has been calibrated with ESTER mod-
els at ZAMS, although it slightly varies with the evolutionary
stage along the MS due to the evolution of geff . We find that
∆k = k(Xcore/X0 = 0.1) − k(Xcore/X0 = 1) > 0 never exceeds
20% of k(Xcore/X0 = 1) for all Teff . Since our minimum value
for α′ is 0.35 and ṁ k1/α′ , the local mass-flux may be underes-
timated by a factor ∼1.7, at most. This difference is acceptable
considering the other approximations used and the uncertainties
of the wind model.
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Fig. 11. Equatorial and polar radius as a function of the mass for a
15 M� star with Z = 0.02 initially rotating with ωi = 0.5 and losing a
total amount of mass of ∆M ' 0.4 M�.

4.3. A remark on mass loss effects without nuclear evolution

At this stage, it is useful to recall how the radius of a star changes
when a small amount of mass is removed. The outcome is well-
known for the case of fully convective stars, which are well
represented by a n = 1.5 polytrope. For such stars, if a small
amount of mass is removed from the surface, the remaining
mass expands (Chandrasekhar 1967). On the other hand, radia-
tive stars, which are well represented by n > 3 polytropes, con-
tract when subject to mass loss (Heisler & Alcock 1986). This is
also true for ESTER 2D-models of massive stars with a radia-
tive envelope, as can be seen in Fig. 11 showing the evolution
of the polar and equatorial radius of a 15 M� star initially rotat-
ing at ωi = 0.5, from which we have extracted a total mass of
∆M ' 0.4 M�, keeping Xcore/X0 = 1 constant.

Unfortunately, the interpretation of the ω-dependence on
mass and angular momentum loss is rather complicated due to
the non-linearity of the processes involved. While the angu-
lar momentum loss of massive stars only affects the evolu-
tion of ω by strengthening the decrease of Ωeq, the effect of
slower expansion due to mass loss is twofold, since it leads
to a slower decrease of both Ωk and Ωeq. Whether mass loss
itself tends to accelerate or slow down the natural trend of ω to
increase throughout the MS is therefore surely model dependent.
Figure 12 shows the evolution of both Ωeq and Ωk with and with-
out mass and angular momentum loss, for a 15 M� ESTER 2D-
model with Z = 0.02 and for ωi = 0.5. For this specific model,
we see that the evolution of ω almost only depends on the evo-
lution of Ωk, that is because the effect of mass loss and angular
momentum loss on the evolution of Ωeq roughly compensate.

4.4. The two different wind regimes

As shown in Paper I, the radiation-driven wind of rotating mas-
sive stars can be in two distinct regimes. The first one is a SWR,
characterised by a maximum mass-flux at the poles, which is
effective when the effective temperature of the star is either
greater or smaller than T jump

eff
for all θ. The second one is a TWR,

which appears when there exists a colatitude θjump on the stellar
surface where Teff(θjump) = T jump

eff
. The latter regime is charac-

terised by a maximum mass-flux at equator and a stronger global
mass and angular momentum loss rates. Intermediate-mass stars
(or well-evolved massive stars, i.e. late B- and A-supergiants)
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Fig. 12. Angular velocity (red) and equatorial Keplerian angular veloc-
ity (black) as a function of the fractional abundance of hydrogen in the
convective core Xcore/X0 for a 15 M� star with a ZAMS angular veloc-
ity ratio ωi = 0.5, with and without mass loss (respectively solid and
dashed lines).

can be in a cold-sided SWR, that is, with Teff < T jump
eff

for all
θ, characterised by stronger global mass and angular momentum
loss rates than in a TWR. Finding the general rules that gov-
ern the evolution of rotating massive stars turned out to be quite
cumbersome since numerous particular cases pop up. Hence, to
get an idea of the rotational evolution of massive stars, we focus
on the case of a typical 15 M� star initially rotating at 50% of the
Keplerian angular velocity.

4.5. The example of a 15 M� 2D-model with ωi = 0.5

Figures 13 and 14 respectively show the MS evolution of the
mass-loss rate, the angular velocity ratio, and the equatorial
effective temperature for an ESTER 2D-model with M = 15 M�,
Z = 0.02, and ωi = 0.5. We find the star to start its MS
evolution in a (hot-sided) SWR, that is, with an equatorial effec-
tive temperature larger than T jump

eff
, until Xcore/X0 ' 0.4. When

Xcore/X0 . 0.4, Teff,eq is smaller than the effective tempera-
ture of the bi-stability jump and the star enters a TWR, then
remains in this regime for the rest of the MS. In the SWR,
log Ṁ increases roughly linearly and ω increases similarly to
the case with no mass loss, which is described in Sect. 3. The
TWR can be divided into two phases of evolution. A first phase
for 0.4 . Xcore/X0 . 0.3 (Phase 1), where Ṁ rapidly increases
while ω keeps increasing but more slowly. And a second phase
for Xcore/X0 . 0.3, where log Ṁ goes back to a roughly lin-
ear increase, while ω decreases. In Fig. 15 we illustrate the MS
evolution of the global mass-loss rate against the correspond-
ing surface-averaged effective temperature T eff of the model. As
expected (see Paper I), we find the TWR to be reached even if
the surface-averaged effective temperature is larger than T jump

eff
.

It underlines that the average Teff is not an appropriate quantity
to determine the wind regime. Snapshots of the different phases
along the evolution for this model are shown in Fig. 16. We now
give some explanation for the evolution of rotation and mass-loss
rate in the three phases that we have identified.

4.5.1. The single-wind regime

The MS evolution of massive stars is well known to exhibit
an increase of stellar luminosity L, and a decrease of surface
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Fig. 13. Top: evolution of the mass-loss rate Ṁ (in M� yr−1) as a func-
tion of the fractional abundance of hydrogen in the convective core
Xcore/X0 for a 15 M� star with Z = 0.02 and for ωi = 0.5. The verti-
cal dashed line marks the evolutionary time at which the star reaches
a TWR. The vertical dotted line marks the transition between Phase 1
and 2. Bottom: same but for the angular velocity at equator in units of
the equatorial critical angular velocity ω = Ωeq/Ωk. The red dashed
line corresponds to the evolution of ω with constant mass and angular
momentum throughout the MS.

averaged effective temperature T eff . This is a consequence of the
increase of central temperature and density as hydrogen burn-
ing proceeds. From Eqs. (12), (14) and (15), it is thus clear that
Ṁ should increase throughout the MS, for all rotation rates, in
agreement with mass loss scaling relations (e.g. de Jager et al.
1988; Kudritzki et al. 1995). Moreover, as shown in Paper I, the
effect of rotation on Ṁ is relatively weak in the SWR (see also
Maeder & Meynet 2000; Petrenz & Puls 2000). The effect of the
growth of ω on the evolution of Ṁ is negligible compared to the
effects of secular evolution.

Figure 13 (bottom) shows that, similarly to the case with no
mass loss, ω increases, but more slowly. That is to be expected
since angular momentum losses tend to emphasise the decrease
of Ωeq as evolution proceeds. Additionally, mass loss also slows
down the stellar expansion as mass loss itself tends to make the
star contract (see Sect. 4.3). Ωk therefore decreases more slowly
when mass loss is accounted for (see Fig. 12).

4.5.2. The first phase of the two-wind regime

For our 15 M� model, the first phase of the TWR phase corre-
sponds to the 0.4 . Xcore/X0 . 0.3 time period. During this
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Fig. 14. As Fig. 13, but for the evolution of the equatorial effective tem-
perature Teff,eq (in K) as a function of the fractional abundance of hydro-
gen in the convective core Xcore/X0 for a 15 M� star with Z = 0.02 and
for ωi = 0.5. The black full line corresponds to the evolution of the
effective temperature of the bi-stability jump T jump

eff
.
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Fig. 15. Evolution of the mass-loss rate Ṁ as a function of the mean
effective temperature T eff for a 15 M� ESTER 2D-model with Z = 0.02
and for ωi = 0.5. The star evolves from left to right with a mean effec-
tive temperature approaching 30 kK at ZAMS, and T eff ' 22 kK at
TAMS. The black curve corresponds to case of a non-rotating 15 M�
star with Z = 0.02 for which the mass-loss rate has been calculated
using Vink et al. (2001) prescription. The vertical dashed line marks the
evolutionary time at which the star reaches a TWR. The vertical dotted
line marks the transition between Phase 1 and 2.

phase, the evolution of ω and Ṁ are tightly coupled. Indeed,
at Xcore/X0 ' 0.4, Teff,eq ' T jump

eff
, and the region where the

mass-flux is increased due to the local reach of bi-stability limit,
is confined to the equator. At this stage, the mass and angu-
lar momentum losses are not strong enough to prevent ω from
increasing. The growth is only reduced. The two phenomena
controlling the evolution of Ṁ are the nuclear evolution of the
star and the evolution of ω. In this phase, both tend to make
θjump migrate poleward. Figure 17 shows the evolution of the sur-
face fraction of the star, ∆S/S , where the effective temperature
is lower than T jump

eff
, that is, the portion of enhanced mass-flux

due to bi-stability. In this phase, ∆S/S increases, thus leading
to an increase of the mass and angular momentum loss rates.
This leads to a faster decrease of Ωeq and a slower decrease of
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Fig. 16. Snapshots of the local mass-flux ṁ in units of the polar mass-
flux at ZAMS ṁp,ZAMS (left) and of the local angular momentum flux ˙̀
in units of the maximum angular momentum flux at ZAMS ˙̀max,ZAMS
(right) for a 15 M� ESTER 2D-model with Z = 0.02 and for ωi =
0.5, at four different time steps: Xc ' 1, 0.3, 0.03 and 0. The first one
corresponds to ZAMS, the second corresponds to the end of Phase 1,
the third is the end of Phase 2, and the last snapshot corresponds to the
very end of the MS evolution. The star is viewed with an inclination
i = 70◦.

the Keplerian angular velocity Ωk (Fig. 12) compared to models
without mass loss. This process lasts until the mass and angular
momentum loss rates are sufficient for ω to start decreasing. At
this stage, the star enters the second phase of the TWR.

4.5.3. The second phase of the two-wind regime

For this stellar model, the second phase of the TWR phase cor-
responds to Xcore/X0 . 0.3, that is, from the point where ω starts
decreasing. As ω decreases we would expect θjump to migrate
back to the equator. However, ∆S/S and thus Ṁ still increase
during this phase. Obviously, nuclear (secular) evolution effects
still dominate over the consequences of the ω decrease. Hence,
θjump still migrates poleward. As ω decreases in this phase, the
surface flattening ε also decreases. The effect of secular nuclear
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Fig. 17. Evolution of the surface fraction of the star where the effective
temperature is lower than T jump

eff
, for a 15 M� star with Z = 0.02 and

for ωi = 0.5. The black dashed line marks the evolutionary time at
which the star reaches a TWR. The black dotted line marks the threshold
between Phase 1 and 2.

evolution becomes predominant over the effect of rotation on the
evolution of equatorial opacity. This leads to a new increase of
Γeq almost until the end of the MS (see Fig. 10).

After the hook near end of the MS, the star contracts lead-
ing to an increase of the mean effective temperature, thus to
the migration of θjump towards the equator. It hence leads to a
decrease of Ṁ and to an ultimate increase of ω just before the
end of the MS (see Fig. 13).

4.5.4. Other masses

ESTER predictions for a given initial angular velocity ratio
ωi = 0.3 (left) and ωi = 0.7 (right), and for various stellar
masses, are shown in Fig. 18. It turns out that the evolution of ω
is a rather complicated function of the mass and the initial angu-
lar velocity, at least for the mass range of our models, namely
7 . M/M� . 15. This complexity comes from the fact that
the local effective temperature of such stars is often close to the
effective temperature of the bi-stability jump. Hence, the stars
are prone to either start their MS evolution in a hot-sided SWR
(i.e. Teff > T jump

eff
for all θ) and possibly reach a TWR followed

by a cold-sided SWR (i.e. Teff < T jump
eff

for all θ), or start in a
TWR and reach a cold-sided SWR. Hence, the evolution of ω
may drastically vary when initial conditions are changed.

The modelling of more massive stars is certainly more pre-
dictable. Indeed, such stars are always in a hot-sided SWR at
ZAMS, and above a certain mass, the expansion and evolu-
tion of rotation is not sufficient to reach a TWR. Additionally,
more massive stars lose a lot more mass and angular momen-
tum because of their stronger radiation-driven wind, and thus
may exhibit a decreasing ω all along the MS. Unfortunately, for
numerical reasons, the ESTER code presently does not allow
us to study the nuclear evolution of models with masses much
higher than ∼20 M�.

5. Conclusions

This work presents a study of the rotational evolution of rapidly
rotating early-type stars with the 2D code ESTER that we have
updated to follow the decrease of core hydrogen content as a
proxy for time evolution along the MS. We first investigated the
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rotational evolution of intermediate-mass stars with masses in-
between 5 and 7 M�. The evolution of such stars along the MS is
relatively simple because at first order it can be modelled with
constant angular momentum, that is, without considering any
mass loss. We have shown that, because of stellar expansion as
well as the redistribution of mass in the stellar interior, critical
rotation can be reached before the end of the MS provided the
initial angular velocity ratio ωi = Ωeq,i/Ωk is high enough. The
minimum value ofωi required to reach critical rotation is smaller
for the more massive stars. In this mass range, no star reaches
the critical angular velocity during the MS if its initial angular
velocity is less than 50% critical.

At masses M ≥ 7 M�, our models show that the rotational
evolution is more complex. Indeed, such stars are subject to
radiation-driven winds, inducing mass and angular momentum
losses, which substantially impact the evolution of the angu-
lar velocity ratio ω. Unfortunately, the magnitude of mass-loss
rates obtained with CAK-based prescriptions are rather uncer-
tain, because of loosely constrained parameters and the neglect
of wind inhomogeneities (see Paper I for more details). More
accurate mass-loss rates could be derived from recent hydro-
dynamically consistent non-local thermodynamical equilibrium
stellar atmosphere models (Sander et al. 2017), but such mod-
els will certainly remain 1D for some time. Nevertheless, we
used the mass-flux prescription detailed in Paper I, based on the
modified CAK theory (Pauldrach et al. 1986), where we include,
locally, the bi-stability limit. For now, the existence of this jump
is still challenged by the observations (e.g. Markova & Puls
2008), but their conclusions are not clear cut. From the point
of view of the models, the bi-stability jump has important conse-
quences and hence cannot be overlooked. Indeed, in 2D-models,
the bi-stability limit imposes the existence of two-wind regimes
that have rather different effects on the rotational evolution of
massive stars. Stars are in a SWR when, at all colatitudes, their
effective temperature is either larger or smaller than the effective
temperature of the bi-stability jump. This wind regime exhibits
a maximum mass-flux at the poles. However, when there is a
colatitude θjump where the effective temperature equals the effec-
tive temperature of the bi-stability jump, the star is in a TWR. In
this regime, the mass-flux is maximum in the equatorial region
and holds a discontinuity at θjump.

The main result of this study is that the rotational evolu-
tion of massive stars with masses in-between 7 and 15 M� is

very dependent on their initial conditions at ZAMS, namely their
mass and initial angular velocity. Indeed, their effective tempera-
ture is rather close to the effective temperature of the bi-stability
jump. The initial angular velocity therefore controls whether
stellar models in this mass range start their MS evolution in a
SWR or in a TWR. The different wind regimes and transitions
between these regimes as evolution proceeds, can have very dif-
ferent effects on the rotational evolution of such stars, hence the
importance of the ZAMS initial conditions. The most common
transition from one regime to another is the transition from a hot-
sided SWR to a TWR. We have detailed the rotational evolution
of a 2D-ESTER model with M = 15 M� initially rotating with
an angular velocity ratio ωi = 0.5. The SWR-TWR transition
is followed by two phases of evolution of the angular velocity
ratio. These two phases correspond to a rapid (and continuous)
increase of the mass loss and angular-momentum-loss rates lead-
ing to a slower growth of ω (compared to the SWR), followed by
the decrease of ω accompanied by a slow increase of the mass
and angular momentum loss rates.

Another important result is that, using 2D models, and
despite the use of Vink et al. (2001) to calibrate our mass loss
prescription in the non-rotating case, we do not find a disconti-
nuity of the global mass-loss rate at the bi-stability limit as in 1D
models. Instead, the discontinuity lies on the local mass-flux at
the equator, which then migrates poleward as evolution proceeds
leading to a continuous increase of the global mass-loss rate in
the TWR. Because of the local nature of the bi-stability limit in
2D models, the latter could be reached at various rotation rates
and stellar masses, thus various surface-averaged effective tem-
peratures. In this work, we have chosen the effective temperature
of the bi-stability limit to be that of Vink et al. (2001), namely
roughly 25 kK. Taking a lower value, for instance ∼20 kK from
Petrov et al. (2016) would shift the stellar models that may reach
a TWR during the MS towards less massive stars. Models that
remain in the requisite mass range would reach a TWR later on
the MS. The effects of a reduced effective temperature of the
bi-stability limit might become particularly important for later
evolutionary phases of more massive stars (B-supergiants).

All in all, we find that radiation-driven mass and angular
momentum losses are responsible for either a slower growth or a
decrease of the angular velocity ratio ω along the MS. This often
prevents massive stars from reaching critical rotation before the
end of the MS.
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The present work calls for new investigations to confirm
the present results, in particular in the modelling of the mass
losses. This is an old problem, which we here face through the
modelling of the force multipliers parameters (see references
in Paper I). It is known that these parameters depend on the
metallicity of the atmosphere sourcing the wind, but the changes
to be applied for modelling a population III star, for instance,
are still quite uncertain (e.g. Meynet et al. 2008). The attempt
of Georgy et al. (2013) finds that a change in metallicity does
not bring any significant change in the rotational evolution of
a 15 M� model, but their models are one-dimensional. We also
note that there is strong evidence that massive stars undergo
periods of super-Eddington conditions (Quataert et al. 2016) in
which they could exhibit continuum-driven winds, sufficiently
strong to sustain significant mass loss, even for non-metallic
stars (e.g., Owocki et al. 2004, 2017; Smith & Owocki 2006).

Beside these open questions related to the influence of metal-
licity, the present work also calls for an investigation of the
coupling between mass losses and interior flows. Indeed, the
rotational evolution of the star implies the presence of merid-
ional flows that carry chemicals from the core to the surface.
Presently, the 2D evolution given by ESTER models is a succes-
sion of steady states, with steady flows, that are hardly usable
to predict the transport of chemicals inside the star. New stud-
ies, that will include viscous stresses everywhere in the star,
and not only in Ekman layers as presently, are needed to give
a full 2D-view of the transport process in a radiative envelope
and shed new light on the long standing question of rotational
mixing.
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Appendix A: Rate of change of the mass fraction
of hydrogen in the stellar convective core

In this appendix we calculate the rate of change of the mass frac-
tion of hydrogen in the core. We write the local conservation of
hydrogen (which is equivalent to Eq. (1)) as

∂

∂t
( ρX) + div( ρXu) = −

4mp

Q
ρε∗. (A.1)

In order to get an expression for dXcore/dt, we calculate the
rate of change of the mass of hydrogen in the core, namely

d
dt

(McoreXcore) =
d
dt

∫
core

ρXdV · (A.2)

This equation can be re-written using Leibniz’s rule as

d
dt

(McoreXcore) =

∫
core

∂

∂t
( ρX)dV +

∫
∂core

ρXuc · dS, (A.3)

where uc is the speed of the core boundary. Using Eq. (A.1) and
the fact that we consider the core to be fully mixed, that is, X is
homogeneous in the core,

d
dt

(McoreXcore) = −
4mp

Q
Lcore

+ Xcore

(
−

∫
core

div( ρu)dV +

∫
∂core

ρuc · dS
)
.

(A.4)

Using Leibniz’s rule again, Eq. (A.4) becomes

d
dt

(McoreXcore) = −
4mp

Q
Lcore + Xcore

d
dt

∫
core

ρdV

= −
4mp

Q
Lcore + Xcore

dMcore

dt
,

(A.5)

which finally leads to

dXcore

dt
= −

4mp

Q
Lcore

Mcore
· (A.6)
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