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We investigate the asymptotic properties of axisymmetric inertial modes propagating in
a spherical shell when viscosity tends to zero. We identify three kinds of eigenmodes
whose eigenvalues follow very different laws as the Ekman number E becomes very
small. First are modes associated with attractors of characteristics that are made of
thin shear layers closely following the periodic orbit traced by the characteristic
attractor. Second are modes made of shear layers that connect the critical latitude
singularities of the two hemispheres of the inner boundary of the spherical shell.
Third are quasi-regular modes associated with the frequency of neutral periodic orbits
of characteristics. We thoroughly analyse a subset of attractor modes for which
numerical solutions point to an asymptotic law governing the eigenvalues. We show
that three length scales proportional to E1/6, E1/4 and E1/3 control the shape of the
shear layers that are associated with these modes. These scales point out the key
role of the small parameter E1/12 in these oscillatory flows. With a simplified model
of the viscous Poincaré equation, we can give an approximate analytical formula
that reproduces the velocity field in such shear layers. Finally, we also present an
analysis of the quasi-regular modes whose frequencies are close to sin(π/4) and
explain why a fluid inside a spherical shell cannot respond to any periodic forcing at
this frequency when viscosity vanishes.

Key words: free shear layers, rotating flows

1. Introduction
Oscillations of rotating fluids have long been a focus of fluid mechanics. They are

usually referred to as inertial oscillations but other names may be used when more
specific cases are considered (Kelvin waves, Rossby waves, etc.). The first results
in this field are due to the work of Kelvin (1880) who gave the spectrum of the
eigen oscillations of a fluid rotating in an infinitely long cylinder. This work was soon
followed by those of Poincaré (1885) and Bryan (1889) who were motivated by the
stability of self-gravitating rotating ellipsoids for their applications to planets and stars.

Presently, the motivations for studying oscillations of rotating fluids are still vivid
because of their implications in the understanding of natural objects such as stars,

† Email address for correspondence: mrieutord@irap.omp.eu
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planets, oceans or the atmosphere of the Earth, etc. Indeed, the observations of these
oscillations in stars or planets may readily give strong constraints on the global or
differential rotation of these bodies (Rieutord, Georgeot & Valdettaro 2000; Baruteau
& Rieutord 2013). Moreover, as these oscillations are in the low-frequency range of
the spectrum, they are prone to tidal excitation and may play a crucial part in the
dynamical evolution of binary stars or close-in planets (Ogilvie & Lin 2004; Ogilvie
2009; Rieutord & Valdettaro 2010). Similarly, the dynamics of a precessing planet
including internal fluid layers is also influenced by these oscillations (Hollerbach &
Kerswell 1995; Noir et al. 2001).

Closer to us, the dynamics of the oceans has also motivated many studies of these
modes but in a Cartesian geometry rather than a spherical geometry (e.g. Manders &
Maas 2003). Here, and this is also true in some stars, inertial waves are part of the set
of low-frequency waves where we also find internal gravity waves. These latter waves
share many similarities with inertial waves and often combine with them to form
gravito-inertial waves (Friedlander & Siegmann 1982). As in stars or planets, oceanic
internal waves (which are also found in the atmosphere), are sources of dissipation,
mixing and momentum fluxes (Gerkema et al. 2008).

Beyond the many applications that have been briefly mentioned, studying waves
propagating over rotating fluids is also motivated by the mathematical problem that
controls the dynamics of these flows. Indeed, the linear equations that govern the
small-amplitude oscillations lead to a mathematically ill-posed problem. If we consider
the simplest case of an inviscid, incompressible rotating fluid, small-amplitude
oscillations of the pressure p obey the Poincaré equation, namely

1p−
4Ω2

ω2

∂2p
∂z2
= 0, (1.1)

where 1 denotes the Laplacian operator, Ω =Ωez is the angular velocity of the fluid
and ω the angular frequency of the oscillation. As we pointed out, the oscillations are
low frequency and one may easily show that ω6 2Ω (e.g. Greenspan 1968). Hence,
the Poincaré operator is of hyperbolic type leading to an ill-posed problem when
associated with boundary conditions. In such a case singularities are expected. The
pathological nature of these oscillations was soon suspected (Stewartson & Rickard
1969) but clear evidence of the singularities had to await precise numerical solutions
to be demonstrated (Rieutord & Valdettaro 1997). Surprisingly, in some containers
such as the infinitely long cylinder (Kelvin 1880) or the ellipsoid (Bryan 1889),
analytical solutions exist.

Recently, the completeness of the set of inertial modes as basis vector functions
for flows in some containers has been demonstrated. After the pioneering work of
Cui, Zhang & Liao (2014) on the rotating annulus, Ivers, Jackson & Winch (2015)
have shown that the set of Poincaré modes is even complete in the sphere, a result
that is part of a more general one by Backus & Rieutord (2017), who also show that
Poincaré modes indeed form a complete basis in the ellipsoid. These results actually
help in understanding the result of Zhang et al. (2001) showing the orthogonality of
the inertial modes and their associated viscous force.

The pathological nature of inertial modes is shared by internal gravity modes (Maas
& Lam 1995) as they are also governed, in the inviscid limit in the Boussinesq
approximation, by the Poincaré equation. Not unexpectedly, singularities also appear
in the gravito-inertial modes (Dintrans, Rieutord & Valdettaro 1999). In this latter case,
the mathematical nature of the underlying inviscid equations is a mixed-type operator
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(Friedlander 1982), a property that is also found if the fluid is just differentially
rotating (without any stratification – e.g. Baruteau & Rieutord 2013).

In many cases singularities appear because characteristics associated with the
hyperbolic problem become focused towards an attractor that can be either a periodic
orbit in a meridional plane or a wedge made by boundaries or critical surfaces.
When viscosity is included, singularities are regularized. Those associated with
periodic orbits are transformed into detached shear layers. Such shear layers have
been observed experimentally by Maas et al. (1997) with pure gravity modes and by
Manders & Maas (2003) for pure inertial modes.

Hollerbach & Kerswell (1995), Rieutord & Valdettaro (1997) and Rieutord,
Georgeot & Valdettaro (2001) have shown that in the limit of small viscosities, these
shear layers seem to follow some asymptotic scaling laws as far as their thickness
is concerned. We are not affirmative since no general demonstration exist. Rieutord,
Valdettaro & Georgeot (2002) have shown that in two dimensions, namely in the
meridional plane of a container but far from the rotation axis so that curvature terms
can be dismissed, shear layers scale like ν1/4, where ν is the kinematic viscosity of
the fluid. But this result is specific to the restricted two-dimensional problem.

In the present work, we reconsider the set-up of a slightly viscous rotating fluid
inside a spherical shell as in Rieutord et al. (2001) and investigate the asymptotic
properties of singular inertial modes. We only focus on axisymmetric modes since
non-axisymmetric inertial modes share the same singularities, but probably in a
milder way. Indeed, the trend of non-axisymmetric modes of being closer to the outer
boundary makes them less sensitive to the presence of the core, which is the source
of the singularities. Axisymmetric modes are in our opinion the best candidates for
deciphering the role of singularities in the mode dynamics.

In this study, we wish to understand the way eigenfrequencies are determined and
quantized around a given attractor of characteristics and thus wish to generalize the
work of Rieutord et al. (2002) to the associated three-dimensional system. We shall
see that the move to three dimensions of space strongly affects the scaling laws and
makes the problem of much greater difficulty.

While re-investigating the properties of inertial modes in a spherical shell at small
viscosities, we can identify some robust scaling laws and length scales in the shear
layers, but the general solution or even the quantization condition of a particular set
of modes still escapes our understanding. Our results nevertheless delineate some
interesting properties of the modes that may help future work to finally circumvent
the difficulty of this problem and give the equation controlling the structure of the
shear layers and the associated quantization of the eigenvalues.

The paper is organized as follows. In the next section we formulate the mathematical
problem and present the numerical method that is used. Then, we present a set of
numerical results that show clearly three distinct sets of eigenmodes. In § 4, we
propose a first analysis of the dynamics of shear layers associated with periodic
attractors of characteristics and show that we can recover the shape of the eigenmodes
but without any condition of quantization. A discussion and some conclusions end
the paper.

2. Formulation of the problem
2.1. Equations of motion and boundary conditions

We consider an incompressible viscous fluid inside a rotating spherical shell of outer
radius R and inner radius ηR with η < 1. Over this solid body rotation at angular
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velocity Ω , some small amplitude perturbations propagate. If we use (2Ω)−1 as the
time scale and R as the length scale, small-amplitude disturbances obey the following
non-dimensional linear equations:

∂u
∂t
+ ez × u=−∇P+ E1u,

∇ · u= 0,

 (2.1)

where
E=

ν

2ΩR2
(2.2)

is the Ekman number. We also introduced the unit vector along the rotation axis ez,
and the pressure perturbation P. As we shall focus on the eigenmodes of this system
we impose perturbations proportional to exp(λt) where λ is the complex eigenvalue.
System (2.1) needs to be completed by boundary conditions. We impose impenetrable
conditions (er · u) in the radial direction. In tangential directions we choose to impose
stress-free conditions, namely,

er × ([σ ]er)= 0, (2.3)

where [σ ] is the non-dimensional viscous stress tensor and er the unit radial vector
(for an expression of this tensor see Rieutord 2015, for instance). The choice of these
boundary conditions is not crucial (e.g. Fotheringham & Hollerbach 1998), but stress-
free conditions are less demanding on numerical resolution than the no-slip ones.

2.2. Numerical method
As in Rieutord et al. (2001), we discretize the partial differential equations using a
spectral decomposition. Namely, we expand the functions on the spherical harmonics

u=
+∞∑
l=0

+l∑
m=−l

u`m(r)R
m
` + v

`
m(r)S

m
` +w`

m(r)T
m
` , (2.4)

with
Rm
` = Ym

` (θ, ϕ)er, Sm
` =∇Ym

` , Tm
` =∇×Rm

` , (2.5a−c)

where gradients are taken on the unit sphere. We then project the curl of the
momentum equation on the same basis and following Rieutord (1987), we find

E1`w`
− λw`

=−A`r`−1 ∂

∂r

(
u`−1

r`−2

)
− A`+1r−`−2 ∂

∂r
(r`+3u`+1),

E1`1`(ru`)− λ1`(ru`)= B`r`−1 ∂

∂r

(
w`−1

r`−1

)
+ B`+1r−`−2 ∂

∂r
(r`+2w`+1),

 (2.6)

where axisymmetry has been assumed. We also introduced

A` =
1

`
√

4`2 − 1
, B` = `2(`2

− 1)A`, 1` =
1
r

d2

dr2
r−

`(`+ 1)
r2

, (2.7a−c)
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where 1` is the radial part of the scalar Laplacian (e.g. Rieutord 1987). Stress-free
boundary conditions impose that

u` =
∂2ru`

∂r2
=
∂

∂r

(
w`

r

)
= 0 (2.8)

at r= η or r= 1 for the radial functions.
System (2.6) is then discretized on the collocation points of the Gauss–Lobatto grid.

Including boundary conditions, the system can be written as a generalized eigenvalue
problem like

[A]X= λ[B]X, (2.9)

where [A] and [B] are matrices whose dimension depends on the numerical resolution.
We are mostly interested in the least stable eigenmodes, which are associated with the
generalized eigenvalues λ with the greatest real part. We solve this problem using the
incomplete Arnoldi–Chebyshev method (Chatelin 2012; Valdettaro et al. 2007). Let µ
be the solutions of the modified problem

([A] − σ [B])−1
[B]X =µX. (2.10)

Then λ= σ + 1/µ. Thanks to this transformation, the eigenvalues near the shift (the
guess) σ are the extreme eigenvalues of this modified problem and are thus delivered
by the Arnoldi procedure. Nowadays machines allow us to find eigenvalues with
matrices of order up to 5× 106 corresponding to the use of 3000 spherical harmonics
and 1500 radial grid points using double precision arithmetic. All numerical solutions
presented below have in general a relative truncation error for the eigenfunctions less
than 10−3, which is achieved by the resolution indicated by the Lmax and Nr values.

3. Numerical results
The numerical investigation of the foregoing eigenvalue problem that we shall now

further present has revealed several types of eigenmodes.
We shall restrict ourselves in the following to modes that are symmetric with respect

to the equator. The classification is based on the path of characteristics associated
with the Poincaré equation. We recall that system (2.1) can be reduced to a single
equation for the pressure perturbation, namely (1.1) when viscosity is set to zero.
In the dimensionless expression of the equation, the frequency of the oscillation ω
is necessarily less than unity. Associated characteristic surfaces are cones (or parts
of cones) characterized by their opening angle θ c

= arcsin ω and an apex on the
rotation axis. θ c is also the critical latitude. This is the latitude where the characteristic
surfaces are tangent to the spheres. Even for non-axisymmetric modes, characteristic
surfaces are axisymmetric cones (Rieutord et al. 2001). This is why we shall always
visualize the characteristic cones by their trace in a meridian plane where they appear
as straight lines. As Rieutord et al. (2001) have shown, the path of the characteristic
lines in a meridian plane generally converges towards a closed periodic orbit that is
called an attractor. Exceptions are a finite number of frequencies that read sin(pπ/q)
where p and q are integers. For these frequencies any trajectory is periodic and there
is no attractor. The number of such frequencies depends on the aspect ratio of the
shell. For η = 0.35, periodic orbits with p= 1 exist only for q= 3, 4, 6, 8 (Rieutord
et al. 2001).

To set the stage, we show in figure 1 a general view of the distribution of
eigenvalues associated with viscous inertial modes in the complex plane. These
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FIGURE 1. (a) Distribution of eigenvalues of inertial modes in the complex plane.
(b) Same as (a) but the frequency has been converted into an angle (the critical latitude)
scaled by π/2. The dashed vertical lines delineate the part of the complex plane that is
magnified in figure 3 while the solid vertical lines outline the part of the complex plane
shown in figure 8(a). The Ekman number is set to 10−8, η = 0.35 and the numerical
resolution is Lmax = 800 and Nr = 300. In both panels the real part has been rescaled
by E1/3.

eigenvalues have been computed through a systematic scan of the least-damped part
of the complex plane with the Arnoldi–Chebyshev algorithm. It extends figure 17 of
Rieutord et al. (2001). When the imaginary part of the eigenvalues (the frequency) is
converted into an angle (actually the critical latitude), the approximate symmetry with
respect to latitude π/4 is emphasized. This symmetry is verified by characteristics
trajectories, but not by the eigenfunctions since the rotation axis is of course not the
same as the equator. The distribution of eigenvalues reflects this symmetry near π/4,
but this symmetry weakens when the critical latitude of the modes moves away from
π/4.

This general view of the complex plane clearly shows that the distribution is
not uniform and no simple quantization, or quantum numbers, controls it. However,
some regularities appear: a crowded region near π/4 (quasi-regular modes), deserted
regions around π/6 and π/3 and some deep frequency bands where modes are
strongly damped.

As shown by Rieutord et al. (2001), this distribution of eigenvalues is profoundly
marked by the orbits of characteristics and the attractors they may form. We have
found three categories of modes, which we termed as attractor modes, critical latitude
modes and quasi-regular modes.

3.1. Attractor modes
Attractor modes are modes associated with a specific attractor represented by a
periodic orbit of characteristics. These modes were first studied in Rieutord &
Valdettaro (1997), and their analytic expression has been given by Rieutord et al.
(2002) in the two-dimensional case. We recall that the two-dimensional case refers to
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(a) (b)

FIGURE 2. (Colour online) (a) The least-damped eigenmode associated with the attractor
at ω= 0.7834 and E= 10−9. The numerical resolution is Lmax = 1200, Nr = 500. (b) Red
line: the asymptotic attractor ω0' 0.782413 associated with the mode in (a). Black-dotted
line: the same attractor at the upper frequency limit ω=ω∞ ' 0.793.

the same case as the one described by equation (2.1) but where curvature terms (like
(1/r)(∂/∂r)) of the spherical geometry are dismissed. This case is also referred to
as the case of the slender torus, which is a torus with a large aspect ratio. Rieutord
et al. (2002) have shown that it can describe inertial modes that are trapped in the
equatorial region of a thin spherical shell.

In figure 2(a) we show one such attractor mode. Eigenmodes featured in this
attractor have eigenfrequencies in the interval [ω0, ω∞] where ω0 ' 0.782413 and
ω∞ ' 0.793 for η = 0.35. In figure 2(b), we show the limiting shapes of this
attractor when ω = ω0 or ω = ω∞. We recall that the strength of an attractor may
be characterized by a (negative) Lyapunov exponent that measures the rate at which
characteristics converge towards the attractor. ω0 and ω∞ refer to the values where
the Lyapunov exponent is respectively zero or −∞. In the former case, characteristics
are still converging towards the attractor but algebraically, while in the latter case
they touch the critical latitude making the mapping (featured by the characteristics)
infinitely contracting (see Rieutord et al. 2001, for a more detailed discussion). Note
that the asymptotic frequency ω0 of the figure 2 attractor is easily expressed as a
function of the aspect ratio η and reads

ω0 =

√
3+
√

5− 4η
8

. (3.1)

In figure 3, we now show the part of the complex plane where the eigenvalues of this
attractor show up. The vertical lines delineate the limiting frequencies ω0 and ω∞. We
immediately note that eigenvalues are distributed in several subsets. In the interval
[ω0, ω∞], the purple dots show the eigenvalues associated with the attractor modes,
while the black dots are affected by numerical noise (see below). At frequencies lower
than ω0, we note a neat organization of the eigenvalues (red dots), which is associated

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

20
1

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 B

ib
lio

th
eq

ue
 d

e 
M

at
he

m
at

iq
ue

s,
 o

n 
11

 A
pr

 2
01

8 
at

 1
1:

09
:4

1,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

https://doi.org/10.1017/jfm.2018.201
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


604 M. Rieutord and L. Valdettaro

0.780 0.785 0.790
–0.0020

–0.0015

–0.0010

–0.0005

1 2 3 4
5
6

FIGURE 3. (Colour online) Distribution of eigenvalues in the complex plane around the
frequency 0.785 for η= 0.35 and E= 3× 10−9. The corresponding attractor is shown in
figure 2. ω0 and ω∞ are the frequency bounds of the attractor. Red dots show eigenvalues
associated with critical latitude modes while black dots show eigenvalues associated with
attractor modes. The purple eigenvalues have been computed with extended precision.

with the set of ‘critical latitude modes’. We discuss these latter modes in the next
section.

Remarkably, the eigenvalues of the attractor modes (the purple dots in figure 3)
seem to be governed by the following law:

λn = iω0 − 2τ̂1eiφ1E1/3
−
(
n+ 1

2

)
eiφ2
√

2τ̂2E1/2
+ · · · . (3.2)

In this expression, ω0 is the asymptotic frequency of the attractor (as given by (3.1)),
while τ̂1 and τ̂2 are positive real numbers of order unity that depend on the shape of
the attractor. n is the quantum number that characterizes the mode. We use the term
‘quantization’ in this context to signify that eigenvalues are arranged along specific
lines in the complex plane and are distributed with some regularity along such lines.
We note that the n + 1/2 factor is reminiscent of the energy levels of a quantum
particle in a parabolic well, and of the eigenvalues of the two-dimensional problem
of Rieutord et al. (2002). In figure 4, we illustrate the good matching of the real and
imaginary parts of the eigenvalues with the law (3.2).

We have found such sets of eigenvalues in association with various attractors.
Table 1 gives the parameters for six sets of such modes. In this table, we gathered
the families of modes by pairs of families where we associated the attractor at ω0

with the symmetric one at α0 =
√

1−ω2
0. The symmetry is with respect to latitude

π/4. We note that the phases φ1 or φ2 in (3.2) are opposite for pairs of attractors.
This betrays the fact that ω∞ <ω < ω0 when the frequency is less than 1/

√
2 while

ω∞>ω>ω0 when ω> 1/
√

2. Now, we observe that the symmetry of attractors, with
respect to latitude π/4, is not verified by the modes since the τ̂1 and τ̂2 coefficients
are not the same for a family and its symmetric. The τ̂1 and τ̂2 coefficients are
therefore sensitive to the reflection on the rotation axis. We remark that there are
attractors with ω0 < ω < ω∞ for frequencies less than 1/

√
2 (like the ones with
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FIGURE 4. (a) Damping rate for the four least-damped eigenvalues of the 0.782-attractor
modes as a function of the Ekman number. Pluses indicate the numerical values and the
solid lines show the law (3.2). (b) Same as (a) but for the deviation of the frequency
from the frequency of the asymptotic attractor.

ω0 α0 τ̂1 2τ̂1 φ1 τ̂2

√
2τ̂2 φ2 η

0.555369 0.831694 0.5085 1.017 +π/3 2.275 3.217 +π/4 0.35
0.831694 0.555369 0.812 1.62 −π/3 1.65 2.33 −π/4 0.35
0.622759 0.782413 0.565 1.13 +π/3 2.1 2.97 +π/4 0.35
0.782413 0.622759 0.485 0.97 −π/3 1.82 2.57 −π/4 0.35
0.466418 0.884564 0.485 0.97 +π/3 3.95 5.586 +π/4 0.50
0.884564 0.466418 0.645 1.29 −π/3 3.05 4.31 −π/4 0.50

TABLE 1. Asymptotic parameters of six modes following (3.2).

ω0 = 0.35866 and ω∞ = 0.36134) and correspondingly ω0 >ω>ω∞ when ω> 1/
√

2.
However, we did not find any set of eigenvalues associated with those attractors. To
be complete, we note that there exist attractor modes whose eigenvalues cannot be
represented by (3.2). Since no clear law seems to govern their properties, we shall
not discuss them any further in the present work.

Round-off errors are actually a major plague of eigenvalue/eigenmode computation
of attractor modes. We see in figure 3 that the black dots associated with attractor
modes are randomly distributed unlike the least-damped modes (purple dots) which
obey the dispersion relation (3.2). In fact, eigenvalues of the more-damped modes are
strongly perturbed by round-off errors.

In figure 5, we further illustrate this phenomenon. Figure 5(a) (respectively
figure 5b) shows the double (respectively extended) precision calculation of the
distribution of eigenvalues associated with attractor modes (for this attractor ω∞<ω0).
The plotted eigenvalues are actually superpositions of several independent calculations.
In each calculation we have only changed the shift parameter of equation (2.10). As
was shown in Valdettaro et al. (2007), a noisy distribution of eigenvalues is related
to the sensitivity of matrices [A] and [B] to small perturbations, so ultimately to
round-off errors. In (a), we see that families governed by a dispersion relation
disappear in a bath of randomly distributed eigenvalues at large damping rates. When
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Double precision
Extended precision–0.005
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(a) (b)

0.560 0.565 0.570 0.575 0.580 0.585

FIGURE 5. (Colour online) Eigenvalue spectrum of attractor modes in the complex plane.
τ is the real part and ω is the imaginary part. (a) A double precision calculation, (b) with
extended precision. In both panels the resolution is Lmax= 440 and Nr= 160. The attractor
exists at frequencies below ω0= 0.583 which is visualized by a red line. The aspect ratio
is η= 0.50. This attractor is the one corresponding to 0.555 when η= 0.35 (e.g. Rieutord
et al. 2000). The green and blue lines emphasize two families of critical latitude modes
(see § 3.2).

the same distribution is computed with extended precision (quadruple precision, b),
the noisy distribution leaves the place to an ordered distribution of eigenvalues.
In this same figure we also note that some branches cross the line marking the
asymptotic frequency ω0 of the attractor. Examination of the modes along this branch
reveals that they are still featured by the asymptotic attractor, despite the fact that
the propagation of characteristics does not show the attractor. The eigenfunctions
whose eigenfrequency is neatly above ω0 actually show that the modes of such a
branch are featured by the shear layer emitted towards North by the critical latitude
singularity. The associated characteristics trajectory shows that the shear layer has
to wind around the former attractor before leaving it. However, because of viscosity,
the winding stops at some stage still leaving the trace of the attractor. Hence the
branches can continuously cross the ω0 line. We surmise that for asymptotically small
values of the Ekman number such crossing is not possible because trajectories of
characteristics may bifurcate towards another attractor. In the next subsection we shall
investigate such branches of modes.

3.2. Modes associated with the critical latitude of the inner sphere
Beside the modes that are associated with a periodic attractor, the spectra (figures 3
and 5) display other obvious families of modes. In figure 6(a,c), we show the two
modes numbered 1 and 2 of the green family of figure 3, with their associated path
of characteristics (figure 6b,d). With these meridional cuts, we clearly see that the
characteristic emitted by the northern critical latitude of the inner shell in the southern
direction finally reaches the equator of the outer shell. This means, by symmetry, that
it joins the southern critical latitude on the inner shell. The shear layer issued from
the northern critical latitude towards the North loops back to the same critical latitude
as shown by the red path in figure 6.

From the plots of figure 6, we note that the quantization of these modes seems to
come from the length of the path connecting the North and South critical latitudes
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FIGURE 6. (Colour online) (a) and (c) The viscous dissipation for the first and second
eigenmodes of the ‘green family’ shown in figure 3. The Ekman number is 3× 10−9, for
which we used Lmax=1200, Nr=500. Most intense values are in yellow. We also added an
artificial depth (yellow curves are on top) to better distinguish the shapes. Panels (b) and
(d) show the corresponding web of characteristics. The red rectangle shows the periodic
orbit drawn by the characteristic emitted towards the North from the critical latitude.

on the inner sphere. The path is not unique and a slight change in the frequency
increases the number of rays in the bulk by two units. In figure 7(a), we show that
the discrete frequencies of the green family can almost be retrieved by the simple
geometrical rule of finding a path of characteristics that connects the North and South
critical latitudes. The same is true for the blue family, which is characterized by more
dissipative shear layers (the transverse wavenumber is higher). The evolution of the
damping rate of these modes with the Ekman number is not standard, as may be seen
in figure 7(b). Indeed, for the first mode (tagged 1 in figure 3), below E= 10−9, the
damping rate increases while the Ekman number decreases. We explain this behaviour
as a consequence of the activation of the northern branch of the shear layer that
loops back to the critical latitude (red segments in figure 6), which is a place of high

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

20
1

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 B

ib
lio

th
eq

ue
 d

e 
M

at
he

m
at

iq
ue

s,
 o

n 
11

 A
pr

 2
01

8 
at

 1
1:

09
:4

1,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

https://doi.org/10.1017/jfm.2018.201
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


608 M. Rieutord and L. Valdettaro

0.778

0.780
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E
10–7

(a) (b)

FIGURE 7. (Colour online) (a) Dependence of the frequency of the ‘green family’ modes
of figure 3 on the Ekman number. The pink dots mark the frequencies of the webs of
rays that connect the North and South critical latitudes of the internal sphere. (b) Same
as in (a) but for the damping rates. The numbers refer to the numbering of the mode in
figure 3.

1 2 3 6 9
12 10–3

10–4

10–5

10–6

10–10 10–9 10–8 10–7

E

–0.0025
0.69 0.70 0.71 0.72

1
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6
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–0.002

–0.0015

–0.001

–0.0005

0(a) (b)

FIGURE 8. (Colour online) (a) Spectrum near the frequency sin(π/4). (b) Damping rate
as a function of E for the modes numbered 1, 2, 3, 6, 9, 12 in (a). The dashed line is
|τ | = 500E.

dissipation. If the Ekman number is low enough, this loop has a larger amplitude and
has a larger contribution to the damping rate of the mode. Most likely, ‘critical latitude
modes’ are not asymptotic and may only exist in a finite range of Ekman numbers.

3.3. The quasi-regular modes
In the distribution of eigenvalues shown in figure 1, we noticed a set of eigenvalues
with very low damping rates gathered around the frequency sin(π/4). A close-up view
of this region of the complex plane, displayed in figure 8(a), shows that this set of
eigenvalues has peculiar properties that deserve some attention. First, we note that
the eigenvalues seem to obey simple quantization rules as their distribution clearly
follows specific lines in the complex plane. In addition, their damping rate is almost
proportional to the Ekman number in some range of this parameter (e.g. figure 8b).
These features give evidence of a quasi-regular nature of this kind of mode. We recall
that regular eigenmodes have a structure that is weakly dependent on viscosity and
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FIGURE 9. (Colour online) Distribution of eigenvalues (coloured dots) in the plane τ , |ω−
sin(π/4)|. (a) Open circles are obtained using formula ((3.11) with a= 0.141, b= 0.152).
(b) Open circles are obtained using formula (3.12).

Kinetic energy
Kinetic energy

(a) (b)

FIGURE 10. (Colour online) (a) Meridional distribution of the kinetic energy of the
eigenmode associated with eigenvalue tagged ‘1’ in figure 8 at E = 10−8. (b) Same as
in (a) but for E= 10−10. In (a) we have superposed the path of the characteristic started
northward at the equator taking the same frequency as the mode.

which converges to a smooth eigenfunction in the inviscid limit. We thus call these
modes quasi-regular since they are similar to truly regular modes in some Ekman
number range, but they lose this character below some Ekman number specific to the
mode (see below).

The specific distribution of eigenvalues in this region of the complex plane can
be explained with some simple arguments based on the properties of the web of
characteristics.

First, we may observe that the non-symmetric distribution of eigenvalues with
respect to the line ω = sin(π/4) actually reflects an alternate distribution of the
branches on each side of the ω = sin(π/4) line, as shown by figure 9. Second, we
observe that the actual eigenmodes are featured by the web of characteristics. The
modes show periodic structures (e.g. figures 10 and 11) even if characteristics do not
follow periodic orbits (this is possible only when ω= sin(π/4)).
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(a) (b)

FIGURE 11. (Colour online) Same as figure 10 but for the mode tagged ‘6’ in figure 8.

The propagation of characteristics associated with a mode frequency is nevertheless
interesting. Characteristics are indeed showing the path of energy but also the location
of equiphase lines (recall that the group and phase velocities are orthogonal for inertial
waves). Hence, the distance between two parallel characteristics (e.g. figures 10a
or 11a) may be interpreted as the typical wavelength of the mode. Let us consider a
mode whose frequency is slightly different from sin(π/4). Let us say that

ω= sin
(π

4
± ε
)
, with ε� 1. (3.3)

The distance between the two characteristics of negative slope with one issued from
the equator of the outer sphere is

Λ=
sin(2ε)

sin(π/4)
(3.4)

but from (3.3) we have

ω− sin(π/4)=±ε cos(π/4) (3.5)

at first order. Hence, the typical wavelength of the mode is

Λ' 4|ω− sin(π/4)|, (3.6)

where we assumed Λ> 0. Thus the damping rate of the mode should scale like

τ ∼−4π2E/Λ2
=

Eπ2

4(ω− sin(π/4))2
. (3.7)

Thus for a given set of modes (a branch) we expect that

τ(ω− sin(π/4))2 =−Ex`, (3.8)

where x` is a constant specific to the branch. As shown in figure 12(a), x` is indeed
a constant. Actually, the constant x` is quantized in a simple way:

x` ' 4
5(`+ 1/2)2, with `= 0, 1, . . . . (3.9)
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FIGURE 12. (a) Quantization of the branches: for all the eigenvalues shown in figure 8
the quantity (ω− sin(π/4))2τ/E is plotted versus |ω− sin(π/4)| (pluses). The dotted lines
show the expected formula x` = (4/5) (`+ 1/2)2. (b) Quantization along the first branch:
1/|ω− sin(π/4)| versus the order of the eigenvalue.

This expression is derived from a numerical fit. It betrays again the quantization of the
harmonic oscillator, showing that each branch corresponds to a different state of this
oscillator. Unfortunately, we could not recover this formula from a simple theoretical
argument.

We may however proceed a little further if we look for the quantization along a
given branch. Comparison of two modes of a branch (e.g. figures 10 and 11) shows
that they differ by their typical wavelength along the radius. (For modes in the
second branch (green dots in figure 9a) with a similar frequency as the modes of the
first branch (red dots), the same shape as in figure 10 is observed but the dominant
wavenumber is increased by some factor.) Thus, we also should expect from (3.6)
that

|ω− sin(π/4)| ∝
1− η

n
. (3.10)

Figure 12(b) shows the linear behaviour of 1/|ω − sin(π/4)| with the rank of the
eigenvalues of a branch. Hence, eigenvalues on a given branch seem to verify

|ωn` − sin(π/4)| =
an`(η)(1− η)(`+ 1/2)

n
, τn` =−

En2

[bn`(η)(1− η)]2 , (3.11a,b)

with an`(η) and bn`(η) real values that have a very mild dependence on η. Their
independence on η is checked in figure 13(a): the curves are almost flat horizontal
lines. From this figure we also see that the curves for larger n (that are the lower ones)
cluster very near the same value: this means that an` and bn` do not vary much with
n (for large enough n). We also checked that they do not depend much on `. This
is shown in figure 9(a) where we plot the eigenvalues given by the above formula
using constant values for a and b, precisely those computed by best fit of formula
(3.11) with the actual eigenvalues shown in figure 8. The best fit gives a= 0.141 and
b=0.152, and we see from figure 9(a) that the actual and predicted eigenvalues match
quite well, at least for n large enough.
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FIGURE 13. (Colour online) (a) Variation with η of the eigenvalues belonging to the red
branch of figure 8. The curves plotted are an`(η)= n[ωn` − sin(π/4)]/(1− η)(`+ 1/2) for
n< 50 and `= 0. The top curves correspond to the lowest values of n, thus to the least-
damped eigenvalues. (b) Black: for each n we plot the best fit of coefficient an0(η) of
(3.11) as obtained from the data plotted in (a). Similarly we plot in red the best fit of
coefficient bn0(η) appearing in (3.11).

Actually an even better fitting formula for the spectrum in this region is found to
be

τn` =−E(9.89n− 0.70`+ 0.26)2, |ωn` − sin(π/4)| =
`+ 1/2

11.35n− 2.33`− 15.02
.

(3.12a,b)
It reproduces fairly well a large fraction of the eigenvalues as shown in figure 9(b).

In figure 13(b) we show the best fit of an0 (black points) and bn0 (red points)
obtained using the computed eigenvalues for η in the range 0.18 6 η 6 0.35. For a
given value of n the fit is done by computing the values an0 and bn0 that minimize
the error on an0 − an0(η) and bn0 − bn0(η). We confirm that, apart from the first
values of n for which we have remarked previously that the smooth behaviour at
E = 10−8 is already lost (see figure 8b), these values depend very little on n, and
moreover that they tend to very similar values for large n: for example a49,0 = 0.139
and b49,0 = 0.145.

The foregoing results suggest that the eigenvalue spectrum has some universal
features around sin(π/4) independent of the aspect ratio of the shell. Thus, we
examined the eigenvalue spectrum of the full sphere (η = 0), for which eigenmodes
exist even at zero Ekman number. The result is shown in figure 14(a) where we
superpose the spectra of the spherical shell at η= 0.35 and of the full sphere (η= 0).
The noise in the very-damped modes of the full sphere is due to round-off errors.
Nevertheless, we clearly recognize that the eigenvalues of the full sphere are also
distributed in branches like those of the spherical shell. Corresponding branches of
the full sphere and the spherical shell tend to merge in the strongly damped part of
the spectrum. Figure 14(b) shows that the shape of a strongly damped regular mode
of the full sphere is very similar to that of a quasi-regular mode of the shell (e.g.
figure 11).

The foregoing results explain the ‘anti-resonance’ observed by Rieutord &
Valdettaro (2010) for tidally forced inertial modes when the forcing frequency equals
sin(π/4). As the forcing frequency tends to sin(π/4) the wavenumber of the excited
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FIGURE 14. (Colour online) (a) Spectrum near the frequency sin(π/4) at Ekman number
E = 10−8. Black dots correspond to the full sphere η = 0. Coloured dots are for the
spherical shell with aspect ratio η = 0.35. They are the same as in figure 8. (b) Kinetic
energy for mode 7 of first branch at η = 0, the eigenvalue marked with a plus sign in
panel (a). Note the similarity with the shape of eigenvalue 6 of the red family, shown in
figure 11(a).

0

(a) (b)

0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.81.0
y y

FIGURE 15. (Colour online) Profile of vφ for mode tagged ‘1’ in figure 8(a) and mode
6 (b). The profile is shown along the radial direction starting from inner critical latitude.
Note the smoothness of the black lines (E= 10−8) and the emergence of small scales in
the green lines (E= 10−10).

modes tends to infinity, freezing any response of the fluid to a periodic forcing at
ω= sin(π/4).

Let us now comment on the disappearance of the regular nature of the modes
when viscosity is reduced. Figures 10(b), 11(b) and 15 show that the structure of the
modes changes below some E specific to the mode: Small-scale features appear if
the Ekman number is small enough. We interpret this behaviour as follows: the wave
energy propagates along trajectories shown by characteristics. The lower the Ekman
number the longer the wave can propagate without damping. Close to sin(π/4),
characteristics trajectories may be very long before they hit the inner boundary
because the closer ω to sin(π/4) the longer the trajectory (see figures 10a and 11a).
As long as the wave does not touch the inner shell, the mapping governed by the
characteristics does not change the scale of the wave (Rieutord et al. 2001). Hence,
for a given value of |ω− sin(π/4)|, if the Ekman number is large enough, the wave
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FIGURE 16. (Colour online) Eigenvalue spectrum in the complex plane around ω =
sin(π/8) when η= 0.35 (a), and when η= 0.2 (b).

amplitude has enough time to decrease when it hits the inner shell, so that the small
scales generated by the reflections do not show up in the mode, which then shows a
quasi-regular pattern (black lines in figure 15). On the contrary, if E is small enough,
propagation along characteristics is almost without attenuation and the wave hits the
inner sphere with nearly its initial amplitude, making small-scale features generated
by the reflections clearly visible and influential (green curves in figure 15). When
we select the least-damped modes, we select the modes where small scales have
the least amplitude. Hence, for a given E, quasi-regular modes only exist in some
neighbourhood of sin(π/4), where characteristic paths not hitting the inner shell
are long enough. We thus deduce that in the limit ω→ sin(π/4) the quasi-regular
nature of the modes can be conserved asymptotically for E→ 0 but at the price of
considering modes with higher and higher wavenumbers as imposed by the web of
characteristics (compare figures 10a and 11a).

We may now wonder whether the previous results obtained for modes with a
frequency around sin(π/4) extend to other frequencies associated with periodic orbits.
sin(π/4) indeed gives a periodic orbit whatever the radius of the inner shell. As
shown in Rieutord et al. (2001), other periodic orbits are possible if the radius of
the inner core is small enough. In figure 16 we show the neat transformation of
the spectrum around ω = sin(π/8) when the radius of the inner core is decreased
from 0.35 to 0.20. When η = 0.35 periodic orbits are possible, but mainly in the
shadow path of the core (see figure 17). When the core is smaller, periodic orbits
similar to those of the full sphere (i.e. that never hit the inner boundary) have a
larger phase space that allows modes with larger scales to exist, and we recover a
spectrum structure that is similar to that of the full sphere (compare figures 16(b)
and 14). When η= 0.35, it is likely that a similar structure exists, but at scales that
are not reachable numerically.

The quasi-regular nature of the modes around frequencies sin(pπ/q) that are
allowed by the size of the core is however not systematic. While investigating the
case of ω = sin(π/6), which is associated with periodic orbits when η 6 0.5, we
found that no regular quantization occurs if η= 0.35 but also if η= 0.20. Inspection
of the eigenmodes shows that the critical latitude singularity on the inner sphere is
excited, hence inserting new scales in the eigenfunctions and precluding any regular
behaviour as well as simple quantization rules. The reason why this occurs for this
periodic orbit and not the others is not clear.
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FIGURE 17. Shadow of the core when ω= sin(π/8) for η= 0.35 (a) and η= 0.2 (b).

4. Analysis of attractor modes

We now analyse the dynamics of the flows that structures the shear layers looping
around the attractors.

4.1. Summary of numerical results

The first hint given by the numerical solutions is the law (3.2) governing the
eigenvalues associated with attractor modes. From this law we note that the
frequency shift of the modes with respect to the asymptotic frequency ω0 is
Im(λ − iω0) = O(E1/3). Since the distance between the actual attractor and the
asymptotic one varies like

√
|ω−ω0| (Rieutord et al. 2001), we deduce that this

distance scales like E1/6. Besides, as already shown by Kerswell (1995), the scale
E1/3 turns out to be the smallest scale of detached shear layers. However, Rieutord &
Valdettaro (1997) also noticed that some shear layers display a thickness scaling with
E1/4. We can illustrate the presence of these three scales using modes associated with
the asymptotic attractor whose frequency is ω0 = 0.782 (when η= 0.35). Figure 2(a)
displays the shape of the least-damped mode associated with this attractor. In figure 18
we show the variations of the amplitude of the velocity component uϕ in the transverse
direction of the shear layer. The three scales are clearly showing up. Indeed, taking
the origin of the coordinate at the asymptotic attractor, and rescaling the coordinate
with E1/6, we see that the position of the maximum does not change when the
Ekman number drops from 10−8 to 10−11. In (a), we note that the rescaled envelope
of the E = 10−11-solution perfectly matches the E = 10−8-envelope, hence giving
evidence that the E1/4 scale indeed determines the width of the wave packet. Finally,
the ratio of the wavelength, rescaled by E1/6, is '3.12, not far from the expected
√

10 ' 3.16 if the wavelength scales as E1/3. Since the three scales also appear as
such in other attractor modes, we shall assume that they are the scales controlling
the dynamics of the shear layers associated with (at least some) attractor modes.
Figure 19 schematically depicts the situation.
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FIGURE 18. Cut through the shear layers of the least-damped mode associated with the
attractor displayed in figure 2. (a) E= 10−8. (b) E= 10−11. The origin of the y-coordinate
is the position of the asymptotic attractor while the dotted vertical lines show the position
of the actual attractor. The dashed curves show the envelope of the wave packet. In (a)
the pluses show the rescaled envelope of the E= 10−11-solution assuming an E1/4-scaling
law for the width of the envelope.

Asymptotic
attractor

Local
attractor

FIGURE 19. Schematic view of the cut through shear layers looping around the attractors,
showing the three scales involved: E1/6 is the scale governing the distance among local
attractor, asymptotic attractor and the shear layer. E1/4 gives the extension of the shear
layer. E1/3 is the wavelength of the oscillations inside the shear layer. Note that both the
local attractor and the asymptotic attractor are positioned (asymptotically as E→0) outside
the shear layer.

4.2. The reduced problem
To begin with we recall that system (2.1) can be cast into a single equation for the
pressure perturbation, namely

(λ− E1)21P+
∂2P
∂z2
= 0, (4.1)

where we assumed solutions of the form

P(r, t)= P(r)eλt (4.2)
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and where λ = τ + iω is the complex frequency. τ is the damping rate and ω the
real frequency of the mode. Equation (4.1) reduces to the Poincaré equation when
the Ekman number E is set to zero.

As observed by Rieutord & Valdettaro (1997), shear layers built on attractors have
an (inviscid) singularity on the rotation axis generating a divergence in s−1/2, where s
is the radial cylindrical coordinate. We remove this divergence by setting P= ps−1/2.
Thus doing, we rewrite (4.1) as

(λ− E1′)21′p+
∂2p
∂z2
= 0, (4.3)

with

1′ =
∂2

∂s2
+
∂2

∂z2
+

1
4s2
. (4.4)

We also use coordinates parallel x and perpendicular y to the shear layer/attractor
branch such that

x= αz+ωs, y=ωz− αs, (4.5a,b)

with α =
√

1−ω2. This implies that

∂

∂s
=ω

∂

∂x
−α

∂

∂y
,

∂

∂z
=α

∂

∂x
+ω

∂

∂y
,

∂2

∂z2
=α2 ∂

2

∂x2
+ω2 ∂

2

∂y2
+2αω

∂2

∂x∂y
. (4.6a−c)

From the numerical solutions we find that (see (3.2))

λ= iω0 + λ1E1/3
+ λ2E1/2

+ · · · . (4.7)

The numerical solutions have also shown the importance of three non-dimensional
scales: E1/3, E1/4 and E1/6. If we select the smallest scale E1/3 and consider the
dominating terms, the full equation (4.3) can be reduced to a simpler equation, which
reads:

α0
∂p
∂x
= iE

∂3p
∂y3
− iτ

∂p
∂y

(4.8)

and which we shall call the reduced problem. Its derivation is given in appendix A.
We now analyse this new and simpler but still very rich equation. We remark that
this equation is the same as the one we obtained for the slender torus considered in
Rieutord et al. (2002). The geometry in the meridional section is also the same. The
only difference between the two cases is that in the spherical geometry the reflection
on the rotation axis produces a variation in the solution: We show in appendix B that
if viscosity is neglected each reflection produces a factor −i in the eigenfunction. This
effect is not present in the toroidal configuration, as there is no axial singularity there.
Viscosity may actually alter the phase shift due to axis reflection, but we leave this
possible effect to future investigations. Finally, we may note that attractors bouncing
K times impose a factor (−i)K in the solution, but this factor reduces to unity if K=
4n. As we shall see below, the analytical two-dimensional solutions obtained for the
slender torus can offer a very good approximation to the eigenmodes made of shear
layers bouncing 4n times on the rotation axis, even in a thick shell.
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4.3. Local dynamics of shear layers
Let us first assume that the shear layers are formed by the product of a fast
oscillating wave of wavenumber scaling as O(E−1/3) and a wide O(E1/4) envelope. It
is convenient to set p= eψ and to work with ψ . The equation for ψ is:

α0
∂ψ

∂x
= iE

[
∂3ψ

∂y3
+ 3

∂2ψ

∂y2

∂ψ

∂y
+

(
∂ψ

∂y

)3
]
+ iE1/3

|τ̂ |
∂ψ

∂y
, (4.9)

where we have set |τ̂ |=−τE−1/3, hence |τ̂ |∼O(E0). We remark that an exact solution
to this equation is the linear function:

ψ(x, y)=
q3
− |τ̂ |q
α0

x+ E−1/3iqy, (4.10)

where q is any complex constant. We shall make the assumption that q is real, so
that (4.10) describes a wave with spatial frequency qE−1/3/2π in the y direction and
exponential variation in the x direction. This function accounts for the E1/3 oscillations
of the shear layers observed numerically. The foregoing solution is not localized and
we therefore need to seek for the envelope of the wave that keeps it close to the
attractor. Recalling that p= eψ , we now set

ψ =
q3
− |τ̂ |q
α0

x+ E−1/3iqy+ h(x, y) (4.11)

and we shall assume that h∼O(E0), (∂nh/∂yn)∼E−n/4, (∂h/∂x)∼E1/12. We insert this
expression into (4.9). To leading order, that is O(E1/12), we get the following equation
for h:

α0
∂h
∂x
= iE1/3(|τ̂ | − 3q2)

∂h
∂y
. (4.12)

This first-order linear partial differential equation has the following general solution:

h(x, y)= f (Z), with Z =
i(|τ̂ | − 3q2)

α0
E1/12x+ E−1/4y, (4.13)

where f (Z) is an arbitrary function. Numerical solutions suggest that the envelope is
a Gaussian, which would be the case if f (Z)=−aZ2 for some complex coefficient a
with a positive real part. We shall prove in the following that f (Z) has indeed this
shape and we shall provide the expression of a as a function of the eigenvalue and
of the geometrical parameters of the attractor (see (4.36)).

4.3.1. Viscous evolution along a characteristic path
We now wish to obtain the variation of the solution after travelling one complete

loop along the attractor. After reflection on a boundary, p is rescaled as

pn(xn, y)=Knp
(

x1,
y

Kn

)
, (4.14)

where Kn are products of contraction/dilation coefficients arising from the reflections at
the boundaries. They are the same as those of Rieutord et al. (2002). (Note that there
is a misprint on page 354 of Rieutord et al. (2002): the third formula of that page
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should read like (4.14) instead of having Kn at the denominator twice). Therefore the
spatial frequency q is multiplied at each reflection by the factor 1/Kn. Taking the first
branch as the reference, we set K1 = 1. The variation of the E1/3 part of the solution
(4.10) after travelling over the length δx= `n on the branch n is exactly:

δψn =
(q/Kn)

3
− |τ̂ |q/Kn

α0
`n. (4.15)

Since h varies by a small O(E1/12) amount over each branch, we can use the same
procedure as in §3.2 of Rieutord et al. (2002) to determine its variation after one loop.
On branch n we have:

δhn = hn(xn + `n, y)− hn(xn, y)'
∂h
∂x

∣∣∣∣
xn,y

`n

=
iE1/3

α0

(
|τ̂ | −

3q2

K2
n

)
∂h(x1, y/Kn)

∂y
`n. (4.16)

Since the functions hn are the same on every branch up to a scale factor Kn, we can
write (4.16) as

δhn =
iE1/3

α0

(
|τ̂ |

Kn
−

3q2

K3
n

)
∂h(x1, y/Kn)

∂(y/Kn)
`n

=
iE1/3

α0

(
|τ̂ |

Kn
−

3q2

K3
n

)
∂h(x1, y)
∂y

`n, (4.17)

where all the derivatives are taken on the first branch.
Finally we have to take into account the variations due to the reflections on the

rotation axis: as we show in appendix B, each reflection introduces a factor −i in the
eigenfunction; therefore ψ is shifted by −iπ/2 at each reflection.

Summing up all the contributions of the perturbations arising from all the branches
of the attractor we get:

δψpropag.
=−

iKπ

2
+

Aq3
− B|τ̂ |q
α0︸ ︷︷ ︸

O(E0)

+
iE1/3

α0

(
B|τ̂ | − 3Aq2

) ∂h
∂y︸ ︷︷ ︸

O(E1/12)

, (4.18)

where K is the total number of reflections on the axis, and

A=
∑

n

`n

K3
n

, B=
∑

n

`n

Kn
. (4.19a,b)

We remark that the values of A and B depend on the branch of the attractor that
is chosen as the first branch. The quantity d = B3/A however does not change.
Expression (4.18) gives, terms up to order E1/12, the variation of the perturbation due
to viscosity when the wave has the E1/3 and E1/4 scales. Except for the reflections on
the boundaries, which rescale the width of the layer by some factor of order unity,
the foregoing expression is just an approximate solution of (4.8). We now need to
take into account the fact that the perturbation is not strictly on the attractor and
therefore that after one loop the place where we measure the variation δψ is not
the same as the initial one: it has been shifted by a small amount controlled by the
mapping. Indeed, the only point that comes back to the same place is the one on the
attractor.
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620 M. Rieutord and L. Valdettaro

4.4. The part played by the mapping
To take into account the shift induced by the mapping, we use the same procedure
as the one devised in Rieutord et al. (2002). Indeed, the mapping drawn by
characteristics in the meridional plane of the spherical shell is the same as the
one of the slender torus used in Rieutord et al. (2002).

Here too, we shall work with the associated critical latitude θ c
= arcsin ω, rather

than with the frequency ω. Thus, θ c
0 designates the critical latitude associated with

the frequency ω0 of the asymptotic attractor.
We introduce the mapping as the function f (φ, θ c) that associates the latitude φ,

where the characteristic bounces on the inner or outer boundary, with the latitude of
its image after one loop along the attractor. The y-coordinate introduced in (4.8) is
related to the latitude φ by

y= p(φ − φ0) with p= r sin(φ0 ± θ
c
0), (4.20)

where φ0 is the latitude of the reflection point of the asymptotic attractor and r is the
radius of the reflecting sphere (either η or 1). The ± sign denotes the sign of the
slope of the chosen characteristic. Finally, we note that φ0 is also the fixed point of
the mapping when θ c

= θ c
0 .

Since the mapping just displaces the points, its action on the velocity field complies
with

u( f (y, θ c), θ c) df = upropag.(y, θ c) dy, (4.21)

where upropag.(y, θ c) is the flow field obtained after propagation along the map
with starting point (x1, y). Here and in the following x1 will be omitted. u can be
understood as the toroidal component of velocity multiplied by the square root of the
distance to the rotation axis s1/2. It admits the same evolution equation (4.8) as the
reduced pressure and thus has the same solution.

In order to find the displacement due to the mapping we make a Taylor expansion
of the mapping around the fixed point of the asymptotic attractor, namely around φ=
φ0 (that is y= 0) and θ c

= θ c
0 . Following the appendix of Rieutord et al. (2001), we

get:

f (φ, θ c)= φ + f01δθ +
1
2 f20(φ − φ0)

2
+

1
2 f02δθ

2
+ f11δθ(φ − φ0)+ · · · , (4.22)

where δθ = θ c
− θ c

0 . We defined

fij ≡
∂ i+jf
∂φi∂θ j

∣∣∣∣
φ0,θ0

. (4.23)

We recall that numerical solutions say that δθ = O(E1/3) and φ − φ0 = O(E1/6). The
foregoing expression of f leads to

f (y, θ)= p( f − φ0)= y+ pf01δθ +
f20

2p
y2
+ · · · . (4.24)

It is convenient to shift the y coordinate and develop around ȳ= y− ymax, where ymax
is the position where the wave packet amplitude is maximum (see figure 19). We shall
assume ȳ∼O(E1/4) and we shall drop all contributions smaller than O(E5/12). We thus
have:

f (y, λc)= ymax︸︷︷︸
E2/12

+ ȳ︸︷︷︸
E3/12

+ pf01δθ +
f20

2p
y2

max︸ ︷︷ ︸
E4/12

+
f20

p
ymaxȳ︸ ︷︷ ︸

E5/12

+ · · · . (4.25)
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We rewrite (4.21) in terms of the exponent ψ :

eψ( f (y,θc),θc) df = eψ
propag.(y,θc) dy. (4.26)

We remark that
df
dy

∣∣∣∣
ȳ=0

= 1+
f20

p
ymax + · · · = e(f20/p)ymax+···, (4.27)

where f20ymax/p is of order E1/6. Therefore (4.26) is turned simply into:

ψ( f (y, θ c), θ c)=ψpropag.(y, θ c)−
f20

p
ymax + · · · . (4.28)

We evaluate separately the left-hand side and the right-hand side of (4.28). For the
left-hand side we replace ψ with (4.11):

ψ( f (y, θ c), θ c)=
q3
− |τ̂ |q
α0

x1 + E−1/3iq
(

y+ pf01δθ +
f20

2p
y2

max +
f20

p
ymaxȳ

)
+ h(x1, y)+

∂h
∂y

∣∣∣∣
y

(
pf01δθ +

f20

2p
y2

max +
f20

p
ymaxȳ

)
+ · · · . (4.29)

For the evaluation of the right-hand side we use (4.18):

ψpropag.(y, θ c)=ψ(y, θ c)+ δψpropag.(y, θ c)=
q3
− |τ̂ |q
α0

x1

+E−1/3iq(ymax + ȳ)+ h(x1, y)−
iKπ

2
+

Aq3
− B|τ̂ |q
α0

+
iE1/3

α0
(B|τ̂ | − 3Aq2)

∂h
∂y

∣∣∣∣
y

.

(4.30)

We are ready to insert these expressions into (4.28); dropping all contributions smaller
than E1/12 we get:

E−1/3iq(pf01δθ +
f20

2p
y2

max)︸ ︷︷ ︸
E0

+ E−1/3iq
f20

p
ymaxȳ+

∂h
∂y

∣∣∣∣
y

(
pf01δθ +

f20

2p
y2

max

)
︸ ︷︷ ︸

E1/12

=−
iKπ

2
+

Aq3
− B|τ̂ |q
α0︸ ︷︷ ︸

E0

+
iE1/3

α0
(B|τ̂ | − 3Aq2)

∂h
∂y

∣∣∣∣
y

.︸ ︷︷ ︸
E1/12

(4.31)

We remark that the term f20/pymax arising in (4.28), due to the contraction of the
mapping, is negligible since it is of order O(E2/12). This equality must be satisfied
independently for the E0 and E1/12 terms. At the lowest order, E0, we thus obtain:

−
iKπ

2
+

Aq3
− B|τ̂ |q
α0

− E−1/3iq
(

pf01δθ +
f20

2p
y2

max

)
= 0 (4.32)

and to the next order, E1/12:

E−1/3iq
f20

p
ymaxȳ+

∂h
∂y

∣∣∣∣
y

[
pf01δθ +

f20

2p
y2

max −
iE1/3

α0
(B|τ̂ | − 3Aq2)

]
= 0. (4.33)
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622 M. Rieutord and L. Valdettaro

Taking the real part of the first relation we find

|τ̂ | = q2 A
B
, (4.34)

which shows, as expected, that the damping rate is controlled by the wavelength of
the mode. The imaginary part of the first relation fixes the position of ymax in terms
of the eigenfrequency and of the geometry of the attractor:

y2
max = −

(
Kπ

2q
E1/3
+ pf01δθ

)
2p
f20
. (4.35)

The second relation (4.33) provides the form of h(y) which simply reads

h(y)= 1
2 aE−1/2(y− ymax)

2
+ b (4.36)

with

a=−
q2ymaxE−1/6f20/p

iKπ/2+ 2Aq3/α0
. (4.37)

The shape of h confirms that the wave packet is localized and with a Gaussian
shape, as suggested by the numerical solutions. The Gaussian shape is governed by
the real part of a. Using (4.10) and (4.13) we finally write the shear layer profile:

u(x, y)=u0 exp

{
(q3
− |τ̂ |q)x
α0

+ iqE−1/3y+
a
2

(
i(|τ̂ | − 3q2)

α0
E1/12x+ E−1/4(y− ymax)

)2
}
,

(4.38)
where u0 is an arbitrary constant.

Let us now characterize the position of the local attractor yattr (see figure 19). Since
on the local attractor we must have f (yattr, θ

c)= yattr, from (4.24) we get

pf01δθ +
f20

2p
y2

attr = 0, (4.39)

and thus

y2
attr =−

2p2f01δθ

f20
. (4.40)

The above quantities yattr, ymax, q and a change if the starting branch along the
attractor is changed, because reflections on the boundaries induce contractions/dilations
that are branch dependent. Hence, the geometric parameters of the attractor A, B, p,
f01 and f20 are starting-branch dependent. However, the two parameters

c=
∣∣∣∣ f20B

p

∣∣∣∣ , d=
B3

A
(4.41a,b)

are starting-branch independent. Using |pf01| = B (see Rieutord et al. 2001) and
defining ω̂1 ≡ (ω − ω0)E−1/3

= α0δθE−1/3, we can rewrite the above formulas as
follows:

yattr

E1/6B
=

√
2|ω̂1|

α0c
, (4.42a)
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ω0 α0 c d K η

0.555369 0.831694 43.8 88.8 2 0.35
0.831694 0.555369 43.8 88.8 2 0.35
0.622759 0.782413 49.3 28.5 2 0.35
0.782413 0.622759 49.3 28.5 2 0.35
0.466418 0.884564 332.8 58.1 2 0.50
0.884564 0.466418 332.8 58.1 2 0.50
0.662485 0.749075 106.3 90.1 4 0.35
0.749075 0.662485 106.3 90.1 4 0.35

TABLE 2. Geometric parameters for some attractors.

( ymax

E1/6B

)2
=

1
c

(
2|ω̂1|

α0
−

Kπ

|τ̂ |1/2d1/2

)
=

( yattr

E1/6B

)2
−

Kπ

c|τ̂ |1/2d1/2
, (4.42b)

ymax

yattr
=

√
1−

Kπα0

2d1/2|ω̂1||τ̂ |1/2
, (4.42c)

B2a=−
2|τ̂ |α0cd|ymax|/(E1/6B)

iKπα0 + 4|τ̂ |3/2d1/2
, (4.42d)

B2Re(a)=−
8|τ̂ |5/2α0cd3/2

|ymax|/(E1/6B)
K2π2α2

0 + 16|τ̂ |3d
, (4.42e)

q2B2
= |τ̂ |d. (4.42f )

In these formulas B is the only geometric parameter that changes when we change
the starting branch and all the quantities on the right-hand side of these formulas
are starting-branch independent. We remark in particular that the ratio ymax/yattr is
independent of the starting branch. Table 2 gives the starting-branch-independent
parameters of the attractors listed in table 1. Finally, note that parameters |τ̂ | and
|ω̂1| have to be given by the numerical solution.

5. Comparison between analytic and numerical solutions
5.1. General attractor modes

In figures 20 and 21 we display the actual eigenfunction for the least-damped
eigenmode of attractor ω0 = 0.555369 at E = 6 × 10−11 and the profile of the uϕ
component across (figure 20b) and along (figure 21a) the shear layer as given by
(4.38) and the numerical solution. We note the good agreement between the curves:
indeed, we expect the relative difference to be of the order of E1/12, which is 0.14 at
E= 6× 10−11. This value is consistent with the magnitude of the difference between
the model and the numerical solution as shown in figures 20(b) and 21. A similar
result has also been obtained with modes of higher order, and with modes of the
attractors listed in table 1.

In figure 20(b), we also note that the actual attractor and the asymptotic attractor
both stand outside the shear layer. This is because they are at distance O(E1/6) from
ymax, whereas the shear layer width scales like O(E1/4). As a consequence, two shear
layers adjacent to the asymptotic attractor do not ‘see each other’ and seem to remain
independent, unlike what happens in the analogous two-dimensional problem analysed
in Rieutord et al. (2002).
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0 0.5 1.0
–1.0

–0.5

0

0.5

1.0

(a) (b)

FIGURE 20. (Colour online) (a) Meridional distribution of the kinetic energy of the
least-damped mode associated with the attractor at ω0 = 0.555369 when E = 6 × 10−11.
The green lines show the actual position of the attractor, while the short and long white
lines show the position of transverse and longitudinal profiles displayed in (b) and in
figure 21(a). The dashed rectangle delineates the region where the difference between the
theoretical and the computed solution has been evaluated. (b) Profile of Re(uφ) and |uφ|
for the same mode as in (a) together with the profile of the theoretical prediction (4.38)
and the difference between them for 345 segments taken inside the rectangle of panel (a).
The solid vertical line visualizes ymax and the vertical dashed line shows the position of
the attractor associated with the mode frequency. The position of the profile is given by
the short white line in (a).

0 0.5 1.0
–1.0

–0.5

0

0.5(a) (b)

1 2 3

x

0

FIGURE 21. (Colour online) (a) Real and imaginary parts of uφ from the numerical and
analytical solutions (red and blue lines). The multicolour lines in the middle show the
difference between the theoretical prediction (4.38) and the numerical solution at various
y-positions. (b) uφ

√
s/Kn for the mode shown in figure 20(a) along the associated attractor

(green line in figure 20a); s is the distance to axis and Kn is the amplification factor at
the nth bounce on the boundary. In black is shown the real part, in red the imaginary
part and in green the modulus. The dashed lines in the last interval (long white segment
in figure 20a) show the prediction of (4.38).
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(a) (b) (c)

11P

1EP 1E

2E

FIGURE 22. (Colour online) (a) Shape of the asymptotic attractor at ω0 = 0.7491 and
(b) its symmetrized view. Dashed, dotted and dash-dotted lines are symmetric to the
continuous lines of respectively the rotation axis, equator and origin. Arrows indicate the
direction chosen along the attractor. (c) The corresponding numerical solution showing a
meridional cut of the kinetic energy density (here η= 0.35 and E= 2× 10−12).

Hence, for a given eigenvalue the foregoing analysis gives a good analytical
approximation of the eigenfunction. Our procedure however does not provide the
quantization rule of eigenvalues observed numerically.

5.2. Modes with 4n-reflections on the rotation axis
As we mentioned in the previous section, a special case occurs when the number
K of reflections on the axis is 0 or a multiple of 4. In these situations, after a full
loop along the attractor the factor (−i)K due to the reflections on the axis amounts to
unity. Therefore the reflections on the axis have overall no effect. Since the governing
reduced equation (4.8) is the same as the one we obtained in the two-dimensional
toroidal configuration of Rieutord et al. (2002), the same analysis should be valid
here as well. We thus expect to find eigenvalues given by the formula obtained in
that paper:

τ̃m =±(ω̃m −ω0)=−

(
m+

1
2

)√
α0cE

d
, m= 0, 1, 2, . . . , (5.1)

with eigenfunctions

pm =U(−m− 1/2, z)= e−z2/2Hm(z), z= e−iπ/8(2α0cd)1/4
E−1/4y

B
, (5.2)

where U is the parabolic cylinder function and Hm = (−1)mez2dme−z2
/dzm are the

Hermite polynomials.
We indeed found such modes. An example is the set of modes associated with the

attractor at ω0 = 0.74907 for η = 0.35, shown in figure 22. We report in table 3 the
eigenvalues obtained numerically together with the theoretical values given by (5.1).
There is a very good agreement between the difference of consecutive eigenvalues
and the spacing |τ̃2m+2 − τ̃2m| given by (5.1). However, the ratio τ1/τ̃1, between the
observed and theoretical damping rates of the fundamental mode is different from 1
and remains close to the value ∼1.5 independently of the Ekman number and of the
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0.7491 0.7493 0.7495
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FIGURE 23. (Colour online) (a) Spectrum of attractor 0.749 for E= 10−10. The red dots
are the eigenvalues following the parabolic cylinder solution (5.2). The green eigenvalues
follow the multi-scale behaviour (4.38). (b) Profile of the eigenfunction corresponding to
the least damped of the red eigenvalues of figure 23(a) at E= 3× 10−10.

n |τn| |ωn −ω0| |τn+1 − τn| |ωn+1 −ωn| m |τ̃m| |τ̃m+2 − τ̃m|

E= 3× 10−10

1 3.541× 10−5 3.544× 10−5 1 2.31× 10−5

2 6.610× 10−5 6.616× 10−5 3.069× 10−5 3.072× 10−5 3 5.38× 10−5 3.07× 10−5

3 9.700× 10−5 9.692× 10−5 3.090× 10−5 3.076× 10−5 5 8.45× 10−5 3.07× 10−5

4 1.280× 10−4 1.276× 10−4 3.104× 10−5 3.068× 10−5 7 1.15× 10−4 3.07× 10−5

5 1.592× 10−4 1.582× 10−4 3.112× 10−5 3.060× 10−5 9 1.46× 10−4 3.07× 10−5

E= 2× 10−12

1 2.892× 10−6 2.892× 10−6 1 1.881× 10−6

2 5.392× 10−6 5.392× 10−6 2.501× 10−6 2.5× 10−6 3 3.136× 10−6 2.509× 10−6

3 7.894× 10−6 7.892× 10−6 2.502× 10−6 2.5× 10−6 5 4.39× 10−6 2.509× 10−6

4 1.04× 10−5 1.039× 10−5 2.502× 10−6 2.5× 10−6 7 5.644× 10−6 2.509× 10−6

TABLE 3. First eigenvalues for the attractor ω0 = 0.7491, η= 0.35 at two Ekman
numbers. The ratio τ1/τ̃1 ' 1.54 seems to be independent of E.

n |τn| |ωn −ω0| |τn+1 − τn| |ωn+1 −ωn| m |τ̃m| |τ̃m+2 − τ̃m|

1 2.871× 10−5 2.866× 10−5 1 2.905× 10−5

2 6.761× 10−5 6.739× 10−5 3.891× 10−5 3.874× 10−5 3 6.779× 10−5 3.874× 10−5

3 1.066× 10−4 1.063× 10−4 3.899× 10−5 3.886× 10−5 5 1.065× 10−4 3.874× 10−5

TABLE 4. First eigenvalues for the attractor ω0 = 0.2958, η= 0.65 at Ekman number
E= 10−11. Note that τ1 and τ̃1 are almost equal.

attractor (see table 3 for the 0.749 attractor). The reason for this discrepancy is very
likely due to the fact that we did not consider the corrections induced by the Ekman
number to the reflection condition on the axis. Indeed, for the 4n-attractors that do
not cross the polar axis (i.e. with n= 0), the predicted eigenvalues and eigenfunctions
are perfectly verified (see figure 24 and table 4).

We also remark that even values of m do not appear in the numerical solution,
but this can be explained by symmetry reasons as follows. The numerical solutions
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FIGURE 24. (Colour online) (a) Shape of the attractor at ω0= 0.2958, η= 0.65 at Ekman
number E= 10−11. (b) The corresponding numerical solution showing a meridional cut of
the kinetic energy density divided by the square root of the distance to the polar axis. (c)
Profile of the coresponding eigenfunction along the red line of panel (a).

are axisymmetric (see § 2), but they are also symmetric with respect to the equator
(see beginning of § 3). On the other hand the asymptotic attractor is symmetric
with respect to the equator (see figure 22) but the actual attractor (at ω 6= ω0) does
not have any symmetry. The analytical solution (5.2) for the shear layer along the
attractor must therefore be symmetrized in order to fulfil the symmetries imposed
to the numerical solution. This is done by adding replicas of the solution along the
asymptotic attractor suitably symmetrized with respect to the original one: starting
from the attractor denoted with continuous lines in figure 22, we construct three
additional attractors: the first is obtained through the axial symmetry (the dashed
lines), the second through the equatorial symmetry (the dotted lines) and the third
through the combined axial and equatorial symmetry (the dash-dotted lines). The set
of these four attractors makes the figure symmetric with respect to both the rotation
axis and the equator, as numerically required. For clarity in each panel we label
with 1, 1E, 1A and 1EA a given branch of each attractor. The numerical solution is
expected to be the same along each of these branches.

The two neighbouring branches marked by 1 and 2E in figure 22 form the shear
layer whose profile is shown in figure 23(a). The large-amplitude negative values of
y belong to the branch 2E while the positive values of y correspond to the branch 1.
It is readily seen that vφ(y) must be the opposite of vφ(−y) because the reflection on
the outer sphere connecting branch 1E to branch 2E produces a change of sign in vφ .
The analytical solutions (5.2) with even values of m however are even functions of y:
vφ(−y)= vφ(y) and are thus forbidden. Those with m odd on the other hand are odd
functions of y and are thus allowed, as we observe numerically. The shape of the least-
damped mode (n= 1) is indeed similar to the predicted one for m= 1, as we can see
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(a) (b) (c)

1
1P

1E1EP

Kinetic energy

2P

FIGURE 25. (Colour online) (a) Shape of the asymptotic attractor at ω0 = 0.6625 and
(b) its symmetrized view. Dashed, dotted and dash-dotted lines correspond are symmetric
to the continuous lines with respectively rotation axis, equator and origin. Arrows indicate
the direction chosen along the attractor. (c) The corresponding numerical solution showing
a meridional cut of the kinetic energy density (here η= 0.35 and E= 10−12).

E n |τn| |ωn −ω0| |τn+1 − τn| |ωn+1 −ωn| m |τ̃m| |τ̃m+2 − τ̃m|

10−10 1 1.287× 10−5 0.789× 10−5 — — 0 0.47× 10−5 —
10−10 2 3.418× 10−5 2.928× 10−5 2.131× 10−5 2.139× 10−5 2 2.35× 10−5 1.88× 10−5

10−10 3 5.454× 10−5 4.935× 10−5 2.036× 10−5 2.007× 10−5 4 4.23× 10−5 1.88× 10−5

10−10 4 7.453× 10−5 6.902× 10−5 1.999× 10−5 1.967× 10−5 6 6.10× 10−5 1.88× 10−5

10−12 2 2.759× 10−6 2.288× 10−6 — — 2 2.35× 10−6 —
10−12 3 4.766× 10−6 4.332× 10−6 2.006× 10−6 2.043× 10−6 4 4.23× 10−6 1.88× 10−6

TABLE 5. First eigenvalues for attractor ω0 = 0.66249, η= 0.35.

in figure 23(a). Here we have considered the 0.749 attractor but the reasoning and the
conclusions are valid for all the asymptotic attractors that are equatorially symmetric
and have 4n reflections on axis. We finally remark that if we had solved numerically
the equatorially antisymmetric problem, we would have obtained to good precision the
two-dimensional eigenmodes corresponding to even m values.

Let us now turn to the case where the asymptotic attractor has 4n reflections
on the axis but no equatorial symmetry, like the attractor plotted in figure 25.
One such attractor is obtained by rotating clockwise the attractor of figure 22(a)
by π/2; its frequency is ω0 = 0.66249 =

√
1− 0.749072. We observed that the

eigenvalues associated with this attractor are loosely related to those given by (5.1).
The matching between analytics and numerics is much worse than for the previous
attractor. The difference also shows up in the eigenfunction: figure 26(a) shows the
numerical velocity profile together with the analytic prediction (5.2) for mode n= 2
at E = 10−12. Despite a very low value of the Ekman number, the two functions
still show noticeable differences. This mismatch is due to symmetry requirements
of the numerical solution that cannot be satisfied by the analytical solution (5.2).
To show this, we first symmetrize the attractor in order to respect the symmetries
imposed on the numerical solution (solutions must be axisymmetric and equatorially
symmetric). The layout of the attractors after symmetrization is shown in figure 25(b).
In this figure the two neighbouring branches marked ‘1’ and ‘2P’ form the shear
layer whose profile is shown in figure 26(a). Branch 2P is the continuation of branch
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FIGURE 26. (Colour online) (a) Profile of the eigenfunction corresponding to the least
damped of the eigenvalues of the attractor 0.66249 at E = 10−12. (b) Profile of the
eigenfunction corresponding to the least damped of the green eigenvalues of spectrum in
figure 23.

1P, and branch 1P is the mirror symmetric of branch 1. Branch 2P is reached from
branch 1P after reflection on the outer boundary and rotation axis. Reflection at the
outer boundary produces a change of sign, and crossing of rotation axis produces
a −i-factor. We get thus the condition vφ(−y) = ivφ(y). This relation is however
not satisfied by any of the functions (5.2). So there cannot be solutions of the
type (5.2) as E→ 0. This impossibility likely explains why the n = 1-mode of the
ω0 = 0.66249-attractor has a frequency that goes out of the range of existence of the
attractor when E 6 2 × 10−12. The same considerations hold for all the asymptotic
attractors that are symmetric with respect to the polar axis with reflections on the
axis that are multiples of 4: solutions (5.2) are not expected to exist asymptotically
for these modes.

We finally note that the shear layer analysis of § 4 is still valid and so we expect
to obtain modes described by formula (4.38). Indeed, eigenvalues marked in green in
figure 23 correspond to such a case. We show in figure 26(b) the profile of the least
damped of these modes and remark that the position of ymax and yattr coincide, which
is consistent with (4.42c) with K = 0.

6. Conclusions
In this work we continued our investigations of the properties of inertial modes

in a spherical shell started in Rieutord & Valdettaro (1997), Rieutord et al. (2001)
and Rieutord et al. (2002). The possibility of using more computing power or
enhanced precision, allowed us to establish a simple mathematical law (3.2) for
the eigenvalues of the modes that are associated with some attractors made of a
periodic orbit of characteristics. For these modes, we identified three scales that
determine the structure of the shear layers constituting the eigenmodes. These scales
are controlled by fractional powers of the Ekman number, namely E1/6, E1/4 and
E1/3. They singularize the small parameter E1/12. This very low power of the Ekman
number shows that the true asymptotic regime, such that E1/12

� 1, is not reachable
by numerical solutions. It may not even be relevant to the extremely low Ekman
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630 M. Rieutord and L. Valdettaro

numbers met in astrophysics that can hardly go below 10−18. However, it remains
interesting to understand the structure of the solutions when the Ekman number is
very small, yet finite.

The present limits of numerical solutions are no longer the available memory,
which controls the reachable spatial resolution, but the round-off errors boosted by
the ill-conditioned operator. This ill conditioning is related to the singular nature of
the inviscid limit of the eigenfunctions. It may be circumvented by using enhanced
precision. We therefore place our effort on converting our code to use extended
precision (quadruple precision). This choice rapidly reached however the limits of
present technology, since computers are all built with double precision arithmetics.
Extended arithmetics is therefore obtained through software programming and is thus
very slow. This limited our calculations to Ekman numbers above 10−9. Nevertheless,
high-order modes, which are very sensitive to round-off errors, could be properly
computed (see also Valdettaro et al. 2007).

The foregoing numerical results obtained on the ‘attractor modes’ guided our
analysis of their structure and thanks to the reduced problem (4.8) simplifying the
original equation we could determine an analytic formula for the shape of the shear
layers. It turns out that an attractor mode is a wave trapped around a characteristic
attractor whose typical wavelength is O(E1/3) but whose envelope has a width O(E1/4).
This wave packet remains at a distance O(E1/6) from the asymptotic attractor that
has a vanishing Lyapunov exponent. Our analysis does not provide a selection rule
for the eigenvalues. It is most likely that the simplifications we made to retrieve
the structure of the shear layer are too strong to allow for the determination of the
quantization rule of the modes. Our analysis indeed was restricted to the E1/3 and
E1/4 scales and did not include the E1/6 one: the condition leading to the quantization
of the solution might be more deeply nested in the multiscale dependence of the
solutions. The special case where attractors have 4n reflections on the rotation axis
has interestingly extended the applicability of the two-dimensional model solved by
Rieutord et al. (2002). However, the predicting power of the two-dimensional model
is limited to the frequency spacing of some modes verifying some given symmetries.
Here too, some piece seems to be missing for the model to make accurate predictions
of eigenvalues and eigenmodes.

Beside attractor modes, we also obtained evidence of the existence of critical
latitude modes. These modes are made of detached shear layers emitted by the critical
latitude singularity on the inner boundary. They connect the northern and southern
critical latitude singularities. Since the path of characteristics from one singularity to
that of the other hemisphere is not unique, this set of modes is determined by the set
of paths and the transverse wavenumber of the shear layer. The inspection of their
damping rates, in the range 10−9 . E . 10−7, shows a dependence with the Ekman
number close to E0.8, meaning a weak dependence of the width of the layers on this
number. However, this behaviour does not seem to be asymptotic, since it disappears
when E . 10−9 for the least-damped mode. More work is needed to fully understand
the behaviour of these modes at lower viscosities.

The last category of modes that we identified are a series of modes whose frequency
is close to sin(π/4). We recall that when ω= sin(π/4) characteristics follow strictly
periodic orbits and thus no small scale is forced by the mapping (Rieutord et al.
2001). The modes of this kind seem to be essentially inertial waves trapped between
the two shells. We qualified them as quasi-regular modes because in some range
of Ekman numbers they behave as regular modes: their eigenfunction is almost
independent of E. However, this does not mean that they exist in the inviscid limit.
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Axisymmetric inertial modes in a spherical shell at low Ekman numbers 631

We find that the modes follow quite simple quantization rules, which show that when
ω→ sin(π/4), the typical wavenumber of the mode tends to infinity and so does the
damping rate. This result explains the no-response flow of a fluid in a rotating shell
when it is forced periodically at ω = sin(π/4), as has been observed by Rieutord
& Valdettaro (2010). We expect that such a phenomenon occurs for all frequencies
leading to neutral periodic orbits of characteristics. With our set-up (aspect ratio
η= 0.35), this should also occur when ω= sin(π/6) and ω= sin(π/3), but inspection
of the modes around these frequencies does not show a neat quasi-regular behaviour.
Perturbations from the critical latitude singularity appear to be important. For the
aspect ratio η = 0.35 it seems that only sin(π/4) can produce quasi-regular modes,
but it turns out that ω = sin(π/8), for a smaller core (η = 0.20), actually also has
quasi-regular modes. Hence, beside the neutral character of periodic orbits, some
other character (to be uncovered) is needed to allow quasi-regular modes. Finally, the
regularity of the modes, which we characterize by the proportionality of the damping
rate to the Ekman number, is lost when the Ekman number is below some value
specific to the mode. Thin shear layers appear and introduce a stronger dissipation.

The foregoing solutions, although derived in a highly idealized set-up, show the
extreme richness and complexity of the dynamics of rotating fluids. The oscillation
spectrum of an incompressible slightly viscous fluid inside a rotating spherical shell
appears much more complex than our first studies (Rieutord & Valdettaro 1997) let
us think. We now clearly see that the eigenvalues cannot be represented by a single
formula. Because of the very small powers of the Ekman number (E1/12) that seem to
control the eigenmodes around attractors, even the astrophysical regime is not in the
asymptotic state of vanishingly small quantities. We face here the same difficulty as
Sauret & Le Dizès (2013) when they studied the libration-induced flows in a spherical
shell.

Hence, the asymptotic spectrum at vanishing (but non-zero) Ekman number is
most probably a composition of different sets of eigenvalues, which follow their own
asymptotic laws. More work is still needed to exhibit the analytical solutions that
describe this asymptotic limit like the one obtained by Rieutord et al. (2002) for the
two-dimensional problem.

Back to astrophysics and geophysics, which motivate these investigations (since
the work of Poincaré 1885), the various sets of modes and their different asymptotic
behaviours will impact the response of the fluid to a global forcing, such as a tidal
one. Stars and planets are more complicated systems than our simple spherical shell,
but this system has pointed out mechanisms that may persist when stratification or
differential rotation (or both) are taken into account (e.g. Dintrans et al. 1999; Mirouh
et al. 2016).
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632 M. Rieutord and L. Valdettaro

Appendix A. Derivation of the reduced equation

We start from the viscous Poincaré equation (4.3) which we rewrite using the (x, y)
coordinates in the meridian plane instead of (r, z). We note that

1′ =
∂2

∂x2
+
∂2

∂y2
+

1
4s2

(A 1)

so that this operator may be reduced to ∂2/∂y2 since we are considering the solution
associated with thin shear layers. Thus doing we reduce (4.3) to(

λ− E
∂2

∂y2

)2
∂2p
∂y2
+ω2 ∂

2p
∂y2
+ 2αω

∂2p
∂x∂y

= 0. (A 2)

Now focusing on the solutions with the smallest y-scales E1/3, the term with the
largest derivative −E∂6/∂y6 is negligible. Integrating over y and noting that λ= τ + iω
we get:

α
∂p
∂x
=
λE
ω

∂3p
∂y3
+ iτ

∂p
∂y
. (A 3)

We can safely replace α with the asymptotic value α0 since their difference is
O(E1/3) thus negligible. In this equation the smallest scale, E1/3, makes all the terms
of the same order (τ is of order E1/3). However, the equation remains valid if, as seen
numerically, larger scales and/or contributions to τ of order E1/2 are retained.

Appendix B. Reflection on the rotation axis

We show that, for the inviscid case, the reflection on the axis produces a −i
factor in the solution. Consider the inviscid axisymmetric solution propagating in the
direction of increasing z, namely

p(s, z, t)= p(s)ei(kz−ωt). (B 1)

The Poincaré equation yields

∂2p
∂s2
+

1
s
∂p
∂s
+
α2k2

ω2
p= 0, (B 2)

which is solved by
p(s)= AJ0(kss), (B 3)

where ks = αk/ω and J0 is the zeroth-order Bessel function. Asymptotically, when
kss� 1, namely far from the rotation axis

J0(kss)'

√
2

πkss
cos
(

kss−
π

4

)
=

√
2

πkss
(eikss−iπ/4

+ e−ikss+iπ/4), (B 4)

which shows that the outward wave

eikss−iωt−iπ/4 (B 5)
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is shifted by −iπ/2 compared to the inward wave

e−ikss−iωt+iπ/4 (B 6)

if we consider the propagation in a z=Cst plane. We thus conclude that the bounce of
the wave on the axis, ingoing and then outgoing, imprints a factor −i on the solution.
This behaviour also emerges in the analysis of shear layers produced by a librating
disc, which reflect on the axis (e.g. Le Dizès 2015).
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