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Abstract Direct measurements of plasma motions at the photosphere are limi-
ted to the line-of-sight component of the velocity. Several algorithms were con-
sequently developed to reconstruct the transverse components from observed
continuum images or magnetograms. We compare the space and time averages
of horizontal velocity fields at the photosphere inferred from pairs of consecutive
intensitygrams by the LCT, FLCT and CST methods and the DeepVel neural
network in order to identify the method best suited for generating synthetic ob-
servations to be used for data assimilation. The Stein and Nordlund (Astrophys.
J. Lett. 753, L13, 2012) magneto-convection simulation is used to generate syn-
thetic SDO/HMI intensitygrams and reference flows to train DeepVel. Inferred
velocity fields show that DeepVel best performs at subgranular and granular
scales and is second only to FLCT at mesogranular and supergranular scales.

Keywords: Photosphere · Velocity fields, Photosphere · Granulation

1. Introduction

Numerical simulations of solar convection are capable of evolving granulation
patterns (Stein and Nordlund, 2012; Abbett and Fisher, 2012; Vögler et al.,
2005) and active region emergences (Jiang et al., 2016; Rempel and Cheung,
2014) that are consistent with observations over short time scales within domains
ranging from the upper convection zone to lower corona. Recent models even find
energy variations that are consistent with the production of eruptive events (e.g.,
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Rempel, 2017) and have realistically simulated the onset of a flare through data-
driven simulations (e.g., Jiang et al., 2016). The next logical step for realistic
simulations would be to attempt to predict the short term evolution of the
Sun’s photosphere for space weather modelling through data assimilation (e.g.,
Abbett and Fisher, 2010). Data assimilation combines observations with model
predictions (the background) in order to adjust the model’s initial state and
produce improved forecasts (Bouttier and Courtier, 1999). MHD model variables
typically include components of the magnetic field [B] and plasma motions [v]
(or momentum [p]), and a combination of the gas density [ρ], pressure [P ],
temperature [T ] and internal energy density [e] coupled through an equation
of state (Abbett, 2007). Satellite and ground-based observations can resolve
subgranular features over time scales shorter than one granule turnover time.
They are however limited to the Sun’s photosphere and may not satisfy the
model’s equations (Abbett and Fisher, 2010). The Doppler effect allows for the
direct measurement of the line-of-sight component of plasma proper motions at
the photosphere, e.g. Doppler velocities. For the transverse component, recon-
structions are the only available source of information. Near disk center, spherical
distortion is negligible and Doppler velocities measure the vertical component of
plasma motions. As we move away from disk center, Doppler velocities acquire
an increasingly important horizontal component. At the solar limb, measured
motions are essentially horizontal. In order to use inferred velocity fields as syn-
thetic observations for data assimilation, reconstruction algorithms must quickly
and reliably compute the flow’s amplitude and direction at spatial and temporal
scales that are consistent with the model or other available observations.

Local Correlation Tracking (LCT: November and Simon, 1988), Fourier-based
Local Correlation Tracking (FLCT: Fisher and Welsch, 2008) and Coherent
Structure Tracking (CST: Rieutord et al., 2007) use consecutive intensitygrams
to estimate optical flows at the photosphere, i.e. the velocity field that should
be applied to an image (e.g. a continuum image) to connect it to its counterpart
at a later time (Fisher and Welsch, 2008). CST is a granule tracking technique
which produces good estimates of the flow’s amplitude when resampled to su-
pergranular scales (Rieutord et al., 2007). LCT and FLCT account for both
granules and intergranules when cross-correlating continuum images and best
estimate the field’s direction at mesogranular and supergranular scales (Fisher
and Welsch, 2008), with LCT underestimating the amplitude (Verma, Steffen,
and Denker, 2013). Alternatively, algorithms such as MEF (Longcope, 2004)
and DAVE (Schuck, 2006) use consecutive Dopplergrams and magnetograms
and solve the vertical component of the magnetic induction equation to infer
the motions of magnetic footpoints at the photosphere. MEF-R (Tremblay and
Vincent, 2015, 2016) expanded on the concept of MEF by also adjusting a local
eddy magnetic diffusivity to account for subgrid physics. Although optical flows
do not represent actual horizontal plasma motions, they were found to be highly
correlated with plasma velocity fields at scales larger than 2.5 Mm (Rieutord
et al., 2001). This correlation is further improved by computing time averages
of the inferred instantaneous velocities (Rieutord et al., 2001).

DeepVel (Asensio Ramos, Requerey, and Vitas, 2017) is a deep fully convolu-
tional neural network used to infer instantaneous local (pixel-to-pixel) horizontal
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velocities at three optical depths from pairs of intensitygrams. It does not re-
quire space and time averaging for improved results unlike other intensity-based
reconstruction algorithms. Continuum images at optical depth [τ = 1] and cor-
responding horizontal plasma motions at τ = {1, 0.1, 0.01} are extracted from
an MHD model of the Sun’s photosphere and atmosphere and are used as syn-
thetic observations to train the neural network through deep learning. Inferred
velocities are thus highly dependent on the model data used for training. To
generate horizontal velocities at different spatial resolutions, cadences, positions
on the solar disk and/or radii, a new version of the DeepVel neural network must
be trained using model data with those specific properties. In this paper, two
versions of the neural network were trained.

A comparison between time and space averages of the velocity fields recon-
structed from intensitygrams using LCT, FLCT, CST and DeepVel is presented.
The article is organized as follows: data preprocessing and training of the Deep-
Vel neural network are described in Section 2. Reconstructions of horizontal ve-
locities at the photosphere from synthetic SDO/HMI observations are compared
in Section 3. We conclude in Section 4.

2. Data Preprocessing and Neural Network Training

The Helioseismic Magnetic Imager (HMI: Schou et al., 2012) onboard the Solar
Dynamics Observatory (SDO) spacecraft produces full-disk Dopplergrams, in-
tensitygrams and magnetograms with spatial resolution [∆x ≈ 0.505” ≈ 368 km]
per pixel every [∆t = 45 s] (Hoeksema et al., 2014). Although the spatial reso-
lution is insufficient to resolve subgranular features, SDO/HMI data may prove
useful when attempting to predict the short term evolution of granulation and
active regions and the occurence of solar flares (Bobra et al., 2014). From these
observations, additionnal quantities can be inferred at the photosphere such
as the local temperature (e.g., Solanki, Walther, and Livingston (1993)) and
horizontal velocities [v], all of which could be included as synthetic observations
in data assimilation processes. For this purpose, the DeepVel neural network is
trained using synthetic SDO/HMI data.

The Stein and Nordlund (2012) magneto-convection simulation produces 1008
by 1008 pix2 maps of the continuum intensity [Ic] (Figure 1(a)), vector mag-
netic field [BS] and velocity field [vS] of solar granulation at optical depths
τ = {1, 0.1, 0.01} with spatial resolution ∆x = ∆y = 96 km per pixel and time
step ∆t = 60 s. The simulation output over six hours was first convolved with the
SDO/HMI PSF, as described in Diaz Baso and Asensio Ramos (2017), and then
rebinned using nearest-neighbor sampling to produce synthetic observa-
tions with the same spatial resolution as SDO/HMI data (∆x ≈ 0.505” ≈ 368 km
per pixel). The resulting intensitygrams (Figure 1(b)) are then used as input to
compute horizontal velocities (Section 3). Following the procedure described by
Asensio Ramos, Requerey, and Vitas (2017), patches of 50 by 50 pixels2 were ran-
domly extracted at the same position from Ic (τ ≈ 1) and vS (τ ≈ {1, 0.1, 0.01})
at two consecutive time steps. The continuum intensity images were normalized
by the sample’s median. The velocities were shifted by the minimum velocity and

SOLA: Tremblay_et_al_2017.tex; 7 February 2018; 15:14; p. 3



B. Tremblay, T. Roudier, M. Rieutord, A. Vincent

0 20 40 60 80
x (Mm)

0

20

40

60

80

y
 (

M
m

)

1500

2000

2500

3000

3500

(D
N

s
-1)

a

0 20 40 60 80
x (Mm)

0

20

40

60

80

y
 (

M
m

)

2000

2200

2400

2600

2800

(D
N

s
-1)

b

0 20 40 60 80
x (Mm)

0

20

40

60

80

y
 (

M
m

)

2200

2400

2600

2800

(D
N

s
-1)

c

Figure 1. (a) Continuum intensity Ic (τ ≈ 1) as computed by the Stein and Nordlund (2012)
magneto-convection simulation (∆x = ∆y = 96 km per pixel). (b) Synthetic SDO/HMI
intensitygram generated by convolving Ic (τ ≈ 1) by the SDO/HMI PSF and then resampling
the data (∆x ≈ 0.505” ≈ 368 km per pixel). (c) Synthetic SDO/HMI intensitygram following
the removal of high frequencies by k − ω filtering.
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Table 1. Statistics quantifying the effects of k − ω filtering on the continuum intensity Ic
and horizontal velocity field vS. Fields extracted from the synthetic SDO/HMI images at a
given time t are compared to their k − ω filtered counterpart. C is the Pearson correlation
coefficient between the non-filtered and filtered fields, EN is the error normalized by the norm
of the mean value, EM is the mean relative error, ε is the ratio of quadratic errors and CCS is
the Cauchy–Schwarz inequality (Schrijver et al., 2006).

Fields C EN EM ε CCS

Ic (τ ≈ 1) 0.999 0.029 0.029 0.997 -

vS (τ ≈ 1) 0.859 0.510 0.610 0.628 0.810

normalized by the difference between the maximum and minimum velocities
so that v ∈ [0, 1]. A total of 2000 pairs were used to train DeepVel and an
extra 200 pairs were extracted for the validation process. The neural network
was trained over 10 epochs using the Tensorflow backend and a NVIDIA 960M
GPU. Training was stopped once the network’s cost function no longer
varied significantly in order to avoid overtraining. Subsets of 20 pairs were
used to estimate the gradient in the network’s minimization process.

Following the same procedure, a second version of the DeepVel neural network
was trained using k − ω filtered input data. A threshold was applied to the
synthetic SDO/HMI images to remove high frequencies, i.e. to filter out super-
sonic phase velocities (over 5 km s−1) so that only convective motions remain
(Espagnet et al., 1993). This preprocessing step is carried out to evaluate whether
noise filtering has any significant impact on velocity reconstructions. While the
continuum images do remain highly correlated (Figures 1(b) and 1(c)), variations
between filtered and non-filtered velocity fields are more significant (Table 1).

3. Results

For inferred flows to be used as synthetic observations for data assimilation,
their direction and amplitude must be consistent with observations or, in this
case, with a reference flow. Horizontal velocity fields computed by DeepVel
[vD], LCT [vL], FLCT [vF] and CST [vC] from pairs of synthetic SDO/HMI
intensitygrams are compared to the synthetic velocity field [vS] generated from
the Stein and Nordlund (2012) simulation. A 7-pixel bin was used for sampling in
LCT and FLCT. This value corresponds to a FWHM of approximately 2.5 Mm
(the diameter of a granule) and is the smallest scale over which granule tracking
methods can be used (Rieutord et al., 2010). CST velocities were resampled
using a 7-pixel bin. The results are averaged over 30 minutes to increase the
correlation between optical flows and plasma motions and to coincide with the
shortest time window over which granule tracking can be used (Rieutord et al.,
2008). We limit comparisons to photospheric flows (τ ≈ 1), i.e. flows at the same
optical depth at which intensitygrams are produced. C is the Pearson correlation
coefficient and EM is the mean relative error. The Cauchy-Schwarz inequality
[CCS] is used as a metric for the global orientation between two vector fields,
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Figure 2. Patches of 50 by 50 pixels2 extracted from the 30-minute averaged horizontal
velocity fields (a) vS (τ ≈ 1), (b) vD (τ ≈ 1), (c) vL (τ ≈ 1) and (d) vF (τ ≈ 1) computed from
pairs of consecutive synthetic intensitygrams with spatial resolution ∆x ≈ 0.505” ≈ 368 km
per pixel. Only the arrows of the horizontal velocity vector fields are displayed for
clarity reasons. The vertical velocity vz (τ ≈ 1) computed by the Stein and Nordlund (2012)
simulation is displayed as background (colorscale).

with CCS = ±1 when they are parallel/anti-parallel and CCS = 0 when they are
perpendicular (Schrijver et al., 2006).

3.1. Velocity Fields Inferred from Non-Filtered Synthetic Data

At granular scales, vD (Figure 2(b)) successfully reproduces the features of vS

(Figure 2(a)). The flow is consistent with the overturning motion of plasma
inside granules (see vertical plasma motions [vz] displayed in the background of
Figure 2). Horizontal velocity vectors diverge away from the center of granules
(hot rising plasma, vz (τ ≈ 1) > 0) and converge toward intergranules (cold
descending plasma, vz (τ ≈ 1) < 0). Table 2 also confirms that statistically, the
amplitudes, orientations and horizontal divergences of vD and vS are spatially
correlated. For comparisons at larger scales, a smoothing window of the same
dimensions as the bin used by the LCT and FLCT methods (7 by 7 pixels2)
was applied to vS and vD. The agreement between vL (Figure 2(c)), vF (Figure
2(d)), vC (not shown because of the low spatial resolution) and vS is further
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Table 2. Comparison between the 30-minute averaged vS and the 30-minute averaged
horizontal velocities computed by DeepVel (vD), LCT (vL), FLCT (vF) and CST (vC) at
granular (G) and supergranular (SG) scales, as well as the comparison between their respective
divergences (∇ · vS, ∇ · vD, ∇ · vL, ∇ · vF and ∇ · vC). When comparing to vL or vF at
supergranular scales, vS is smoothed using a 7 by 7 pixels2 window. When comparing to vC,
vS is smoothed using a 7 by 7 pixels2 window and then resampled using a 7-pixel bin.

Fields C(G) EM(G) CCS(G) C(SG) EM(SG) CCS(SG)

vS, vD 0.850 0.681 0.795 0.747 1.022 0.614

vS, vL 0.481 0.952 0.413 0.680 0.877 0.596

vS, vF 0.596 0.911 0.509 0.857 0.702 0.778

vS, vC 0.265 1.098 0.225 0.450 1.166 0.394

∇ · vS, ∇ · vD 0.952 1.473 - 0.964 4.805 -

∇ · vS, ∇ · vL 0.272 1.485 - 0.554 7.588 -

∇ · vS, ∇ · vF 0.353 1.484 - 0.751 5.883 -

∇ · vS, ∇ · vC 0.160 2.678 - 0.270 14.20 -
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Figure 3. Kinetic energy spectra E(k) of the 30-minute averaged horizontal velocities
computed from (a) pairs of consecutive synthetic intensitygrams with spatial resolution
∆x ≈ 0.505” ≈ 368 km per pixel and (b) pairs of consecutive SDO/HMI intensitygrams. k is
the wavenumber. Granular (k ≈ 1 Mm−1), mesogranular (k ≈ 0.4 Mm−1) and supergranular
(k ≈ 0.1 Mm−1) scales are labeled by ’G’, ’MG’ and ’SG’ respectively.

improved when smoothed (Table 2), but granular motions are no longer resolved.

FLCT performs better at large scales than LCT and CST (Table 2). The FLCT

algorithm best reconstructs the large scale component of vS over 30 minutes

(Table 2). The correlation is however highly dependent on the time average. For

instanteneous velocities, it is DeepVel that best reconstructs flows at all scales.
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3.1.1. Kinetic Energy Spectra

Signatures of the components of the plasma motions at various scales are em-
phasized by the kinetic energy spectra [E(k)] defined as

1

2
〈v̄2h〉 =

∫ ∞
0

E (k) dk , (1)

where [k] is the wavenumber, everywhere divided by 2π so as to easily give
the associated wavelength, [v̄h] is the horizontal velocity modulus averaged over
thirty minutes and 〈·〉 is a spatial average operator. More specifically, the kinetic
energy densities E(k) are obtained following

E (k) =
N3p

4πNxNy

∑
∀k′∈[k,k+dk]/2π

|v̄h(k′)|2 , (2)

where Nx and Ny are the dimensions of the data array, N are the dimensions of
the square over which Fourier transforms are performed, and p is the linear size of
a pixel. We refer to Rieutord et al. (2010) for the detailed computation of E(k).
At supergranular scales (k ≤ 0.1 Mm−1), there is a good agreement between vS

and all inferred flows (Figure 3). vD (red curve) is the only velocity field which
accurately reproduces the energy spectra of vS (blue curve) at mesogranular
(0.1 < k ≤ 0.4 Mm−1), granular (0.4 < k ≤ 1 Mm−1) and subgranular scales
(k > 1 Mm−1). The other reconstruction algorithms peak at supergranular scales
and do not contribute to spectral features below mesogranular scales. This is
expected since granule tracking is unable to track flows below k ≈ 0.4 Mm−1

(λ ≈ 2.5 Mm; Rieutord et al., 2010) and the bin size used by both LCT and
FLCT being 7 pixels (≈ 2.5 Mm) and even larger for CST.

3.1.2. Propagation of Passive Scalars

Supergranular motions were further examined through the propagation of corks
by flows vS, vD and vL averaged over six hours (Figure 4). A smoothing window
of the same dimensions as the bin used by the LCT method (7 by 7 pixels2) was
applied to vS and vD. Positive horizontal divergences of vD and vL are spatially
correlated with the reference flow vS (Pearson linear correlation coefficients of
0.922 and 0.783 respectively). Starting from randomized positions, a great ma-
jority of corks gather on the network formed by the line-of-sight photospheric
magnetic field at supergranular scales (Figure 4), confirming the presence of a
similar supergranular component in all three flows.

3.2. Velocity Fields Inferred from k − ω Filtered Synthetic Data

A second version of the neural network was trained using k−ω filtered synthetic
SDO/HMI data. Inferred velocity fields are displayed in Figure 5. Spatial cor-
relations, mean relative errors and orientations between all flow reconstructions
and k − ω filtered vS (Table 3) remain approximately the same as between
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Figure 4. Location of corks over a period of six hours by vS (red), vL (blue) and vD (yellow)
averaged over six hours. Velocity fields vS and vD were smoothed using a 7 by 7 pixels2

window. The vertical magnetic field Bz(τ ≈ 1) computed by the Stein and Nordlund (2012)
simulation and resampled to ∆x ≈ 0.505” ≈ 368 km per pixel is displayed as background with
a threshold of ±20 G (colorscale). A majority of corks gather on the supergranular network
formed by Bz(τ ≈ 1).

Table 3. Comparison between the 30-minute averaged vS and the 30-minute averaged
horizontal velocities computed by DeepVel (vD), LCT (vL), FLCT (vF) and CST (vC) at
granular (G) and supergranular (SG) scales, as well as the comparison between their respective
divergences (∇ · vS, ∇ · vD, ∇ · vL, ∇ · vF and ∇ · vC). Input synthetic intensitygrams and vS

were k−ω filtered to remove high frequencies. When comparing to vL or vF at supergranular
scales, vS is smoothed using a 7 by 7 pixels2 window. When comparing to vC, vS is smoothed
using a 7 by 7 pixels2 window and then resampled using a 7-pixel bin.

Fields C(G) EM(G) CCS(G) C(SG) EM(SG) CCS(SG)

vS, vD 0.890 0.627 0.841 0.726 1.732 0.638

vS, vL 0.436 0.961 0.370 0.642 0.889 0.567

vS, vF 0.572 0.859 0.489 0.838 0.730 0.761

∇ · vS, ∇ · vD 0.956 1.414 - 0.961 1.904 -

∇ · vS, ∇ · vL 0.253 1.258 - 0.533 2.158 -

∇ · vS, ∇ · vF 0.349 1.378 - 0.746 1.869 -

their non-filtered counterparts (Table 2). Thus, the preprocessing step of k − ω
filtering does not improve horizontal velocity field reconstructions. Non-filtered

and filtered flows are, however, distinct (Table 4, Figures 2 and 5) because their

input data is different (Table 1).
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Figure 5. Patches of 50 by 50 pixels2 extracted from the 30-minute averaged horizontal
velocity fields (a) vS (τ ≈ 1), (b) vD (τ ≈ 1), (c) vL (τ ≈ 1) and (d) vF (τ ≈ 1) computed from
pairs of consecutive synthetic intensitygrams with spatial resolution ∆x ≈ 0.505” ≈ 368 km
per pixel and high frequencies removed by k−ω filtering. Only the arrows of the horizontal
velocity vector fields are displayed for clarity reasons. The vertical velocity vz (τ ≈ 1)
computed by the Stein and Nordlund (2012) simulation and filtered for high frequencies is
displayed in the background (colorscale).

Table 4. Comparison between the 30-minute averaged horizontal velocities computed
from filtered and non-filtered consecutive synthetic intensitygrams with spatial resolution
∆x ≈ 0.505” ≈ 368 km per pixel. C is the Pearson correlation coefficient, EN is the error
normalized by the norm of the mean value, EM is the mean relative error, ε is the ratio of
quadratic errors and CCS is the Cauchy–Schwarz inequality (Schrijver et al., 2006).

Fields C EN EM ε CCS

vD 0.855 0.593 0.879 1.319 0.808

vL 0.789 0.612 0.767 0.433 0.715

vF 0.982 0.248 0.307 0.659 0.962
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Figure 6. Evolution of the Pearson correlation coefficient and Cauchy-Schwarz inequality as
a function of the number of pairs of consecutive synthetic intensitygrams used to compute the
30-minute time average of the (a) non-filtered and (b) filtered vD (τ ≈ 1). The reference flow
used for this comparison is the 30-minute time average of vD (τ ≈ 1) obtained when using all
available pairs.

3.3. Computation of Time Averages

To reduce the number of DeepVel computations performed in a reduction pipeli-
ne, we computed the number of evenly distributed pairs of consecutive synthetic
intensitygrams that are needed to accurately estimate the 30-minute average of
vD. Figure 6 displays the Pearson correlation coefficient and Cauchy–Schwarz
inequality between estimates as a function of the number of pairs used out of
the thirty that are available. The reference flow vD used for this comparison was
computed using all available pairs. Using eight or fifteen pairs, the flow ampli-
tudes and orientations remain accurate estimations (Figure 6(a)). This allows
for faster computations of synthetic velocity fields over 30-minute intervals. The
same experiment was performed using k − ω filtered synthetic intensitygrams,
with no significant differences (Figure 6(b)).

3.4. Using Results from a Different Numerical Simulation as Input

To study the influence of the training set on the DeepVel-inferred velocity fields,
we used as input synthetic SDO/HMI data generated from a different numerical
simulation than the one used to train the neural network. More specifically,
we used results of the compressible hydrodynamic convection simulation with
radiative transfer used in Rieutord et al. (2001) and originally developed by Stein
and Nordlund (1998), with spatial resolution ∆x = ∆y = 95.24 km per pixel
and time step ∆t = 60 s. This run differs from the Stein and Nordlund (2012)
simulation by the absence of magnetic fields, the depth of the convection zone
included inside the computational domain and the use of the grey approximation
when treating for radiative transfer. The continuum intensities and velocity
fields (Figure 7(a)) were resampled to SDO/HMI spatial resolution following
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Figure 7. Patches of 50 by 50 pixels2 extracted from the 30-minute averaged horizontal
velocity fields (a) vS (τ ≈ 1), (b) vD (τ ≈ 1), (c) vL (τ ≈ 1) and (d) vF (τ ≈ 1) computed from
pairs of consecutive synthetic intensitygrams with spatial resolution ∆x ≈ 0.505” ≈ 368 km
per pixel. Only the arrows of the horizontal velocity vector fields are displayed
for clarity reasons. The vertical velocity vz (τ ≈ 1) generated by the Rieutord et al. (2001)
numerical simulation is displayed as background (colorscale).

Table 5. Comparison between the 30-minute averaged vS and the 30-minute averaged hori-
zontal velocities computed by DeepVel (vD), LCT (vL), FLCT (vF) and CST (vC) at granular
(G) and supergranular (SG) scales using synthetic SDO/HMI generated from the Rieutord
et al. (2001) numerical simulation. When comparing to vL or vF at supergranular scales, vS

is smoothed using a 7 by 7 pixels2 window.

Fields C(G) EM(G) CCS(G) C(SG) EM(SG) CCS(SG)

vS, vD 0.767 0.651 0.711 0.589 0.969 0.444

vS, vL 0.219 0.959 0.225 0.338 0.954 0.247

vS, vF 0.358 0.917 0.299 0.549 0.826 0.389
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Figure 8. Patches of 50 by 50 pixels2 extracted from the 30-minute averaged horizontal veloc-
ity fields (a) vD (τ ≈ 1), (b) vL (τ ≈ 1) and (c) vF (τ ≈ 1) computed from pairs of consecutive
SDO/HMI intensitygrams with spatial resolution ∆x ≈ 0.505” ≈ 368 km per pixel. Only the
arrows of the horizontal velocity vector fields are displayed for clarity reasons.
The continuum intensity Ic (τ ≈ 1) measured by SDO/HMI on 8 Oct. 2010 is displayed as
background (colorscale).

the procedure described in Section 2. DeepVel computations of the horizontal
flow using the resulting continuum images (Figure 7(b)) are less accurate than
the results obtained in Section 3.1 (see Tables 2 and 5). This is the case for
all reconstruction algorithms (Figures 7(c) and 7(d)). As previously observed,
DeepVel best reconstructs the horizontal flow at granular and subgranular scales
(Table 5). Therefore, although the neural network’s training process is model-
dependent, DeepVel can accurately infer the flow’s amplitude and orientation
using results from another numerical simulation as input.

3.5. Velocity Fields Inferred from SDO/HMI Data

With the neural network now properly trained to generate horizontal flows at
spatial resolution ∆x ≈ 0.505” ≈ 368 km per pixel, we used real intensity-
grams measured by SDO/HMI on 8 Oct. 2010 as input in DeepVel. SDO/HMI
intensitygrams are separated by ∆t = 45 seconds. The synthetic intensitygrams
and velocity fields used to train DeepVel were however separated by ∆t = 60
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seconds. Ideally, the neural network should be trained with the correct time
step for consistency. To approximate real SDO/HMI velocities, vD was
rescaled by a factor of 45/60. Inferred flows (Figure 8(a)) are again consistent
with plasma motions associated with small scales features and granulation (see
the continuum intensity Ic displayed in the background of Figure 8). LCT and
FLCT on the other hand both infer flows on a much larger scale (Figures 8(b)
and 8(c)). This is confirmed by the kinetic energy spectra as a function of the
wavenumber (Figure 3(b)). DeepVel and FLCT produce similar variations to the
ones seen in Figure 3(a) when synthetic SDO/HMI observations were used as
input. Accumulation of energy at smaller scales in the LCT spectra (Figure 3(b))
is associated with decorrelated noise and suggests that the algorithm should not
be used to reconstruct motions at those scales (Rieutord et al., 2010).

4. Conclusion

We compared horizontal velocity fields inferred from pairs of synthetic intensi-
tygrams at the SDO/HMI spatial resolution using DeepVel, LCT, FLCT and
CST to identify which method is best suited to generate synthetic observations
for data assimilation in a MHD model. Reconstructions must capture features at
spatial and temporal scales that are consistent with real observations as well as
the numerical model. Computations should also be done quickly and reliably for
use in a reduction pipeline. Only DeepVel can generate instantaneous velocity
fields as other methods rely on temporal (and spatial) averaging for increased
correlations. Using 30-minute averages, we found that DeepVel best infers gra-
nular and subgranular components of the plasma flow. At supergranular scales,
we found that FLCT best reconstructs the supergranular component of the flow.
We expect however that DeepVel would best perform if trained with data at the
corresponding spatial resolution. It was also shown that k − ω filtering of input
data is not a mandatory preprocessing step. Finally, we determined that 30-
minute average can be accurately estimated from eight equally-distributed pairs
of consecutive continuum images out of the thirty available, hence reducing the
number of DeepVel computations performed (and computation time) in a data
reduction pipeline preparing synthetic data for data assimilation.

Horizontal velocities inferred by the DeepVel neural network are model-depen-
dent. We however determined that DeepVel can still accurately reconstruct the
flow’s orientation and amplitude when using input generated from a different
numerical simulation (e.g. the Rieutord et al. (2001) numerical simulation) than
the one used for the training process. Model dependency could prove useful when
incorporating horizontal velocity fields in a MHD model to perform data-driven
simulations or data assimilation. On top of measurement and representation
errors, observations may simply not satisfy the model’s equations (Abbett and
Fisher, 2010). The same can be argued about reconstructions. Training DeepVel
using results from the same MHD model used to perform data assimilation
should generate synthetic velocity fields that, in comparison, are more consistent
with the model. We plan on using DeepVel-inferred horizontal velocities as syn-
thetic observations at multiple optical depths when we attempt data assimilation
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of solar granulation in a radiative MHD model of the Sun’s upper convection zone
to lower corona. If DeepVel were trained with a proper spherical MHD simulation
of the photosphere and upper layers (e.g. RADMHD2S (Abbett, Bercik, and
Fisher, 2014; Abbett and Bercik, 2014)), it could also be used to infer transverse
velocities on the limb, a feature other velocity reconstruction algorithms have
yet to achieve.
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