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ABSTRACT

Context. The understanding of the evolution of early-type stars is tightly related to that of the effects of rapid rotation. For massive
stars, rapid rotation combines with their strong radiation-driven wind.
Aims. The aim of this paper is to investigate two questions that are prerequisite to the study of the evolution of massive rapidly rotating
stars: (i) What is the critical angular velocity of a star when radiative acceleration is significant in its atmosphere? (ii) How do mass
and angular momentum loss depend on the rotation rate?
Methods. To investigate fast rotation, which makes stars oblate, we used the 2D ESTER models and a simplified approach, the ω-
model, which gives the latitudinal dependence of the radiative flux in a centrifugally flattened radiative envelope.
Results. We find that radiative acceleration only mildly influences the critical angular velocity, at least for stars with masses lower than
40 M�. For instance, a 15 M� star on the zero-age main sequence would reach criticality at a rotation rate equal to 0.997 the Keplerian
equatorial rotation rate. We explain this mild reduction of the critical angular velocity compared to the classical Keplerian angular
velocity by the combined effects of gravity darkening and a reduced equatorial opacity that is due to the centrifugal acceleration. To
answer the second question, we first devised a model of the local surface mass flux, which we calibrated with previously developed
1D models. The discontinuity (the so-called bi-stability jump) included in the Ṁ − Teff relation of 1D models means that the mass
flux of a fast-rotating star is controlled by either a single wind or a two-wind regime. Mass and angular momentum losses are strong
around the equator if the star is in the two-wind regime. We also show that the difficulty of selecting massive stars that are viewed
pole-on makes detecting the discontinuity in the relation between mass loss and effective temperature also quite challenging.
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1. Introduction
Among the numerous problems that need to be overcome when
stars are modelled, those related to rotation are of particular
nature in the frame of classical 1D models because rotation breaks
the imposed spherical symmetry. Rotating stars are indeed not
only distorted by the centrifugal acceleration, but are also per-
vaded by large-scale flows that carry chemical elements and
angular momentum. The importance of these effects has been
appreciated for quite some time now (e.g. Maeder & Meynet
2000, and references therein), and specific modelling simpli-
fications are usually included in 1D stellar evolution codes to
reproduce the expected effects of global rotation. For instance,
the transport of angular momentum that results from small-scale
turbulence and large-scale circulation induced by rotation in
radiative zones is inserted in 1D evolution models either as an
advection-diffusion process following Zahn (1992), Meynet &
Maeder (1997), and Maeder & Zahn (1998) (e.g. Geneva code,
Eggenberger et al. 2008; STAREVOL, Decressin et al. 2009,
Amard et al. 2016; FRANEC, Chieffi & Limongi 2013; CES-
TAM, Marques et al. 2013) or as a purely diffusive process (e.g.
Kepler, Heger et al. 2000; STERN, Yoon & Langer 2005; MESA,
Paxton et al. 2013). The associated transport of chemicals (so-
called rotation-induced mixing) is always treated as a diffusive
process (as justified by Chaboyer & Zahn 1992).

This modelling of rotation effects is only justified for slow
rotators (Zahn 1992). Early-type stars are, however, often con-

sidered to be fast rotators. The hypotheses and approximations
of current prescriptions are therefore no longer valid for such
stars. Be-type stars, for instance, are well known to be fast rota-
tors close to the break-up limit (e.g. Porter & Rivinius 2003;
Bastian et al. 2017), that is, the centrifugal force nearly balances
gravity at equator. These stars show evidence of mass loss that is
associated with their near break-up rotation (Carciofi et al. 2008;
Krtička et al. 2011; Rivinius et al. 2013; Georgy et al. 2013;
Granada et al. 2013; Granada & Haemmerlé 2014). Furthermore,
early-type stars may also be very luminous and therefore have
high radiation pressure at their surface. The induced radiation-
driven wind is responsible for a significant loss of mass and
angular momentum, which notably influences the evolutionary
paths of massive stars (e.g. Langer 1998; Vink et al. 2010).
Because of gravity darkening (e.g. Espinosa Lara & Rieutord
2011), mass loss from rotating massive stars is expected to be
anisotropic (e.g. Owocki et al. 1996; Owocki & Gayley 1997;
Pelupessy et al. 2000; Maeder & Meynet 2000; Georgy et al.
2011). These anisotropies in turn affect the evolution of rotation
and are likely to play a significant role in the interior dynamics
of massive stars (Zahn 1992; Maeder 1999; Lignieres et al. 2000;
Lau et al. 2011; Rieutord & Beth2014).

The treatment of fast rotation thus requires develop-
ments beyond the current model approximations, although this
approach has been extremely useful to make significant progress
in the field (e.g. Maeder & Meynet 2015, and references therein).
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In this context, the achievement of the first self-consistent
2D models of rapidly rotating early-type stars, worked out by
Espinosa Lara and Rieutord (e.g. Espinosa Lara & Rieutord
2013; Rieutord et al. 2016), opens the door to exploring the
evolution of fast stellar rotators. Such models are expected to
provide new constraints on the internal rotation-induced mecha-
nisms as well as on the radiative and mechanical mass loss (e.g.
Krtička et al. 2011), which all significantly affect the different
predictions and outputs of the 1D stellar evolution models (e.g.
Meynet & Maeder 2000; Maeder & Meynet 2000, 2010; Smith
2014; Meynet et al. 2015; Renzo et al. 2017).

The present work aims at investigating two questions that are
prerequisite to the study of the evolution of massive rapidly rotat-
ing stars: (i) What is the critical angular velocity of a star when
radiative acceleration is significant in its atmosphere? (ii) How
do mass and angular momentum loss in massive stars depend on
rotation?

This paper is organised as follows. In Sect. 2 we reconsider
the question of the critical angular velocity in light of ESTER 2D
models and the simplified ω-model of Espinosa Lara & Rieu-
tord (2011). We then revisit the prescription of mass loss in
fast-rotating stars. To this end, we first focus on deriving a local
mass-flux prescription based on the 1D CAK (Castor et al. 1975)
and mCAK (Pauldrach et al. 1986) theories for non-rotating
stars (Sect. 3). Next, we generalise this prescription to rotating
stars. We compute the latitudinal variations of mass and angu-
lar momentum fluxes with ESTER 2D models and discuss the
effects of rotation on global losses of mass and angular momen-
tum (Sect. 4). We finally summarise our answers to the questions
that motivated this work (Sect. 5).

2. Critical angular velocity and the ΩΓ-limit
2.1. The ΩΓ-limit question

2.1.1. Some context
In stars more massive than ∼7 M� that are close to solar
metallicity, radiative acceleration plays a significant role in the
(assumed) hydrostatic equilibrium. Total gravity is usually intro-
duced,

gtot = geff + grad, (1)

where effective gravity (or gravito–centrifugal acceleration) geff

is supplemented by radiative acceleration,

grad =
κF
c
, (2)

where κ is the flux-weighted opacity1, which we approximate
with the total Rosseland mean opacity, F the radiative flux, and
c the speed of light.

The so-called ΩΓ-limit introduced by Maeder & Meynet
(2000) is reached when gtot = 0 somewhere on the stellar sur-
face. It is associated with an actual critical angular velocity Ωc
that is different from the Keplerian angular velocity

Ωk =

√
GM
R3

eq
, (3)

which is the break-up limit (or the Ω-limit) when radiative accel-
eration can be neglected in total gravity. In this equation, G is the

1 Strictly speaking, κ is the mass absorption coefficient, κ = µ/ρ, with
opacity µ = λ−1, where λ is the mean free path of photons, and density
ρ. However, in the following, we use, as is frequently done in the current
context, the term “opacity”.

gravitation constant, M is the stellar mass, and Req is its equato-
rial radius.

The expression of the correct critical angular velocity when
the effects of radiation cannot be neglected has been debated
lively. For instance, Langer (1997, 1998) suggested that stars
close to the Eddington limit have a lower critical angular veloc-
ity, while Glatzel (1998) stressed that the Eddington parameter,
namely

Γ =
κL

4πcGM
(4)

where L is the stellar luminosity, has no effect on the critical
rotation because of gravity darkening. In an attempt to clarify
the debate, Maeder (1999) and Maeder & Meynet (2000; here-
after referred to as MMM) re-investigated the question and found
two roots to the equation gtot = 0. The first gives the Keplerian
angular velocity as the critical angular velocity for Eddington
parameters smaller than 0.639. The second root yields a crit-
ical angular velocity lower than Ωk that tends to zero when
the rotation-dependent Eddington parameter (see Maeder 1999)
tends to unity for Eddington parameters larger than 0.639.

Maeder (1999) based his derivation on the model of von
Zeipel (1924), which states that the radiative flux F at some
colatitude θ on the surface of a rotating star is proportional to
the local effective gravity geff . For barotropic stars, this leads to

F = −ρχ
dT
dP
geff , (5)

where χ = 4acT 3/(3κρ) is the radiative conductivity. Addition-
ally, assuming solid-body rotation, Zahn (1992) obtained

ρχ
dT
dP

=
L(P)

4πGM?
, (6)

where

M? = M
(
1 −

Ω2

2πGρm

)
, (7)

and ρm is the mean density of the star. L(P) is the luminosity
outflowing across the isobar of pressure P. Maeder (1999) then
wrote the radiative flux in the barotropic case as

F = −
L(P)

4πGM?
geff . (8)

In the case of shellular rotation, Ω ' Ω(r), and following the
work of Zahn (1992), Maeder (1999) linearly developed all
quantities around their average on an isobar and found the radia-
tive flux in the baroclinic case

F = −
L(P)

4πGM?
(1 − ζ(θ))geff . (9)

We note that Eq. (8) assumes solid-body rotation, while Eq. (9)
corresponds to the case of slow rotation (Zahn 1992). Maeder
(1999) noted that ζ(θ) ∼ 10−2 so that according to this model,
the ratio F/geff depends only mildly on colatitude.

2.1.2. Interferometric observations

Recent progresses on rotating stars, both observational and
theoretical, does not confirm this mild dependence, however.
Interferometric observations of several rapidly rotating stars
(e.g. Monnier et al. 2007; Zhao et al. 2009; Che et al. 2011;
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Domiciano de Souza et al. 2014) show that if gravity darkening
is modelled by a power law such as

F(θ) ∼ geff(θ)4β, (10)

then β < 1/4 for all the observed stars. Furthermore, the
observed exponents decrease as the rotation rate of the stars
increases (e.g. Domiciano de Souza et al. 2014). These results
are in line with the predictions of the ESTER 2D models, which
match the observations well (Espinosa Lara & Rieutord 2011).
ESTER 2D models indeed predict that the relation between flux
and effective gravity is not a power law, but can be approximated
as such as a first step. Models also show that β ' 0.25 at low rota-
tion rates, but that β decreases to 0.13 when rotation approaches
criticality. This behaviour has implications on the ΩΓ-limit intro-
duced by Maeder & Meynet (2000). These limitations prompt us
to revisit this limit with ESTER 2D models.

2.2. The ω-model

Before using full ESTER 2D models, it is worth consid-
ering the problem in light of the simplified ω-model of
Espinosa Lara & Rieutord (2011). The general purpose of the
ω-model is to describe the latitudinal variations in radiative flux
of rotating stars in a simpler way than with a full 2D model. To
this end, it is assumed that the flux within the radiative envelope
of an early-type star can be written as

F = − f (r, θ)geff , (11)

where f (r, θ) is some function of the position to be determined.
In this assumption, F and geff are assumed to be anti-parallel.
Espinosa Lara & Rieutord (2011) showed that this is a rather
good approximation because full ESTER 2D models show that
the angle between the two vectors never exceeds half a degree,
even for the most distorted stars.

In a radiative stellar envelope, the function f (r, θ) can be
determined from flux conservation equation, namely ∇ · F = 0,
along with the assumption that the stellar mass is rather centrally
condensed, so that the Roche model can be used. This implies
that the first-order equation of the flux can be completed by the
boundary condition

lim
r→0

f (r, θ) =
L

4πGM
· (12)

The equation for f (r, θ) can then be solved analytically (see
Espinosa Lara & Rieutord 2011; Rieutord 2016, for details), with
the following result:

f (r, θ) =
L

4πGM
tan2 ψ(r, θ)

tan2 θ
, (13)

where ψ(r, θ) is obtained by solving

cosψ + ln tan(ψ/2) =
1
3
ω2r3 cos3 θ + cos θ + ln tan(θ/2). (14)

In this equation r has been scaled with the equatorial radius Req
and

ω =
Ω

Ωk
(15)

where Ω is the angular velocity of the star, which is assumed
to be uniform (the case of surface differential rotation has been
investigated by Zorec et al. 2017).

At the equator, an analytic expression of f can be obtained,

f (r = 1, π/2) =
L

4πGM

1 − Ω2R3
eq

GM

−2/3

, (16)

so that the equatorial radiative flux reads

F(Req, π/2) = −
L

4πGM

(
1 − ω2

)−2/3
geff . (17)

In the slow rotation limit, Eq. (17) can be written

F(Req, π/2) ' −
L

4πGM
(
1 − 2

3ω
2
)geff . (18)

In this limit, where Req ≈ Rp, this is identical to the MMM
expression, which we now obtain for negligible stellar distor-
tions.

Equations (17) and (18) show an important difference: the
exact (within the ω-model) expression (17) shows that the ratio
F/geff diverges when the Ω-limit ω = 1 is approached, while in
its slow rotation approximation (18), F/geff remains finite. This
is in line with von Zeipel’s law, which is valid at low rotation
rates and which states that flux and effective gravity are propor-
tional. This important difference now calls for a new investiga-
tion of the ΩΓ-limit.

2.3. Critical angular velocity at the ΩΓ-limit: Ideas from the
ω-model

2.3.1. Preliminaries

With the expression of the radiative flux from the ω-model, we
can derive the critical angular velocity Ωc corresponding to the
ΩΓ-limit. When this limit is reached, then

gtot = geff + grad = 0 (19)

somewhere at the surface of the star. As in MMM, we introduce
a limiting flux from Eq. (2) and the ΩΓ-limit condition gtot = 0,
namely

Flim = −
c
κ
geff . (20)

From this expression, we define the rotation-dependent Edding-
ton parameter ΓΩ(θ) as the ratio of the actual flux F(θ) obtained
with the ω-model, and the limiting flux, namely

ΓΩ(θ) =
F(θ)

Flim(θ)
=
κ(θ)

c
f (r = 1, θ). (21)

Using Eq. (21) we can rewrite Eq. (1) as

gtot = geff [1 − ΓΩ(θ)] . (22)

The critical angular velocity Ωc is reached if somewhere on the
stellar surface gtot = 0, that is, if there is a colatitude where either
ΓΩ(θ) = 1 or geff(θ) = 0.

2.3.2. Critical latitude: the equator

In all 2D models both effective temperature and effective grav-
ity are minimum at the equator (e.g. Espinosa Lara & Rieutord
2013). The solution geff(θ) = 0 is therefore always reached first
at the equator. We now focus on the ΓΩ(θ) = 1 solution.

We first observe that ΓΩ(θ) ∝ κ(θ) f (r = 1, θ) should be
an increasing function of co-latitude, at least for (very) rapidly
rotating stars. f (r = 1, θ) indeed always increases with θ and
diverges at the equator when the Keplerian angular velocity is
approached. As mentioned before, in all 2D models the effec-
tive temperature is minimum at equator, but it is not straightfor-
ward how to predict whether the opacity κ increases or decreases
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with decreasing Teff (see Appendix A for an attempt). Still, we
expect the opacity to vary on the stellar surface, but much less
than f (r, θ) near Keplerian angular velocity. According to the
ω-model, and because of the equatorial singularity, it is there-
fore very likely that the solution ΓΩ = 1 is always first reached
at the equator.

Maeder & Meynet (2000) came to the same conclusion
regarding the location of the ΓΩ(θ) = 1 solution on the surface.
However, they traced it back to an opacity effect, assuming that
the latter increases with decreasing Teff and thus is highest at the
equator. According to ESTER 2D models, this is not the case for
rotating stars (see below).

2.3.3. Unique critical angular velocity

Equation (22) shows that there are two solutions for gtot = 0,
and thus two possible critical angular velocities. However, as we
show now, the ω-model removes the geff = 0 root for the ΩΓ-
limit and thus points to a single critical angular velocity. Accord-
ing to the ω-model at equator, Eq. (1) reads

gtot(π/2) = geff(π/2) + grad(π/2), (23)

where

grad(π/2) = −
κ(π/2)L
4πcGM

(
1 − ω2

)−2/3
geff(π/2), (24)

and

geff(π/2) = −ReqΩ2
k

(
1 − ω2

)
. (25)

Here geff and grad are the radial components of the accelerations
(thus positive when outwards). We can then write the equatorial
total gravity scaled with Ω2

kReq as

g̃tot(π/2) = ω2 + Γeq(1 − ω2)1/3 − 1, (26)

where Γeq is the standard Eddington parameter evaluated at the
equator. From Eq. (24), we see that at the equator, the ratio
grad/geff increases as (1 − ω2)−2/3 with increasing ω, which also
implies that if geff approaches 0 when ω→ 1, grad will also tend
to 0 but more slowly. Figure 1 shows the scaled total gravity,
effective gravity, and radiative acceleration at the equator as a
function of ω with Γeq = 0.5. The total gravity at the equator
has two zeros; the first root corresponds to ΓΩ(π/2) = 1, and the
second root gives geff(π/2) = 0.

For sub-critical rotation (i.e. gtot < 0 or |geff | > grad), the
star is gravitationally bound. When we increase ω, the equato-
rial effective gravity |geff | decreases faster than grad, to the point
where |geff | = grad (equivalently, ΓΩ(π/2) = 1), at this point,
Ω = Ωc and gtot = 0. Increasing ω even more would result in a
radiative acceleration that surpasses the effective gravity at equa-
tor. When this happens, gtot > 0 and the star is no longer gravita-
tionally bound up toω = 1 where the second root is reached. The
solution ΓΩ(π/2) = 1 is therefore always reached before ω = 1,
when evolution (say) drives the growth of ω.

2.3.4. Critical rotation given by the ω-model

The main difference between the MMM model and ours, in
addition to our unique critical angular velocity, comes from the
latitudinal variation of ΓΩ. In MMM models the latitudinal vari-
ations in ΓΩ come from the latitudinal variations in opacity when
we discard the small correcting function ζ(θ). As a consequence,
if the surface opacity were constant (e.g. with Thomson opac-
ity of electrons), ΓΩ would reach unity at all latitudes at the
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g~rad

Fig. 1. Scaled total gravity, effective gravity, and radiative acceleration
at the equator as a function of ω with Γeq = 0.5. The total gravity at the
equator has two zeros; the first root corresponds to ΓΩ(π/2) = 1, and the
second to geff(π/2) = 0.

same time when ω increases! The ω-model predicts that the ratio
between effective gravity and radiative flux depends on latitude
and diverges at the equator when criticality approaches. Even
in the extreme case of a constant surface opacity, only a small
equatorial region therefore becomes unbound at criticality. The
ω-model shows that opacity variations over the stellar surface are
unimportant for determining the latitude where gtot = 0 because
of the equatorial singularity. This discussion demonstrates that
the use of a constant ratio between the surface flux and the effec-
tive gravity (the von Zeipel law) as done in the MMM model
has an important consequence for determining a critical rotation
because it removes the equatorial singularity of the ratio T 4

eff
/geff .

In line with the ω-model and the maximum of ΓΩ at equator,
the condition giving the critical angular velocity Ωc is

ΓΩ(π/2) =
κ(π/2)L
4πcGM

1 − Ω2
c

Ω2
k

−2/3

= 1, (27)

or equivalently,

Ωc = Ωk

√
1 − Γ

3/2
eq . (28)

These equations show that Ωc is reduced with increasing
Eddington parameter compared to Ωk. Maeder & Meynet (2000)
came to the same conclusion, but with a different expression for
critical angular velocity, namely Ωc ∝ Ωk

√
1 − Γeq. Because

Γeq ≤ 1, their ratio critical to Keplerian angular velocity is
lower for the same equatorial Eddington parameter. When radia-
tive acceleration effects are weak at the equator, that is, when
Γeq � 1, we find Ωc ' Ωk, as expected. This is also the solution
of Maeder & Meynet (2000) for critical angular velocity in this
regime.

2.3.5. Some conclusions from the ω-model

The analysis based on the ω-model underlines three important
points:

1. Formally, the Keplerian angular velocity is never reached.
The critical angular velocity such that the centrifugal accelera-
tion overcomes the sum of the gravitational and radiative accel-
erations at some place on the stellar surface is always lower than
the Keplerian angular velocity.
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2. This balance of forces is always first reached at the equator
when Ω/Ωk increases because the ratio T 4

eff
/geff at the equator

diverges when criticality is reached.
3. The use of the von Zeipel law, which assumes the propor-

tionality of the surface flux with the effective gravity gives a criti-
cal latitude that depends on the latitudinal variations of the surface
opacity and is therefore not necessarily located at the equator.

These conclusions based on the ω-model immediately raise
the question of the accuracy of this model. This is the next point
that we discuss in light of observations and full 2D ESTER
models.

2.4. The ΩΓ-limit with ESTER 2D models

2.4.1. Interferometric observations (again)

We first briefly return to observations. As described above
(Sect. 2.1.2), interferometric observations of fast-rotating stars all
show that β < 1/4 when the surface flux distribution is assumed
to vary as Teff ∝ g

β
eff

. Moreover, they clearly show that β decreases
with increasing rotation (Domiciano de Souza et al. 2014). From
this discussion we can now interpret the fact that 4β < 1 and
decreases with increasing rotation as evidence for a divergence
of the ratio T 4

eff
/geff at the equator when criticality is approached.

2.4.2. Accuracy of the ω-model

The assumptions of the ω-model are that the flux vector is anti-
parallel to the effective gravity, the gravitational field is that of
a point mass (the Roche model), and the rotation is uniform.
The last two of these approximations probably entail the largest
errors. They can be appreciated by comparing the flux latitudinal
distribution of the ω-model with the output of 2D ESTER mod-
els. A comparison has been made in Espinosa Lara & Rieutord
(2011), but here we focus on the relative difference between the
flux of the two models.

We computed the flux from the ω-model, Eq. (11), where
L, M, ω, r, and geff were taken from the output of ESTER 2D
models. For two 2D ESTER zero-age main sequence (ZAMS)
models of 15 M� and 40 M�, we computed the relative difference
between the fluxes of the ESTER and ω-model, namely

δF
F

=
|FESTER − Fω|

FESTER
(29)

as a function of co-latitude. The result is shown in Fig. 2.
On the ZAMS, and for rotation rates of up to 90% of the

Keplerian angular velocity, the relative difference between the
fluxes remains lower than 10%. For angular velocity ratios lower
than 50%, this difference drops to less than one percent, making
the ω-model quite reliable for most of the rapidly rotating stars.

This comparison has been made at ZAMS. As stars evolve
along the MS, they become more and more centrally condensed
(this is discussed in the follow-up paper) and thus better sat-
isfy the Roche approximation. Therefore, the relative deviation
between the radiative flux of ESTER 2D models and the analytic
ω-model probably never exceeds 10% for stars withω ≤ 0.9 dur-
ing the MS. This is illustrated in Fig. 2 (top) with a 15 M� model
at mid-MS rotating with ω = 0.9. Clearly, the relative difference
is reduced compared to the ZAMS model.

2.4.3. The ΩΓ-limit with ESTER 2D models

The current ESTER 2D models describe the steady state of a
rotating star with a convective core and a radiative envelope,
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Fig. 2. Relative difference between the radiative flux of the ω-model
and the ESTER model as a function of co-latitude for a 15 M� (top)
and a 40 M� (bottom) ZAMS-star with various angular velocity ratios.
The black line corresponds to an evolved 15 M� ESTER 2D model
with ω = 0.9 and a fractional abundance of hydrogen in the convec-
tive core Xcore/X0 = 0.5. X0 is the initial hydrogen mass fraction at
ZAMS. The minimum of each curve corresponds to a sign change of
FESTER − Fω.

that is, an early-type star. Compared to previous attempts of
making stellar models in two dimensions (e.g. Roxburgh 2004;
Jackson et al. 2005), ESTER models self-consistently include
the differential rotation of the radiative envelope that is driven by
the baroclinic torque. They also treat self-consistently the associ-
ated meridional circulation. A brief description of these models
is given in Appendix B, but we refer to the original papers of
Espinosa Lara & Rieutord (2013) and Rieutord et al. (2016) for
a more detailed account.

In Fig. 3 we illustrate the latitudinal variations in ΓΩ for a
15 M� ESTER model and for a 40 M� ESTER model both taken
at ZAMS, computed for the metallicity Z = 0.02 and for various
values of ω that we now define as ω = Ωeq/Ωk (see below).

We first consider the 15 M� ESTER-model at ZAMS. Inter-
estingly, we find that ΓΩ(θ) first slightly decreases with increas-
ing co-latitude before eventually vigorously increasing near
equator at high angular velocity ratios. The decrease in ΓΩ(θ)
is clearly an opacity effect, which we trace back to the density
decrease with θ along the stellar surface. The increase near equa-
tor at high rotation speeds is an effect of the divergence of the
function f (r = 1, θ). Surprisingly, we see that ΓΩ = 1 requires
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Fig. 3. Rotation-dependent Eddington parameter ΓΩ(θ) as a function of
colatitude for various fractions of the Keplerian angular velocity for a
15 M� (top) and a 40 M� (bottom) ESTER model at ZAMS, with Z =
0.02. The grey area corresponds to supercritical rotation.

ω = 0.997, showing that the difference between the actual criti-
cal angular velocity and the Keplerian velocity is really tiny for
a 15 M� ZAMS star.

To strengthen the effects of radiative acceleration, we consid-
ered the case of a 40 M� ZAMS model. Here we also see (Fig. 3
bottom) that ω must be as high as ∼0.96 for the ΩΓ limit to be
reached2. Technically, these latter results are not as precise as
those for the 15 M� model because we approach the current lim-
its of the ESTER code in terms of resolution, but they also point
to a small difference between Ωc and Ωk.

From Eq. (28), at ZAMS, we find the equatorial Eddington
parameter Γeq ' 0.033 at criticality for the 15 M� ESTER model
and Γeq ' 0.18 for the 40 M� ESTER model. This is surprisingly
low for such massive stars. To clarify this result, Fig. 4 shows
the latitudinal variations in Eddington parameter Γ for both the
15 M� and 40 M� ESTER 2D models and for various angular
velocity ratios. For the two models, Γ decreases with co-latitude
when rotation is non-zero. The more rapid the rotation, the lower
Γeq. The only latitudinal dependence of the Eddington parameter
being on opacity, we trace back the decrease in the latter at low
latitudes to the decrease in surface density (see Appendix A).

2 ω has to be slightly lower than 0.96 so that ΓΩ is exactly unity at
equator. At ω = 0.96, the star is already supercritical at the equator
(grey area in Fig. 3).
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Fig. 4. Eddington parameter Γ as a function of co-latitude for a 15 M�
(top) and a 40 M� ESTER 2D model (bottom) at ZAMS and for various
angular velocity ratios, with Z = 0.02.

We note that the opacity cannot be lower than a minimum set
by pure electron scattering. While the latitudinal variations of κ
are somewhat unimportant for determining the spatial location
of criticality, they are crucial to the value of Ωc/Ωk.

It might be wondered, however, whether more evolved or
more massive stars might have larger Γeq and thus a criti-
cal angular velocity that is farther from the Keplerian angular
velocity. Figure 5 shows the evolution of both ΓΩ(π/2) and Γeq
as a function of the fractional abundance of hydrogen in the con-
vective core Xcore/X0 for a 15 M� ESTER 2D model initially
rotating at ωi ≡ Ωeq,i/Ωk = 0.5, and without considering any
mass loss. For the non-rotating case, evolution tends to increase
Γeq. The increase in luminosity associated with nuclear evolution
surpasses the decrease in surface opacity that is due to stellar
expansion. However, when rotation is included and ωi = 0.5,
criticality is reached when Xcore/X0 ' 0.36. At this time, ΓΩ

diverges. While evolution proceeds and ω grows, the star flat-
tens considerably, causing a significant drop in opacity in the
equatorial region. This is clearly shown by the Γeq curve of
Fig. 5. After a slight increase at the beginning of evolution, Γeq
drops when criticality approaches. For this model, the equatorial
opacity reduction completely dominates the effect of luminosity
growth due to evolution.

These results tend to confirm the idea put forward by Glatzel
(1998), namely that the critical angular velocity is not strongly
modified by the Eddington limit. We may conclude that because
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of the noticeable effect of rotation on opacity at the equator, the
critical angular velocity is only slightly reduced compared to the
Keplerian angular velocity, at least for stars with a mass lower
than 40 M� at Z = 0.02.

In practice, the difference is therefore tiny enough to be
neglected in view of the other uncertainties of stellar models.
We therefore continue to express Ω as a fraction of the equato-
rial Keplerian angular velocity Ωk to appreciate the distance to
criticality, bearing in mind that this fraction is slightly smaller
than the actual one.

3. Local mass-flux prescription from 1D models

We now address the second question of the paper: the depen-
dence of mass and angular momentum losses on rotation rate.
All hot stars have radiation-driven winds that become directly
observable in spectral energy distributions and spectral lines as
soon as they are above some luminosity threshold. For massive
stars of spectral types O, B, and A, this threshold corresponds
to L ∼ 104L� (Abbott 1979). Above this luminosity, massive
stars show direct spectroscopic evidence of winds throughout
their lifetime (UV P Cygni line profiles and optical emission
lines such as Hα, see Abbott 1979 or Kudritzki & Puls 2000 and
references therein). The radiative acceleration has a significant
effect on the total gravity, and as shown in the previous section,
reduces the critical angular velocity.

In this section we propose to derive a local mass-flux pre-
scription that can be seen as a local equivalent of CAK origi-
nal theory where the radiation-driven wind is assumed to be an
isothermal stationary flow that is driven outward by photon scat-
tering and absorption. We account for the finite cone angle of the
radiating photospheric surface and for radial variations of ioni-
sation using the results of Pauldrach et al. (1986) and Friend &
Abbott (1986). Still, with or without these additional corrections,
the global mass-loss rate follows a similar scaling for the wind
momentum-luminosity relation (Kudritzki et al. 1995; Puls et al.
1996).

3.1. Global mass-loss rate derived from 1D CAK theory

In the 1D spherically symmetric case (i.e. without rotation), the
two hydrodynamical equations needed to describe the mass-flux

are the conservation of mass,

Ṁ = 4πr2ρv = const., (30)

and the radial momentum equation,

v
∂v

∂r
= −

1
ρ

∂p
∂r

+ g + grad, (31)

where Ṁ is the total mass-loss rate of the star, and ρ, v, p are the
density, radial velocity, and gas pressure, respectively. grad is the
radiative acceleration,

grad = gline
rad + ge, (32)

where gline
rad is the line-driven acceleration, and ge = κeF/c is

the radiative acceleration due to Thomson scattering. κe is the
opacity from electron scattering. Because we are interested in
O, B, and A stars, both bound-free and free-free transitions are
neglected (e.g. Runacres & Blomme 1994; Gayley 1995). This
may not be valid for Wolf-Rayet stars, however. Finally, g is the
gravitational acceleration,

g = −
GM
r2 · (33)

Using the ideal gas equation of state, we write

p = c2
sρ, (34)

where cs is the isothermal sound speed.
Because winds from hot stars are mostly line driven, the eval-

uation of the line-driven radiative acceleration plays a crucial
role in determining the mass flux. In the Sobolev approxima-
tion (i.e. large velocity gradient approximation), considering a
purely radial streaming radiation from a point-source star, the
line-driven radiative acceleration can be written (CAK)

gline
rad = M(t)ge ≡ k

(
∂v/∂r
ρvthκe

)α
ge, (35)

where M(t) = kt−α is the CAK force multiplier. α and k are the
CAK force multiplier parameters (FMPs). α can be interpreted
as the ratio of the line force from optically thick lines to the
total line-force, which thus decreases with decreasing effective
temperature because of the increased iron group lines (e.g. Puls
et al. 2000). Moreover, the quantity k is related to the fraction
of the total stellar flux, which would be blocked in the photo-
sphere if all lines were optically thick (Puls et al. 2000). t is the
electron optical depth parameter and vth is the thermal speed,
usually taken as the proton thermal speed vth ≡ (2kBTeff/mH)1/2

(e.g. Abbott 1982). However, at least in the lower part of the
wind, Fe line-driving dominates. Therefore we instead take
vth ≡ (2kBTeff/mFe)1/2 for the standard CAK formalism. We then
obtain the global mass-loss rate of a non-rotating star, namely

ṀCAK =
4π
κevth

(
kακeL
4πc

)1/α (
1 − α
α

) 1−α
α

[GM(1 − Γe)]
α−1
α . (36)

The global mass loss (without rotation) thus scales as

ṀCAK ∝ [M(1 − Γe)](α−1)/α L1/α, (37)

which is the basis of the wind momentum-luminosity relation
(Kudritzki et al. 1995; Puls et al. 1996).
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3.2. Finite disc and ionisation corrections

In the CAK approach, the purely radial streaming radiation leads
to an electron optical depth parameter t that only depends on
(dv/dr)−1. This assumption neglects the finite cone angle of the
radiating photospheric surface, however. Using Eq. (49) of CAK,
we may rewrite t with its exact expression, leading to the modi-
fied force multiplier (Pauldrach et al. 1986), namely

M(t′) = M(t)
2

1 − µ∗

∫ 1

µ∗

[
(1 − µ2)v/r + µ2v′

v′

]α
µdµ, (38)

where v′ = dv/dr, u = −R/r, and µ is the cosine of the angle
between the direction of emitted radiation and the radial direc-
tion and µ∗ =

√
1 − u2. Evaluating the integral in Eq. (38) yields

the modified force multiplier, corrected for finite cone angle,
namely

M(t′) '
M(t)

u2(1 + α)
(
1 + w

uw′

) [
1 −

(
1 − u2 − u

w

w′

)1+α
]
, (39)

where w = v/vth and w′ = dw/du. As in the original CAK
derivation, the mass-loss rate is calculated at the critical radius
rc defined by a singularity and a regularity condition. Following
Pauldrach et al. (1986), we assumed rc to be located very close
to the stellar radius, rc ' R. This assumption may not be verified
for rotators close to criticality, for which the fast-wind solution
(with rc ' R) is replaced by the so-called Ω-slow solution in the
equatorial plane. This solution is characterised by an increased
mass-loss rate, a slower and denser wind with a critical radius
that is much farther in the wind (Curé 2004; Curé et al. 2005;
Araya et al. 2017). Because the increase in mass loss associated
with the Ω-slow solution was quite modest (factor ∼2 in Curé
2004), we decided to ignore it. We further assumed the velocity
to follow a power law like
v(u) = v∞(1 + u)β, (40)
where v∞ is the terminal velocity of the wind and 0.7 . β . 1.3.
The corrected force multiplier then simplifies to

M(t′) '
M(t)
1 + α

, (41)

and results in a modified prefactor for the mass-loss rate. Thus
we use

Ṁ =

(
1

1 + α

)1/α

ṀCAK. (42)

Because 0 < α < 1, the finite-disc correction reduces
the global mass-loss rate, and for typical values of α, namely
between 0.4 and 0.7, the CAK mass-loss rate is multiplied by a
factor ∼4/9. Additionally, the effect of radial changes in ion-
isation in the outward direction in the wind can be approxi-
mately taken into account by correcting the force multiplier of
Eq. (41), namely multiplying it by a factor (ne/W)δ (Abbott
1982), where ne is the electron density in units of 1011 cm−3

and W ≡ 0.5(1 −
√

1 − u2) is the radiation dilution factor. δ is
then another FMP. This modification of the line-driven acceler-
ation can be roughly accounted for by replacing α in the power
exponents of Eqs. (36) and (42) with α′ ≡ α − δ (Puls et al.
1996, 2000). Finally, we obtain the modified local mass-flux in
the non-rotating case,

ṁ ≡
Ṁ

4πR2 =

(
α

vthc

) (
k

1 + α

)1/α′

×

[
c

κe(1 − α)

(
|g| −

κeF
c

)] α′−1
α′

F1/α′ , (43)

where we used the radiative flux F rather than the lumino-
sity.

Unlike the approach of MMM, we do not need to express
the mass flux so that it explicitly depends on the total gravity.
Rather, it now depends on gravity g, corrected for the radiative
acceleration from electron scattering κeF/c.

3.3. Parametrisation of the FMPs

We now focus on the different FMPs α, k, and δ to estimate how
they vary with the effective temperature Teff . We assumed that
δ does not significantly vary with Teff and took δ = 0.1, a typ-
ical value for hot stars at solar metallicity (Abbott 1982). We
note that δ can reach much higher values in very metal-poor
stars where the wind is mostly driven by hydrogenic lines, and
can even be negative under very specific conditions (Puls et al.
2000).

For α, we took fixed values at Teff = 10 kK, 20 kK, 30 kK,
and 40 kK and imposed linear interpolation in between (J. Puls,
priv. comm.), namely

α(Teff) =


0.45, if Teff ≤ 10 kK,
1.5 × 10−5Teff + 0.3, if 10kK < Teff ≤ 20 kK,
5 × 10−6Teff + 0.5, if 20kK < Teff ≤ 40 kK,
0.7, if Teff > 40 kK.

(44)

This function is shown in Fig. 6.
Finally, we calibrated k assuming that our expression for the

mass-loss rate in the non-rotating regime of Eq. (43) is equiva-
lent to the expression of Vink et al. (2001). The Vink et al. (1999)
calculations of wind models for OB stars showed that around
Teff ' 25 kK, the mass-loss rate Ṁ suddenly increases (towards
lower Teff) as a result of the recombination of Fe IV into Fe III,
which has a stronger line acceleration in the lower part of the
wind. Lamers et al. (1995) and Vink et al. (1999) suggested the
existence of a second bi-stability jump, around Teff = 10 kK, that
would be caused by the recombination of Fe III into Fe II. Vink
et al. (2001) did not account for this jump, however.

The Vink et al. (2001) prescription for mass loss still awaits
confirmation, however. Their predictions for the size and posi-
tion of the main bi-stability jump have not been confirmed by
observations until today. For instance, Markova & Puls (2008)
found an Ṁ jump of a factor in between 0.4 and 2.5, and more
recent theoretical modelling by Petrov et al. (2016) found the
bi-stability jump at T jump

eff
' 20 kK, while Vink et al. (2001)

predicted an Ṁ-jump by a factor ∼10 located at T jump
eff
' 25 kK.

Crowther et al. (2006), on the other hand, found a more grad-
ual decrease in terminal velocity v∞ instead (thus a more gradual
increase in Ṁ). In addition, a discrepancy of a factor 2–3 also
appears when the mass-loss rates of hot OB stars are compared
with Teff > T jump

eff
obtained with the Vink et al. (2001) models and

from X-ray, UV, and IR diagnostics (e.g. Najarro et al. 2011;
Sundqvist et al. 2011; Bouret et al. 2012; Cohen et al. 2013;
Leutenegger et al. 2013; Hervé et al. 2013; Rauw et al. 2015).
This could be due to the significant effect of small-scale inhomo-
geneities in the wind (e.g. Puls et al. 2008; Sundqvist & Owocki
2013; Puls et al. 2015) and/or to the outdated solar mixture used
in the Vink et al. (2001) models, namely Z� ' 0.02 with an
Anders & Grevesse (1989) mixture. The more recent solar com-
position with Z� ' 0.014 of Asplund et al. (2009) could reduce
the discrepancy between predicted mass-loss rates and obser-
vations (see Sect. 4.3 for a short discussion of the effects of
metallicity on mass loss). Nevertheless, the Vink et al. (2001)
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Fig. 6. Adopted force multiplier parameter α as a function of the effec-
tive temperature Teff from Eq. (44) (courtesy J. Puls). The black vertical
dashed lines mark the location of the imposed values for α.

models are still widely used in stellar evolution codes, and we
also used their recipe to calibrate k to qualitatively predict the
impact of radiation-driven winds on the rotational evolution of
massive stars.

We thus assumed Ṁ = ṀVink in the non-rotating case, and
we calibrated k with non-rotating 1D ESTER models, that is,
using mass, luminosity, and effective temperature outputs from
1D ESTER models of various masses as inputs to the Vink et al.
(2001) mass loss prescription, taking vth as the thermal velocity
of Fe ions, namely vth ≡ (2kBTeff/mFe)1/2. Because we calibrated
k using the Vink et al. (2001) mass-loss prescription, each line
was considered with its appropriate vth.

From now on, the calibrated k is written k′. We find that
k′ slightly varies along the main sequence and therefore had to
decide which evolution state to use for calibration. We chose to
calibrate our ESTER models at ZAMS. Fitting k′ finally gives
us the following semi-empirical function k′(Teff) at Z = 0.02,
defined on both sides of the effective temperature jump,

k′(Teff) '
exp(−2.15 × 10−4Teff + 2.41), if Teff ≤ 20 kK,
−3.00 × 10−6Teff + 0.22, if 20 kK < Teff ≤ T jump

eff
,

1.16 × 10−6Teff + 0.08, if Teff > T jump
eff

,

(45)

where Vink et al. (2001) defined

T jump
eff

= 61.2 + 2.59 log〈ρ〉, (46)

with 〈ρ〉 the characteristic wind density at 50% of the terminal
velocity of the wind, given by

log〈ρ〉 = −14.94 + 3.2Γe. (47)

The function k′(Teff) is shown in Fig. 7. Our values of k′
assume vth = (2kBTeff/mFe)1/2; other assumptions on vth would
lead to other values of k′ to remain compatible with the Vink
et al. (2001) mass loss.

4. Effects of rotation on mass and angular
momentum loss

After parametrising the FMPs and expressing the local mass-flux
as a function of the radiative flux as well as gravity and accelera-
tion from free-electron scattering in the non-rotating regime, we
assumed that the latter follows the same scaling laws when rota-
tion is taken into account. We therefore ignored the changes in
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Fig. 7. Calibrated FMP k′ as a function of the effective temperature
Teff for various 1D ZAMS models computed with ESTER for different
masses with Z = 0.02. The red full line shows the corresponding fit.

finite disc prefactor and set this correction to 4/9. With Eq. (43),
the local mass-flux per unit surface for a rotating star reads

ṁ(θ) =
4
9
α(θ)k′(θ)1/α′(θ)

vth(θ)c

×

[
c

κe(1 − α(θ))

(
|geff(θ)| −

κeF(θ)
c

)] α′(θ)−1
α′ (θ)

× F(θ)1/α′(θ). (48)

This local mass-flux expression is now θ dependent and thus
leads to an anisotropic stellar wind that, at first glance, would
favour polar ejection due to the higher polar radiative flux3 (e.g.
Owocki & Gayley 1997; Owocki et al. 1998a; Petrenz & Puls
2000; Maeder & Meynet 2000). We note that Curé (2004) took a
different approach and analytically derived an equation for the
mass-loss rate that accounts for rotation at the equator. This
equation has a Ω-slow solution for rotators close to criticality.
We now investigate the surface distribution of ṁ from the out-
puts of ESTER 2D models at ZAMS with Z = 0.02 and for
various ω.

4.1. Latitudinal variations in mass and angular momentum
loss

We computed the local mass-flux ṁ(θ) as well as the local angu-
lar momentum flux

˙̀(θ) = ṁ(θ)Ω(θ)R2(θ) sin2 θ, (49)

with ESTER 2D models and prescription (48).
Figure 8 shows the local mass-flux ṁ and local angular

momentum flux ˙̀ as a function of colatitude for ESTER 2D
models of a 15 M� star with Z = 0.02, at ZAMS and for var-
ious angular velocity ratios ω = Ωeq/Ωk. When the star is far
from the Ω-limit, mass loss is favoured in polar regions and thus
decreases towards the equator. However, for a sufficiently high

3 Our approach implicitly assumes the presence of a weak, polewards
directed component of the radiation force. Such a non-radial compo-
nent is the result of the decreasing radial velocity towards the equator,
and is essential for inhibiting a flow that otherwise would be directed
towards the equator. Within our approach, however, this component can
be neglected when estimating the theta-dependence of ṁ. For details,
see Owocki et al. (1998a), for example.
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ṁ
[g
·c

m
−

2
·y

r−
1
]

10-11

10-10

10-9

10-8

10-7

10-6

10-5

 0  10  20  30  40  50  60  70  80  90

θ

ω= 0.3
ω= 0.5
ω= 0.7
ω= 0.9

ω= 0.95

ℓ̇
[M

⊙
·y

r−
2
]

Fig. 8. Variation in surface mass flux ṁ (top) and surface angular
momentum flux ˙̀ (bottom) as a function of colatitude θ for a 15 M�
ESTER 2D-model at ZAMS with Z = 0.02 and various angular veloc-
ity ratios ω. The main bi-stability limit is reached near the equator for
ω & 0.85, and induces a strong mass-flux and angular momentum flux
for colatitudes in between θjump and the equator.

angular velocity ratio (ω & 0.85 in Fig. 8), there is a colatitude
θjump where Teff(θjump) = T jump

eff
and the local bi-stability limit is

crossed. In that case, the mass flux is enhanced between θjump
and the equator and the star is in a two-wind regime (TWR),
otherwise it is in a single-wind regime (SWR). This local bi-
stability jump therefore strongly modifies the distribution of the
mass flux with colatitude: while mass loss is favoured in polar
regions in the SWR, it is far stronger in equatorial regions in
the TWR. Similarly, while the angular momentum flux is maxi-
mum at some intermediate colatitude in the SWR, it is strongly
favoured in the equatorial regions in the TWR. The idea of an
enhanced equatorial mass-flux that is due to both gravity dark-
ening and the local bi-stability limit has also been discussed in
the past, for instance, by Zickgraf et al. (1986, 1989), Lamers
& Pauldrach (1991), Owocki & Gayley (1997), Owocki et al.
(1998b), and Pelupessy et al. (2000).

This change in the latitudinal distribution of the angular
momentum flux is particularly important for stellar evolution.
In the SWR, polar-dominated mass loss allows rapidly rotating
massive stars to lose mass during the MS without losing much
angular momentum, hence keeping a rapid rotation throughout
their evolution. In the TWR, however, mass loss becomes highly
dominated by the equatorial regions and the star loses far more

angular momentum. This enhanced loss of angular momentum in
the TWR could therefore induce a drop in ω during stellar evolu-
tion. This phenomenon will be discussed in the follow-up paper
and is not to be confused with the bi-stability braking introduced
by Vink et al. (2010), which is purely one-dimensional and cor-
responds to the global transition between the hot and cold side
of the bi-stability jump. We note that a star need not be close to
Keplerian rotation to reach the local bi-stability limit. A rotat-
ing star that has an equatorial effective temperature that is only
slightly higher than the temperature of the jump can reach the
TWR with a small increase of ω.

4.2. Effects of rotation on the global mass and angular
momentum loss rates

We now compute the global mass and angular momentum loss
rates by integrating ṁ(θ) and ˙̀(θ) over the distorted stellar sur-
face as follows:

Ṁ = 2π
∫

ṁ(θ)R2(θ)

√
1 +

R2
θ

R2(θ)
sin θdθ, (50)

L̇ = 2π
∫

˙̀(θ)R2(θ)

√
1 +

R2
θ

R2(θ)
sin θdθ, (51)

where R(θ) is the θ-dependent radius of the star. The area element
at the stellar surface is

dS = R2(θ)

√
1 +

R2
θ

R2(θ)
sin θdθdϕ, (52)

where Rθ = ∂R/∂θ (Rieutord et al. 2016).
The global mass-loss rate Ṁ, the critical angular velocity

ratio ωc = Ωeq/Ωc as given by the ω-model (Eq. (28)), the
ratio of equatorial angular velocity to Keplerian angular veloc-
ity ω = Ωeq/Ωk, and the angular momentum loss timescale
TL = L/L̇ are reported in Table 1 for a 15 M� star ESTER 2D
model at ZAMS and at Z = 0.02. For this stellar model in the
SWR, we find the global mass-loss rate to slightly decrease for
increasing ω, for instance, Ṁ(ω = 0.6)/Ṁ(ω = 0) ' 0.87 (see
Fig. 9 top). Similar results have been obtained by Müller & Vink
(2014).

With increasing ω, the total angular momentum of the star L
increases, and even though the global mass-loss rate Ṁ decreases
in the SWR, the global loss of angular momentum L̇ also
increases in this regime. This is simply because L̇ increases
for increasing ω. It is even more interesting, however, that the
timescale of angular momentum loss TL = L/L̇ is approxi-
mately independent of the degree of criticality ω in the SWR
(see Fig. 9, bottom).

On the other hand, the TWR is characterised by a strong
increase in global mass and angular momentum loss rates. In
this regime, TL rapidly decreases as ω approaches unity. Both
the strong increase in Ṁ and decrease in TL can be explained by
the increasing stellar surface fraction where the effective temper-
ature is lower than T jump

eff
as ω increases (see Fig. 8).

That Ṁ only gradually increases with increasing ω in the
TWR is a result specific to 2D models. In 1D models, the bi-
stability jump is accounted for with a stronger global mass-loss
rate if the mean effective temperature of the star is lower than
T jump

eff
∼ 22.5–25 kK, according to Vink et al. (2001). In the

present work however, 2D models reach the bi-stability limit
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Table 1. Summary of the main results for ESTER 2D models of a 15 M�
star with Z = 0.02 at ZAMS.

ω Ωeq/Ωc log Ṁ log TL

0 0 −8.40 –
0.1 0.105 −8.41 8.60
0.2 0.210 −8.42 8.61
0.3 0.313 −8.43 8.62
0.4 0.415 −8.44 8.63
0.5 0.516 −8.46 8.64
0.6 0.615 −8.47 8.65
0.7 0.714 −8.48 8.65
0.8 0.812 −8.49 8.64
0.9 (a) 0.909 −8.27 8.35
0.95 (a) 0.957 −8.25 8.22
0.99 (a) 0.995 −8.19 8.13

Notes. The first column reports the ratio of equatorial angular velocity
to Keplerian angular velocity ω, the second column reports the critical
angular velocity ratio Ωeq/Ωc, the third column is the global mass-loss
rate log Ṁ, and the last column gives the ratio between total angular
momentum and angular momentum loss rate log TL = logL/L̇. Ṁ is in
M� yr−1 and TL in yr. (a)Star in the TWR.

if the local effective temperature somewhere on the stellar sur-
face is lower than T jump

eff
. This difference has two consequences.

Firstly, 2D models can reach the bi-stability limit even with an
average effective temperatures higher than T jump

eff
. In Fig. 10, we

illustrate the global mass-loss rate for a variety of angular veloc-
ity ratios at ZAMS for a 15 M� and a 10 M� ESTER model at
ZAMS and with Z = 0.02, against the corresponding surface-
averaged effective temperature T eff of the model. In these
models, T eff is greater than T jump

eff
' 22.8 kK for allω. Thus, equiv-

alent 1D models would just have ignored the bi-stability jump.
Secondly, in 2D models the surface fraction where the effec-

tive temperature is lower than T jump
eff

monotonically increases
with increasing ω. This results in a gradual variation in Ṁ (and
TL) with T eff in the TWR (see Fig. 10). Hence, in rotating stars
the bi-stability jump does not induce a discontinuity of the global
mass-loss rate (but it induces a discontinuity of the local mass-
flux, see Fig. 8) as the ω parameter increases (and therefore
as the mean effective temperature decreases). The discontinu-
ity occurs only on the derivative of the function Ṁ(Teff). This is
further discussed in the follow-up paper.

These points show that even though the bi-stability jump
might eventually be confirmed observationally (although its
location in terms of mean effective temperature would be scat-
tered, see Fig. 10), a full 2D spectral analysis is required to ver-
ify both qualitative and quantitative features of radiation-driven
winds from rapidly rotating massive stars (e.g. Petrenz & Puls
1996). As a first step, a way around this full analysis would be
to select stars with a small v sin i to select either slowly rotat-
ing stars or stars that are viewed pole-on. Obviously, the precise
determination of v sin i for hot massive stars is a challenge in
particular because rotational effects are mixed with other line-
broadening effects such as the so-called macro-turbulence (e.g.
Simón-Díaz & Herrero 2007).

4.3. Metallicity effect

Before we conclude this paper, a few words on low-metallicity
stars are in order. Metallicity is indeed known to have an
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Fig. 9. Variation in mass loss rate Ṁ (in M� yr−1, top) and the angular
momentum loss timescale TL (in yr, bottom) as a function of the angular
velocity ratio ω for a 15 M� star at ZAMS with Z = 0.02. The dashed
lines show the same as the solid line, but with an FMP α′ that has been
reduced by 1% to show the sensitivity of Ṁ and TL to FMP variations.

important effect on radiatively driven winds because metal-
lic lines, which significantly contribute to opacity, weaken and
eventually disappear. As a consequence, the FMPs, such as α or
k, are expected to decrease with a decreasing Z (Kudritzki et al.
1987; Puls et al. 2000, 2008). Moreover, mass loss is very sensi-
tive to the value of the FMPs. In particular, a small decrease in
α′ leads to a significant decrease in Ṁ (see Fig. 9). In addition,
a low metallicity causes stars to be more compact and there-
fore have a higher effective temperature (Maeder 2009). This
effect may compensate (partly?) for the loss of opacity on the
wind acceleration. All in all, because the FMPs have a signif-
icant influence on mass-loss calculations and because they are
ill-known at metallicities much lower than solar, we do not ven-
ture any prediction on the behaviour of mass flux at low Z. We
leave this question to future investigations.

5. Discussion and conclusions

We investigated two questions that are a prerequisite to the study
of the evolution of massive rapidly rotating stars: (i) What is the
critical angular velocity of a star when radiative acceleration is
significant in its atmosphere? (ii) How do the mass and angular
momentum loss rates depend on the stellar rotation rate?

A88, page 11 of 14

https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201834599&pdf_id=9


A&A 625, A88 (2019)

-9.8

-9.6

-9.4

-9.2

-9

-8.8

-8.6

-8.4

-8.2

-8

 22  23  24  25  26  27  28  29  30  31  32

lo
g 1

0 
M.

T eff(kK)

Fig. 10. Global mass-loss rate Ṁ (in M� yr−1) for a 15 M� (red) and a
10 M� (green) ESTER model against the corresponding mean effective
temperature T eff , at ZAMS with Z = 0.02 and for ω ∈ [0, 1[. Arrows
indicate the direction of increasing ω.

To the first question, we answer that the critical angular
velocity is very close to the classical Keplerian angular veloc-
ity at the equator, at least for stars with masses lower than
40 M� (and for Z = 0.02). The role of radiative acceleration
turns out to be rather limited because of the combination of a
reduced opacity and reduced flux at the equator. The reduction
of the flux, the so-called gravity darkening, is less than was pre-
dicted by the von Zeipel model. This latter point is the main
difference between this study and the pioneering investigations
of Maeder (1999) and Maeder & Meynet (2000). ESTER 2D
models indeed show that the flux is almost anti-parallel to grav-
ity in the stellar radiative envelope (Espinosa Lara & Rieutord
2011). To a very good approximation, we can therefore write
F = f (r, θ)geff , which is the base of the ω-model (Espinosa Lara
& Rieutord 2011; Rieutord et al. 2016). We showed that the ω-
model remains close to full 2D ESTER up to rotation as high as
90% of the critical rotation. When equatorial rotation approaches
Keplerian rotation, f (r, θ) diverges at the equator, while in the
von Zeipel model it remains finite. This means that the effective
temperature decreases more slowly at the stellar equator than
what is predicted with the von Zeipel recipe. f (r, θ) is also a
monotonically increasing function of co-latitude. Its maximum
is therefore reached at the equator, hence it turns out that the
total acceleration gtot = grad + geff vanishes first at the equator,
when rotation is increased. Unlike the von Zeipel approximation,
ESTER 2D models never predict that the radiative flux vanishes
at the equator. Critical rotation, defined as the rotation required
for gtot to vanish somewhere at the surface, is therefore always
reached before the equatorial rotation reaches Keplerian rotation.
This point has been made by Maeder & Meynet (2000). How-
ever, 2D models hold that this difference is tiny. Considering a
massive star of 40 M�, we therefore find that criticality, gtot = 0
at the equator, is reached at ω ∼ 0.96 and even at 0.997 for a
15 M� star. This tiny difference can be understood because grav-
ity darkening in the ω-model is weaker than in the von Zeipel
model and because the effect of rotation on opacity leads to a
strong decrease in standard Eddington parameter towards the
equator. To return to the debate between Langer (1997, 1998)
and Glatzel (1998), our results support the latter concerning the
influence of the Eddington limit on the value of critical rotation:
this influence is quite small and never exceeds 4% as far as we
could test (i.e. M ≤ 40 M�, Z = 0.02). The fact that only a

small equatorial region becomes unbound at criticality may lead
to mechanical mass loss. This will be discussed in a forthcoming
work.

To address the second question, we first devised a prescrip-
tion for the surface density of the mass flux based on current
knowledge of radiatively driven winds. The derivation of this
local mass flux was based on the approaches of Castor et al.
(1975) and Pauldrach et al. (1990), but force multiplier param-
eters were adjusted to match the widely used prescriptions of
Vink et al. (2001) for Ṁ in the range Teff ∈ [10, 50] kK. This
prescription led to a discontinuity in the mass flux when Teff

drops below 22.5–25 kK. Because the surface effective tempera-
ture of rotating stars can span a wide range of values from poles
to equator, it easily happens that the discontinuity occurs at some
latitude of the star. In this case, the stellar wind experiences two
regimes, one centred on the poles, the other around the equa-
tor. We have shown that if the star experiences a single-wind
regime (no latitude of discontinuity), the maximum extraction of
angular momentum occurs at mid-latitude, while the mass flux is
maximum at the poles. However, if the jump in mass flux occurs
at some latitude, then both mass loss and angular momentum
loss are maximum in equatorial regions. Interestingly, these two
regimes are expected to affect not only the evolution of the stel-
lar rotation rate, but also the internal rotational mixing because
the applied torque is different in both intensity and location.

Before we conclude, we wish to caution about one impor-
tant simplification of ESTER 2D models. The current ESTER
models indeed assume that no mass flux leaves the photosphere
and a zero normal velocity is imposed at the surface of the star.
Moreover, we assume that as in 1D models, the surface layers
are vertically in hydrostatic equilibrium. All these approxima-
tions are acceptable for determining the bulk structure of the
star, but are likely too rough to describe the surface layers of
a wind-emitting massive star. In particular, the values of the sur-
face opacity, which is important for determining the radiative
acceleration, may be modified when a better coupling between
the wind and the star is introduced. With such a new 2D model
of the wind launch region, the concept and conditions of criti-
cal angular velocity will have to be revisited. With the current
models, predictions are therefore indicative: they are reliable for
intermediate-mass stars (lower than 10 M�), but their realism and
their reliability decrease with increasing mass. Beyond 40 M�,
new models are probably mandatory to obtain a sensible descrip-
tion of the mass-loss phenomenon with rotation.

Finally, on the observational side, we remark that rotation
makes verifying the existence of the jump in the relation Ṁ(Teff)
more difficult. This verification would be possible if we could
select stars whose rotation axis is aligned with the line of sight.
In that case, we would be sure to face the same (polar) wind
regime. If no selection can be made, the random orientation of
the rotation axis means that the observed winds are sourced by
an unconstrained range of Teff , implying that any discontinuity in
the Ṁ(Teff) relation is smoothed out, unless we can reproduce the
observed star with a complete 2D wind+star model. In a follow-
up paper (Gagnier et al. 2019), we apply these results to study the
evolution of rotation in early-type fast-rotating stars and address
the question, among others, how a wind can prevent a massive
star from reaching the critical rotation.
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Appendix A: Opacity dependence on effective
temperature

In this appendix, we show that gravity darkening at the surface
of rotating stars may lead to a decrease in opacity κ towards the
equator. To do this, we assumed that the opacity at the stellar
surface follows Kramer’s opacity law, namely,

κ(θ) ∝ ρs(θ)Teff(θ)−7/2, (A.1)

where ρs(θ) is the local surface density. This approximation
seems to be rather well verified at the surface of rapidly rotat-
ing ESTER 2D models. We recall that the pressure at the surface
is

Ps(θ) = τs
geff(θ)
κ(θ)

∝
geff(θ)
κ(θ)

, (A.2)

where τs ' 2/3 is the Rosseland mean optical depth at the pho-
tosphere. Assuming the power law Teff ∝ g

β
eff

and the ideal gas
equation of state, the previous expression leads to

κ(θ) ∝ Teff(θ)−9/4+1/(2β) with ρs(θ) ∝ Teff(θ)5/4+1/(2β). (A.3)

The value β = 0.25 given by von Zeipel’s law implies that the
opacity increases towards the equator, that is, with decreasing
effective temperature. When β < 2/9 ' 0.222, however, this
simple model shows that the surface opacity decreases towards
the equator. Because β decreases with rotation, β < 2/9 corre-
sponds to a surface flattening ε & 0.08 (or to an angular velocity
ratio ω & 0.4, according to ESTER 2D models). This scaling
relation is only approximate. Still, it shows that a weaker grav-
ity darkening than that of von Zeipel may have a strong effect on
the latitudinal variations in surface density, thus on opacity at the
surface of rotating stars. In other words, in some cases, rotation
may induce a decrease in opacity towards the equator because of
a corresponding reduced density in these regions.

Appendix B: Short presentation of ESTER models

The ESTER code computes the steady state of an isolated
rotating star, including the large-scale flows driven by the
baroclinicity of the radiative regions. It solves in two dimensions
(assuming axisymmetry) the steady equations of stellar structure
with fluid flows, namely the Poisson equation,

∆φ = 4πGρ, (B.1)

where φ is is the gravitational potential; the continuity equation,

∇ · ρu = 0, (B.2)

the momentum equation,

ρu · ∇u = −∇P − ρ∇φ + Fvisc, (B.3)

where Fvisc is the viscous force; and the heat balance equation,

ρTu · ∇s = ∇ · (χ∇T ) + ε∗ in radiative envelopes (B.4)

and

∂r s = 0 in convective cores. (B.5)

This last equation assumes an efficient convection in convective
cores, as can be shown with the mixing-length model.

These equations are completed by boundary conditions that
require that (i) the gravitational potential φ vanishes at infinity,
(ii) velocity fields meet stress-free conditions at the stellar sur-
face, (iii) that the surface radiates like a local black body, and
(iv) the surface is defined by the place where the pressure P
equals geff/κ. Usual notations have been used: G is the gravi-
tational constant, u the velocity field, s the entropy, and ε∗ the
energy produced by nuclear reactions per unit mass.

Regarding the micro-physics, opacity and the equation of
state are given by the OPAL tables using the GN93 mixture
(Grevesse & Noels 1993). It might be argued that the use of
the GN93 mixture is questionable considering that a newer solar
chemical composition have been determined (e.g. Asplund et al.
2009; Przybilla et al. 2009), but it is sufficient because this
newer composition is not so different from the solar mixture
used in Vink et al. (2001) (namely Anders & Grevesse 1989).
The diffusive transport of momentum is ensured by a vanish-
ingly low viscosity, implying that no heat is advected by merid-
ional circulation (this is the zero Prandtl number limit). However,
differential rotation resulting from the baroclinic torque is com-
puted as well as the associated meridional circulation. Nuclear
energy generation is described by an analytical formula includ-
ing the pp- and CNO cycles. A more detailed description can be
found in Espinosa Lara & Rieutord (2013) and Rieutord et al.
(2016).
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