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ABSTRACT

Aims. We wish to understand the processes that control the fluid flows of a gravitationally contracting and rotating star or giant planet.
Methods. We consider a spherical shell containing an incompressible fluid that is slowly absorbed by the core so as to mimic gravi-
tational contraction. We also consider the effects of a stable stratification that may modify the dynamics of a pre-main-sequence star
of intermediate mass.
Results. This simple model reveals the importance of both the Stewartson layer attached to the core and the boundary conditions met
by the fluid at the surface of the object. In the case of a pre-main-sequence star of intermediate mass where the envelope is stably
stratified, shortly after the birth line, the spin-up flow driven by contraction overwhelms the baroclinic flow that would take place
otherwise. This model also shows that for a contracting envelope, a self-similar flow of growing amplitude controls the dynamics.
It suggests that initial conditions on the birth line are most probably forgotten. Finally, the model shows that the shear (Stewartson)
layer that lies on the tangent cylinder of the core is likely a key feature of the dynamics that is missing in 1D models. This layer can
explain the core and envelope rotational coupling that is required to explain the slow rotation of cores in giant and subgiant stars.
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1. Introduction

The influence of rotation has long been known to be crucial
for understanding mixing in radiative regions of stars and in in-
terpreting the observed surface abundances (Strittmatter 1969).
Many (if not all) stellar evolution codes now include some
modelling of the transport of angular momentum and chem-
ical elements by the flows induced by rotation in the stably
stratified radiative zones. The difficulty is that stellar evolution
codes are one-dimensional while fluid flows are generally multi-
dimensional. Basically, two types of modelling are currently
used: one is based on a simple (turbulent) diffusion process (e.g.
Pinsonneault 1997) and the other includes a first-order modelling
of meridional advection, distinguishing the transport of angu-
lar momentum and that of chemicals (Zahn 1992). However,
both of them need adjustment of diffusion coefficients with re-
spect to observations. While this modelling has succeeded in ex-
plaining various features of abundance patterns or evolutionary
effects like the surface abundance of lithium as a function of
mass (Charbonnel & Talon 1999), the (relative) high number of
red super-giants in low-metallicity galaxies (Maeder & Meynet
2001), or the ratio of type Ibc to type II supernovae (Meynet
& Maeder 2005), many recent results challenge our understand-
ing of this so-called rotational mixing. One of the most famous
is the distribution of Large Magellanic Cloud B-stars in a dia-
gram plotting the nitrogen abundance versus the rotational ve-
locity (the so-called Hunter diagram). As shown by Brott et al.
(2011), many slowly rotating stars show an over abundance of
nitrogen compared to the predictions of models, while some fast
rotating stars show much less nitrogen than expected.

In order to progress in this difficult problem, it is clear that
a better view of the dynamics of rotating stars is needed. Many
processes contribute to rotational mixing. Let us recall that the
timescale of element transport inside stars is essentially con-
trolled by the radiative zones. Indeed, convective regions mix
almost instantaneously. When the star is non-rotating, elements
may migrate through radiative regions thanks to microscopic
diffusive processes or propagating waves. In rotating stars, ra-
diative regions are no longer at rest: beyond the global rotation
baroclinic flows arise as a differential rotation and an associated
meridional circulation (Rieutord 2006b). While meridional cur-
rents can obviously carry elements from deep to surface layers,
differential rotation can also contribute to the transport through
shear driven instabilities and associated turbulence. As pointed
out by Zahn (1992), baroclinicity may be helped by angular mo-
mentum losses resulting from mass loss. To be complete, a se-
quence of gravitational contraction may also drive a redistribu-
tion of angular momentum and elements during the pre-main
sequence or just at the end of the main sequence.

Going beyond the above mentioned modelling of rotational
mixing requires relaxing the spherical symmetry of the models.
A first step in this direction is to simplify the structure of the
stars so as to focus on their interior hydrodynamics. This line
of research was followed in Rieutord (2006a). The star was re-
duced to a spherical ball filled with an incompressible fluid to
study the properties of the baroclinic flows. Besides giving a
simplified view of the dynamic processes controlling a radia-
tive zone, this work has led to a simplified set-up for boundary
conditions in complete (compressible) two-dimensional models
of fast rotating stars (Espinosa Lara & Rieutord 2013). We ad-
dress the effect of mass contraction/expansion of a star or a giant
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planet on the global flows that affect the envelope of the rotat-
ing object. Although this driving results from the compressibil-
ity of the fluid, we decided to investigate its consequences using
an incompressible fluid. The contraction/expansion of the enve-
lope is mimicked by a core that absorbs or injects matter at a
constant rate in a surrounding stably or neutrally stratified enve-
lope. We wish to determine the resulting flows and the circum-
stances when it overwhelms the eventual baroclinic flows. This
will complete the work of Rieutord & Beth (2014) who studied
this same competition in the case of a spin-down driven by mass
losses.

The paper is organized as follows: in Sect. 2 we describe the
model and the questions of fluid dynamics that are addressed.
We next consider the case where outer boundary conditions are
no-slip and use the ensuing analytical solutions to enlight the
dynamics (Sect. 3). In Sect. 4, we discuss the presumably more
realistic case with stress-free boundary conditions. Conclusions
and a discussion of extrapolations of the results to models with
a compressible fluid follow.

2. The model

2.1. Description

To model simply the contracting/expanding star or giant planet,
we consider a self-gravitating incompressible viscous fluid en-
closed between two spherical shells. These shells are assumed
not to be distorted by rotation. The inner shell may represents
a core-envelope boundary through which a flux of matter is im-
posed. This flux is described by a uniform radial velocity Vs at
this interface. For a contracting envelope, Vs is negative. Note
that as the fluid of the envelope enters the core and as its radius
is assumed fixed, the core’s density linearly increases with time,
namely

ρcore = ρ0

(
1 +

t
ts

)

where we introduced the initial density of the core ρ0 and the
“suction time”, which is the time the core needs to increase its
density by a factor 2, namely

ts =
Rcore

3Vs
ρ̃ (1)

where ρ̃ = ρ0

ρ
. This time is of same order of magnitude as the

Kelvin-Helmholtz time. Here, ρ is the density of the envelope.
We note that changing the sign of Vs can readily describe an
expanding envelope due to a wind. The outer bounding sphere is
of constant radius and lets matter through so as to ensure mass
conservation in the envelope.

2.2. A digest of the following fluid dynamics

The remainder of the paper is fluid dynamics. A summary of
the various steps are described below and the astrophysical
implications of the results are addressed at the end of the paper.

As well known, the contraction of the star with the con-
servation of angular momentum induces a global acceleration
of the rotation rate, namely a spin-up, of the star. The prob-
lem of spin-up flows has been considered many times in fluid
dynamics literature (see the review of Duck & Foster 2001).
However, these studies have been mostly motivated by engi-
neering applications and therefore have considered a driving by

boundaries and not, as in our case, by a radial flow. The in-
fluence of a stable stratification, that we need to know to deal
with radiative regions of stars, has been more seldom consid-
ered in astrophysically relevant geometries. The most relevant
study is certainly the work of Friedlander (1976), who consid-
ered the spin-down of the radiative core of the Sun driven by
Reynolds stresses at the interface of the convective and radiative
regions. So, here too, the driving of the flows is by boundaries.
Friedlander’s model is much simplified (as is ours) as it uses
the Boussinesq approximation (i.e. neglecting the compressibil-
ity of the fluid). It also neglects baroclinic flows associated with
this set-up. This work however establishes that the spin-down
(or spin-up) timescale of a stably stratified fluid is the classi-
cal Eddington-Sweet timescale, namely the product of the heat
diffusion timescale (also known as Kelvin-Helmholtz time scale)
and the factor (N/2Ω)2, whereN is the Brunt-Väisälä frequency
in the radiative region and Ω is the rotation rate. In slowly rotat-
ing stars, the Eddington-Sweet timescale is much longer than the
Kelvin-Helmholtz, but in fast rotators that are considered here,
these timescales are similar. Hence, the spin-up driven by a grav-
itational contraction has never been considered in the literature
as far as we know.

The first step of our analysis considers the case of a neutrally
stratified envelope like that found in a star with an outer con-
vection zone. The translation of this constant entropy medium
into the incompressible fluid model is the simple constant den-
sity fluid. This simple model allows us to derive an asymptotic
solution for small Ekman numbers (i.e. small viscosity as ap-
propriate for stellar applications). This solution shows that the
spinning up core controls the flow inside its tangent cylinder and
gives the amplitude of the quasi-steady flow there. Outside the
tangent cylinder we find that the solution depends very much on
the outer boundary conditions. We analyse the rather artificial
case where no-slip conditions are imposed on the outer bound-
ary, since this case also allows for the derivation of an analytic
asymptotic solution. Moreover, with these boundary conditions,
we can also solve the case where the envelope is stably strati-
fied (but not contracting) and derive the associated differential
rotation forced by the baroclinic torque.

The competition between the two forcings (spin-up and baro-
clinicity) necessarily arises in the pre-main-sequence phase of an
intermediate mass star. We indeed expect that for such a mass
range, an outer radiative envelope sets in after the birth line,
likely after the disappearance of convective flows (e.g. Maeder
2009).

With our simplified model we can appreciate the result of
this competition. As a first step, still using the artificial no-slip
outer boundary condition, we compare the amplitudes of the
baroclinic flow and the contraction-driven spin-up flow when
they are taken separately. This comparison gives us a criterion on
the parameters of the star. Using numerical solutions of the full
problem, including the two forcing mechanisms simultaneously,
we confirm the validity of the criterion.

Our next step is to leave aside the no-slip outer boundary
condition and concentrate on the more realistic stress-free con-
dition. In such a case, the derivation of an asymptotic analytic
solution is much more involved and we had to resort to numer-
ics. Numerical solutions show that outside the tangent cylinder
of the core, a steady spin-up flow of an unstratified fluid driven
by contraction has an amplitude that scales with the ratio of two
small parameters, namely Ro/E, where Ro is the Rossby number
measuring the driving and E is the Ekman number measuring
the viscosity. With stellar parameters this ratio is expected to be
larger than unity showing that a steady solution is necessarily
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of large amplitude. In addition, the time needed to reach such a
steady state is roughly the contraction time, thus suggesting that
this steady state is actually never reached. This result prompted
us to study the transient state of the spin-up flow first without
stratification and then account for a stable stratification in the
envelope. Before the transient state reaches a significant ampli-
tude, it can be studied with linear equations that are easier to
solve. This transient flow shows the emergence of a quasi-self-
similar solution that simply grows in amplitude in the volume
outside the core’s tangent cylinder. Since our original question is
to discover whether such flow is able to supersede the baroclinic
flow driven by the combination of rotation and stratification, we
compared the two flows. The easy way is to compare the ampli-
tudes of the flow taken separately and quite clearly we find that
the contraction-induced spin-up rapidly overtakes the amplitude
of a baroclinic flow. The numerical solution of the transient start-
ing from an established baroclinic flow confirms this result.

We now present the detailed derivation of these fluid dynam-
ics results. The astrophysical side of the problem is addressed in
Sect. 5.

2.3. Equations of motion

In an inertial frame, the dynamics of an incompressible fluid en-
closed within the two shells is governed by the equations of mo-
mentum and mass conservation:⎧⎪⎪⎨⎪⎪⎩
∂u

∂t
+ (u · ∇)u = − 1

ρ
∇P + νΔu

∇ · u = 0
(2)

where u is the velocity field, P the pressure, and ν the kinematic
viscosity of the envelope. Let us now remove the bulk rotation
and set

u = Ω ∧ r + w. (3)

We defineΩ as the angular velocity of the core. Since the field u
is axisymmetric,

(u · ∇)u = Ω ∧ (Ω ∧ r) + 2Ω ∧ w + (w · ∇)w

where we recognise the centrifugal and Coriolis accelerations.
The centrifugal potential is gathered with the pressure into Π.
Substituting (3) in the set of Eqs. (2), we find that the relative
velocity w verifies⎧⎪⎪⎨⎪⎪⎩
∂w

∂t
+ 2Ω ∧ w + (w · ∇)w = −∇Π + νΔw − Ω̇ ∧ r

∇ · w = 0.
(4)

Note that the RHS-term now depends on the acceleration of the
rotation rate of the core −Ω̇∧ r where Ω̇ needs to be determined.

2.4. Scaled equations and linearization

We scale the equations using the Kelvin-Helmholtz timescale R
Vs

,
which is the timescale of the complete absorption of the envelope
by the core. The length scale R is the outer radius of the enve-
lope, and the velocity scale is the suction velocity w = Vsu. The
system (4) now reads{

Ro Du
Dτ + ez ∧ u = −∇p + EΔu − ω̇ez ∧ r

∇ · u = 0
(5)

where p is the reduced pressure. The following dimensionless
numbers appear:

ω̇ =
Ω̇R

2ΩVs
, Ro =

Vs

2ΩR
, E =

ν

2ΩR2
· (6)

Here we introduced the non-dimensional acceleration of the core
rotation rate ω̇, a Rossby number Ro and the Ekman number E,
which measures the viscosity of the envelope.

Obviously, the suction velocity is very small compared to
the rotation velocity. Hence, we expect Ro � 1. As a first step
setting Ro = 0 seems reasonable as long as Ro u is less than
unity (so as to be able to neglect quadratic terms). Thus, we are
left with a steady state problem that describes the quasi-steady
evolution of the system as long as the non-dimensional time τ
verifies:

Ro� τ � τs (7)

where τs =
ηρ̃
3 is the scaled suction time (η = Rcore

R is the scaled
inner radius). The left part of the inequality τ � Ro means that
we neglect the transients corresponding to a few rotation periods
where boundary layers form. Likewise, τ � τs means that the
rotation rate has not been changed, namely that Ω̇t � Ω.

2.5. The acceleration of the core

2.5.1. General equation

Equation (5) need the expression of ω̇. By absorbing the en-
velope, the mass of the core grows, as its angular momen-
tum. Evolution of the angular momentum Lz of the core is
governed by

dLz

dt
= ez ·

{
−

∫
(S )

(r ∧ ρu)u · dS +
∫

(S )
r ∧ [σ]dS

}
. (8)

The first integral is the flux of incoming angular momentum and
the second integral is the viscous torque applied on the core sur-
face. The tensor [σ] is the stress tensor. We find

ez · (r ∧ [σ]er) = r sin θσrφ = r sin θρν
∂wφ

∂r

∣∣∣∣∣∣
r=Rcore

. (9)

Besides, for a sphere of mass Mcore and radius ηR:

L = IΩ =
2
5

Mcore(ηR)2Ω· (10)

With the previous scaling, we obtain

McoreΩ̇ =
8π
3 ΩρVs(ηR)2 + 5πνρVsη

∫ π

0
sin2 θ

∂uφ
∂r

∣∣∣∣∣∣
r= η

dθ.
(11)

The evaluation of the remaining integral needs the expression
of the azimuthal flow uφ at the core-envelope boundary r = η,
namely in the Ekman boundary layers.

2.5.2. Boundary layer analysis

First of all, we change the boundary conditions with mass flux
to ordinary boundary condition by making the substitution

u = u′ − η
2

r2
er.

The new velocity field u′ verifies⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∇ ∧ {ez ∧ u′ − EΔu′} = 2( η

2

r3 − ω̇) cos θer

+ ( η
2

r3 + 2ω̇) sin θeθ
∇ · u′ = 0

(12)
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with the boundary conditions

u′ = 0 on r = η

and

er × [σ]er = 0, and u′r = 0 on r = 1.

These latter conditions describe stress-free boundary condi-
tions. Indeed, we assume that the upper layers outside the outer
shell have unimportant dynamic effects and are just provid-
ing/absorbing some mass. In the following, we drop the prime
on the velocity field.

As shown in Espinosa Lara & Rieutord (2013), the Ekman
number in stars is always very small thus leading to the forma-
tion of boundary layers near the boundaries. To derive the ex-
pression of the flow, we therefore examine the asymptotic case
E � 1. We first note that if we consider the inviscid case E = 0,
the set of Eqs. (12) is solved by⎧⎪⎪⎪⎨⎪⎪⎪⎩

ūr =
η2

r2 + rω̇
(
2 − 3 sin2 θ

)
ūθ = −3rω̇ sin θ cos θ.

(13)

In the azimuthal direction, we look for a flow such as ūφ =
U(s)eφ as dictated by the Taylor-Proudman theorem (e.g.
Greenspan 1969). Such a flow does not verify the no-slip bound-
ary conditions at the interface r = η. It needs boundary layer
corrections so as to satisfy ū0 + ũ0 = 0. The bar refers to the
solution within the envelope i.e. outside the boundary layer and
tilded quantities are for boundary layer corrections.

Following Rieutord (2006a), we write the boundary layer
corrections as:

(n∧ ũ0 + ĩu0) = −(n∧ ū0 + iū0)α=0 exp (−(1 − i)α) (14)

where α = (r − η)

√
| cos θ|

2E
and n = −er. We keep only the de-

creasing solution. The corrections thus read{
ũθ = −U(η sin θ) sinα e−α
ũφ = −U(η sin θ) cosα e−α. (15)

As in Rieutord (2006a), mass conservation gives the relation be-
tween the Ekman pumping ũr and the geostrophic flow U. It
yields

1 + (2 − 3 sin2 θ)ηω̇ =
1

η sin θ

√
E
2
∂

∂θ

(
sin θ U(η sin θ)√| cos θ|

)
(16)

where we keep only O(
√

E) terms. Integrating with respect to θ,
we find

U(η sin θ) = η

√
2
E

√| cos θ|
sin θ

(
1 − cos θ + ηω̇ cos θ sin2 θ

)
. (17)

Note that this expression defines U only within the tangent cylin-
der of the core defined as s = r sin θ = η (s is the radial cylindri-
cal coordinate).

Near the surface r = η i.e. within the boundary layer, the
shear is dominated by the boundary layer correction. It simplifies
the computation of the radial derivative of the azimuthal flow uφ
which reads

∂uφ
∂r
=
η

E
| cot θ|

(
1 − cos θ + ηω̇ cos θ sin2 θ

)
. (18)

Integral in (11) can now be evaluated:∫ π

0
sin2 θ

∂uφ
∂r

∣∣∣∣∣∣
r=η

dθ = η
2

3E

(
1
2
+

2
5
ηω̇

)
. (19)

We can now derive the acceleration of the angular velocity of the
core. Considering quasi-steady solutions that arise when Ro �
τ� τs, (11) leads to

ω̇ =
9

4ρ̃η
, (20)

which completes the Eqs. (12).
The foregoing solution (17) shows that the differential ro-

tation driven by the mass contraction scales as O(E−1/2). It
means that the linear regime that we solved is valid only when
Ro� √E, which is actually the case (see below). The foregoing
solution however describes the fluid flow only within the tangent
cylinder of the core.

Outside the cylinder, the solution depends on the outer
boundary conditions and on the Stewartson layer that lies upon
the cylinder. This makes the global solution quite involved, all
the more that we should also account for a possible stable stratifi-
cation of the envelope. Indeed, during the PMS phase of interme-
diate mass stars, the envelope is completely radiative. Therefore
the contraction-induced differential rotation competes with the
differential rotation induced by the baroclinicity of the envelope.

Before getting any further, we need to evaluate stellar
numbers that have appeared.

2.6. Orders of magnitude

As a test case of the foregoing problem, we first consider the
contraction of a fully radiative 3 M� PMS star. On the birthline,
the star’s surface temperature is around T∗ ∼ 5600 K, its lumi-
nosity L∗ ∼ 102 L� and its radius is R∗ ∼ 1010 m. The young star
contracts on the Kelvin-Helmholtz time upon the PMS (Henyey)
track, namely:

tKH =
GM2

RL
,

according to Maeder (2009). This leads to tKH ∼ 2.6 × 105 yr.
Setting arbitrarily Rcore = 0.15 R∗, we find Vs ∼ 6 ×

10−5 m s−1. Considering a rotation velocity of 10 km s−1 (such
that near the end of the PMS after a gravitational contraction
at constant angular momentum we obtain a star like HD 37806
studied by Boehm & Catala 1995), we find a Rossby number

Ro ∼ 3 × 10−9

that is very small as expected.
The estimate of the Ekman number requires a value of the

kinematic viscosity. If we use Zahn’s prescription (Zahn 1992)
for a turbulent viscosity, we obtain ν ∼ 104 m2 s−1 and thus

E ∼ 10−10.

With the radiative viscosity (e.g. Espinosa Lara & Rieutord
2013), ν ∼ 102 m2 s−1, we get

E ∼ 10−12.

For both values the condition Ro� √E is satisfied.
During the contraction, the quasi-steady state within the

cylinder is reached after a spin-up time, namely after (2Ω)−1√
E

.
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Using the previous numbers, we find that this state occurs af-
ter ∼103 or 104 years so rather soon after the start of contrac-
tion. Therefore, within the tangent cylinder, we can neglect the
transient phase.

If we consider the contracting envelope of a Jupiter-like giant
planet, Ekman numbers are also very small although with larger
uncertainties: Ogilvie & Lin (2004) give E ∼ 10−7 while Wu
(2005) suggest E ∼ 10−13. The typical contraction time of giant
planets is over 1 Gyrs (Fortney & Nettelmann 2010) so that Ro ∼
Prot/tcontraction ∼ 10−12. The condition Ro � √E is also easily
satisfied.

2.7. Adding stratification

2.7.1. Scaled equations

To account for a stable stratification in the envelope, we now
generalize the set of Eqs. (12) by taking the buoyancy force
and the equation for temperature fluctuations into account. In
PMS stars, the stable stratification of the envelope may come af-
ter a convective episode and thus may be evolving with time. To
simplify and get an upper bound on the effects of stratification
we impose the Brunt-Väisälä frequency as constant in time.

To be consistent with the foregoing model that uses an
incompressible fluid we use the Boussinesq approximation.
Following Rieutord (2006a) and combining with (12) we find⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∇ × (ez ∧ u − BθT r − EΔu) = −Bn2
T sin θ cos θeφ

−2( η
2

r3 + ω̇) cos θer + ( η
2

r3 + 2ω̇) sin θeθ

(n2
T/r)ur = BẼTΔθT

∇ · u = 0.

(21)

We use the same scales and notations as Rieutord (2006a). The
temperature perturbation is scaled as δT = εT∗θT where ε = Ω

2R
gs

is the ratio of centrifugal acceleration to surface gravity. Recall
that the centrifugal acceleration is driving the baroclinic flow.
The Brunt-Väisälä profile n2

T is scaled with N2 =
αT∗gS

R where α
is the dilation coefficient and gs the surface gravity.

The dimensionless number B monitors the ratio of the forc-
ings. From the expression of the scaling of the baroclinic flow
(see Rieutord 2006a), we have

B =
εN2R
2ΩVs

· (22)

Finally, the dimensionless number

ẼT =
E
λ

with λ = P N
2

4Ω2
(23)

measures heat diffusion. The dimensionless number P is the
Prandtl number. For fast rotators, λ is a small parameter that we
set to 10−4, following the estimate of Rieutord & Beth (2014).

Based on stellar models, a typical profile of the Brunt-
Väisälä frequency is shown in Fig. 1. We use the polynomial
expression⎧⎪⎪⎪⎨⎪⎪⎪⎩

n2
T (r) = 0 if r < η

n2
T (r) = (α(r − η) + β(r − η)2 + γ(r − η)3)2 if r ∈ [η; 1]

(24)

to represent this function. The coefficients α, β and γ result from
the polynomial fit.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

 r 

n T2

Fig. 1. Typical and scaled Brunt-Väisälä frequency profile as a function
of the normalized radius with η = 0.15.

3. An interesting solution with rigid outer boundary
conditions

Before getting into the full numerics, it is interesting to con-
sider the case where the outer bounding sphere of the envelope
is rigidly rotating at the same rate as the inner core. Outer no-slip
conditions can be expected if a turbulent layer threaded by mag-
netic fields covers the stellar surface (see Rieutord & Beth 2014),
however the synchronism between this layer and the surface is
here an ad hoc assumption (which can be easily removed). The
interesting point that is addressed below comes from the simple
analytical solution that can be derived for the flow outside the
tangent cylinder and offers an interesting view of the properties
of the system.

3.1. The steady mass contraction induced flow

With no-slip conditions on the outer boundary r = 1, we may
easily derive the expression of the geostrophic flow1 out of the
tangent cylinder of the core. When no stratification is present,
the azimuthal velocity reads

U(s) =

√
2
E

(1 − s2)3/4

(
η2

s
− ω̇s

)
s ≥ η. (25)

As shown in Fig. 2, this analytical solution nicely matches the
numerical solution.

3.2. The steady baroclinic flow

Let us now consider the opposite case where a pure baro-
clinic flow (no contraction) meets no-slip boundary conditions.
It verifies⎧⎪⎪⎪⎨⎪⎪⎪⎩
∇ × (ez ∧ u − BθT r − EΔu) = −Bn2

T sin θ cos θeφ
(n2

T/r)ur = BẼTΔθT
∇ · u = 0.

(26)

As shown in Rieutord (2006a), neglecting temperature pertur-
bations and viscosity, the φ-component of the vorticity Eq. (26)
leads to{

uφ = −sB
∫ 1

r
n2(r)

r dr + F(s)
θT = 0

(27)

1 A geostrophic flow is a steady flow that realizes the perfect bal-
ance between the Coriolis force and the pressure gradient. As a con-
sequence, it does not depend on the coordinate parallel to the rotation
axis (Taylor-Proudman theorem) and behaves as a columnar flow.
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Fig. 2. Comparison between numerical (solid line) and analytical (star
line) solutions of the geostrophic flow at the equator uφ(r, θ = π

2 ) for
E = 10−7, η = 0.15, ρ̃ = 10 without stratification when the envelope is
rigidly rotating at the same rate as the inner one.

where F(s) is a geostrophic solution determined by the boundary
conditions. In order to get the expression of F(s), we write

ū0 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝−sB
∫ 1

r

n2(r)
r

dr︸��������︷︷��������︸
g(r)

+F(s)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ eφ (28)

and look for the boundary layer corrections at r = 1. These are

ũ0 = Im{−(er ∧ ū0 + iū0)r=1e−α(1+i)}

where α = (1 − r)

√
| cos θ|

2E
= ζ

√
| cos θ|

2
. Using (27) with the

foregoing expression yields{
ũθ = −(− sin θBg(1) + F(sin θ)) sinαe−α
ũφ = −(− sin θBg(1) + F(sin θ)) cosαe−α. (29)

We note that g(1) = 0. Mass conservation implies

1√
E

∂ũr

∂ζ
=

1
sin θ

∂(sin θũθ)
∂θ

(30)

so that

ũr(1) = −
√

E
sin θ

∂

∂θ

(
sin θ

∫ ∞

ζ

ũθdζ

)
. (31)

Since ũr + ur = 0 at r = 1, we finally find

− ūr(r = 1) =

√
E
2

1
sin θ

∂

∂θ

(
sin θ√
cos θ

F(sin θ)

)
. (32)

However, the radial component of the vorticity equation (or the
angular momentum equation) in the interior leads to

sin θur + cos θuθ = EΔ′uϕ.

Here uϕ = −sBg(r) + F(s) so that consistency of the solution
with (32) requires that

F ≡ O(B
√

E).
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Fig. 3. Comparison between numerical (solid line) and analytical (stars)
solutions of the geostrophic flow at the equator uφ(r, θ = π

2 ) for E =
10−7, η = 0.15, ρ̃ = 10, B = 1, and λ = 10−4 without mass contraction.

It means that in the limit of vanishing Ekman numbers the func-
tion F can be neglected. Therefore, at leading order, the envelope
differential rotation is dominated by the shellular flow:

ūφ = −sB
∫ 1

r

n2(x)
x

dx = −sBg(r).

Figure 3 shows the comparison of the analytical solu-
tion −sBg(r) with the numerical solution at the equator θ = π

2 .
The difference on the left edge comes from the fact that g(η)
is not zero and would require an additional boundary layer
correction.

3.3. Transition between the two steady flows: the baroclinic
flow versus that induced by mass contraction

When gravitational contraction occurs in a baroclinic envelope,
two drivings compete: the baroclinic torque and that induced by
mass contraction. For a global view of this competition we re-
sort to numerical solutions. The numerical method is detailed
in appendix. The global problem is the superposition of the two
flows: the flow induced by mass contraction (25) and the baro-
clinic flow (27). Since the system is linear, the full solution is a
linear combination of both. At the equator it reads

uφ
(
r, θ =

π

2

)
=

√
2
E

(1−r2)3/4

(
η2

r
− 9

4ρ̃η
r

)
− rB

∫ 1

r

n2(r)
r

dr. (33)

From the foregoing equation, we see that the differential rotation
is governed by baroclinicity when

B� E−1/2. (34)

It is shown in Fig. 4. However, we also know (from the angular
momentum flux balance of a steady flow, see Rieutord 2006a)
that the meridional circulation associated with baroclinic flows
is O(BE), while the meridional circulation of the contraction-
induced spin-up is O(1). Hence, a baroclinic flow completely
controls the dynamics as long as BE � 1. Note that this inequal-
ity implies (34) since E � 1. When the spin-up strengthens, the
foregoing inequalities predict an intermediate regime

E−1/2 � B� E−1 (35)
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Fig. 4. Evolution of the azimuthal velocity uφ(r, θ = π
2 ) for η = 0.15,

ρ̃ = 10, E = 10−7, λ = 10−4, and B = 0, 104, 105, 107 (downward).
The solid line is the numerical solution, the dashed line is the full an-
alytical solution, and the two dot lines are the solutions of each flow.
The transition is at B = 104, the differential rotation is then governed
by baroclinicity as shown in Fig. 5. Boundary conditions are no-slip on
both sides r = η and r = 1.

where the differential rotation is of baroclinic origin (BE1/2) but
the meridional circulation is driven by contraction (BE � 1).
Finally, when BE1/2 � 1, the flow is fully controlled by the
contraction induced spin-up.

This two step transition is confirmed by numerical solutions
as illustrated in Figs. 5 and 6. There, for a given E, B is pro-
gressively increased and we clearly see the intermediate regime
where differential rotation and meridional circulation are of dif-
ferent origin (third row).

4. The case of stress-free boundary conditions

The outer layers of the envelope are not rigidly attached to the
core. Therefore the use of outer stress-free boundary conditions
is more realistic. In this case, however, we no longer have access

to an analytical expression of the flow in the envelope and have
to resort to numerical solutions.

4.1. Scaling the steady mass contraction induced flow

Let us first study the steady solution of the spin-up flow. As
shown in Fig. 7, it exhibits the typical cylindrical differential
rotation of a dominating mass contraction flow. The equato-
rial surface region rotates faster than the core and the pole is
slower. The meridional circulation displays two cells with a
strong Stewartson layer at s = η (compared with the previous
with no-slip conditions).

In Fig. 8, we show the amplitudes of the mass contraction
flow at two positions: inside and outside of the tangent cylinder.
Since the boundary conditions on the core are no-slip, the flow
within the tangent cylinder is expected to be O(E−1/2) according
to expression (17). For small cores η = 0.15 or 0.25, numerical
solutions show that the Stewartson layer impacts the interior of
the tangent cylinder and that the asymptotic state is reached only
at extremely small values of the Ekman number E ≤ 10−8. When
the core is bigger, for instance η = 0.5, the E−1/2 scaling inside
the tangent cylinder clearly appears for all Ekman numbers less
than 10−5.

Outside the tangent cylinder, numerics show that the differ-
ential rotation is always O(E−1) when the outer boundary condi-
tions are stress-free. This important amplitude indicates that the
steady state may not be reached during the contraction phase and
may not be studied with linear equations since quadratic terms
are expected to be important, namely O( Ro

E2 ).

4.2. The transient phase

The large amplitude of the steady state outside the tangent cylin-
der forces us to consider the time evolution of the solution of
the mass contraction induced flow. To do so, we solve the set
of Eqs. (5) with an order one implicit scheme (Euler’s method)
so as to eliminate inertial waves and concentrate on secular
evolution.

In Fig. 9, we plot a proxy of the amplitude of the differential
rotation for various Ekman numbers and for no-slip and stress-
free outer boundary conditions. With no-slip conditions, we see
that the steady spin-up flow is quickly established and justifies
the use of a steady solution. On the contrary, the use of outer
stress-free boundary conditions leads to a much longer transient
flow that lasts more than the typical timescale of the driving by
gravitational contraction.

To go further it is interesting to characterize this transient
flow with respect to the parameters of the problem. From the
numerical solution we find that the transient duration τsf scales
like

τsf ∝ RoE−0.86. (36)

This scaling of the Ekman number is very close to E−6/7, which
is reminiscent of one of the scalings of the Stewarston layer in
the spherical Couette flow (see Stewartson 1966). In these layers
that surround the core along the tangent cylinder, a typical thick-
ness is E2/7. This might control the amplitude of the flow outside
the tangent cylinder when stress-free outer conditions are met.
The analysis of the Stewartson layer associated with this tran-
sient flow is difficult and beyond the scope of the present work.

Another remarkable property of the transient flow is its
approximate self-similarity. Its spatial shape remains almost
unchanged, while its amplitude grows as time passes. The
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Fig. 5. Evolution of the differential rotation δΩ, the meridional circulation ψ for η = 0.15, ρ̃ = 10, E = 10−7, λ = 10−4, and B = 0, 104, 105, 107

(downwards). In the first column, difference in differential rotation is shown with contours: solid contours are faster than the core and dashed
contours are slower than the core. When the spin-up flow dominates the differential rotation we obtain a fast equator while baroclinicity induces a
fast pole. In the second column, meridional circulation is described with dotted lines for clockwise circulation (solid lines for counter-clockwise
circulation). Boundary conditions are no-slip on both sides r = η and r = 1.

associated differential rotation is parallel to the z-axis as
shown in Fig. 10. Its amplitude grows according to the time
profile displayed in Fig. 9. This time dependence can be
approximated as

A
E

(
1 − e−τ ln 10/τsf

)
(37)

where A is a constant of order unity.
The foregoing result may be translated in the stellar case.

It shows that a contracting, fully convective star, may reach a
self-similar spin-up flow with cylindrical rotation. Neglecting
viscous force (in fact Reynolds stresses), we may expect that
substituting ρu to the foregoing incompressible velocity field,
we can get an good representation of the actual flow in a
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Fig. 6. Azimuthal velocity uφ as a function of the normalized radius for
λ = 10−4, η = 0.15, and ρ̃ = 10. The solid line is the numerical so-
lution, dotted lines are the analytical solutions of the spin-up flow and
the baroclinic flow, the dashed line is the sum of both. Downwards:
E = 10−5, 10−6, 10−7 and the transition value on the differential rota-
tion is B = 103, 3 × 103, 104, respectively. Beyond this threshold, the
baroclinicity governs the differential rotation. Boundary conditions are
no-slip on both sides r = η and r = 1. Note that as the Ekman number
decreases, the discrepancy between the numerical and the analytical so-
lutions decreases as well.

Fig. 7. Differential rotation and meridional circulation for E = 10−7,
η = 0.15, and ρ̃ = 10 for an unstratified configuration. For δΩ, dashed
(resp. solid) lines represent rotation slower (resp. faster) than the core.
For ψ, dotted (resp. solid) lines are for clockwise (counter-clockwise)
circulation. Boundary conditions are no-slip at r = η and stress-free at
r = 1.
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st as a function of non-
dimensional time with E = 10−5, 10−6, 10−7 (the dot, the dashed, and
the solid line, respectively) and Ro = 10−6 at the radius r = 0.88. On
the left side are the solutions with rigid boundary conditions on both
sides and on the right side the solutions with stress-free boundary con-
ditions on the outer. In the first case, the steady state is reached in a time
smaller than the dimensionless time of contraction, while in the second
case this time is longer and scales as E−0.86.

compressible envelope. This is supported by the fact that the
geostrophic balance is unchanged in this case. Of course, this
conjecture has to be verified by the study of the compressible
case.

4.3. Transient phase and stratification

During the contraction of a star on the PMS, a radiative enve-
lope progressively takes the place of an initial convective enve-
lope when the star is massive enough. This radiative envelope is
stably stratified and without any extra-forcing from gravitational
contraction it would relax to the steady baroclinic state that we
mentioned before.

One question is therefore whether the contraction induced
spin-up is strong enough to overwhelm the foregoing baroclinic
flows that are themselves transient flows. To get an idea of the
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Fig. 10. Left: differential rotation associated with the transient phase of a spin-up induced by mass contraction for E = 10−6 and Ro = 10−6 at
time τ = 0.02. Dashed (solid) lines represent rotation slower (faster) than the core. Right: profile of the corresponding azimuthal velocity in the
equatorial plane as a function of the normalized radius for various times. The curves are scaled by the absolute value of the amplitude at the
minimum.

result, we may use the amplitude of a steady baroclinic flows as
an upper limit of the actual flows. From this perspective, we can
use the results of Espinosa Lara & Rieutord (2007) and Espinosa
Lara & Rieutord (2013) who showed that the baroclinic flow in
a radiative envelope is characterized by a differential rotation
that is typically 15% of the bulk rotation. Let us assume that the
maximum amplitude of the baroclinic flow reads

Vb = kVeq

where k � 0.2. During the phase of gravitational contraction the
spin-up flow grows according to (37). At some time τc, the spin-
up flow overwhelms the baroclinic flow. At such time we have

A
E

(
1 − e−τc ln 10/τsf

)
=

Vb

Vs

with Vs ∼ R/tKH, tKH being the Kelvin-Helmholtz time of the
star. Hence,

τc

τsf
∼ − log

(
1 − EVbtKH

AR

)
· (38)

Using numbers of a typical 3 M� star on the birthline, we find
that

EVbtKH

AR
=

k
2A

νGM2

R3L
� 10−4.

This small ratio indicates that τc � τsf so that the contraction-
induced flow overwhelms the baroclinic flow during the linear
growth of the transient flow (37). Hence, from (36) we obtain

τc ∼ E0.14Ro
A

VbtKH

R
·

With the definition of Ro and Vb it turns out that

τc ∼ k
2A

E0.14.

Because of the very small value of the Ekman number, τc is
clearly less than unity showing that the spin-up flow will in the
end take over the baroclinic flow, likely much before this latter
flow can be established.

We verified this conclusion with a numerical simulation in-
tegrating the spin-up flow from a pre-existing baroclinic flow
driven by a fixed stable stratification. In Fig. 11, we show the
time evolution of the azimuthal velocity in the equatorial plane
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Fig. 11. Radial profiles taken at various times of the azimuthal velocity
in the equatorial plane of the star for E = 10−5, B = 102, ε = 10−7,
λ = 10−4, and Ro = 10−5. Profiles are scaled as in Fig. 10. The dimen-
sionless time τ is specified for each curve. Dashed lines are profiles for
baroclinicly dominated dynamics while solid lines are for spin-up dom-
inated dynamics. The dashed bold curve shows the initial profile and
the solid bold curve shows the last profile.

of the star. This describes the transient phase from a steady baro-
clinic flow to a growing spin-up flow. The transition between the
two flows happens between τ = 10−3 and τ = 10−2. This is less
than τc ∼ 0.2 (at E = 10−5), namely less than our first evaluation
obtained by a comparison of the amplitudes of the flows (see
Eq. (38)). The parameters have been chosen such that BE � 1,
as expected in real situations. The time τc therefore appears as a
good indicator of the time needed by spin-up to overwhelm baro-
clinic flows. Let us finally note that, once the spin-up flow is set-
tled, the flow remains approximately self-similar for at least 80%
of the Kelvin-Helmholtz time.

5. Discussion and conclusions

The gravitational contraction that occurs before or after the main
sequence strongly influences the rotation rate of the stars and
their internal dynamics. In the foregoing study, we have investi-
gated the consequences of the combination of rotation and gravi-
tational contraction with a very simplified model to decipher this
complicated dynamics and be prepared for the construction of
more elaborated models of rotating stars like the ESTER (for the
French: Evolution STellaire En Rotation, in English: stellar evo-
lution in rotation) models of Espinosa Lara & Rieutord (2013).
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Thus, to the compressible gas of the star, we substituted
an incompressible fluid that may also be stably stratified.
Schematically, the bell-shaped profile of the star density is
replaced by a step function delineating a central core that ab-
sorbs matter from the envelope as the star contracts. The size of
the core is small and arbitrary. The envelope is either neutrally
or stably stratified.

During PMS contraction, the stellar envelope of an
intermediate-mass star usually passes from a convective to a ra-
diative state. But the radiative state is stably stratified. The com-
bined effect of rotation and stable stratification drives a baro-
clinic flow that may contest a pre-existing spin-up flow built up
during a previous convective phase of the envelope. The ques-
tion is which of these flows will govern the dynamics of the con-
tracting star and finally determine the initial conditions of the
dynamics on the main sequence.

Using our simplified model we compared the strength of
these two flows and found that although contraction is slow, the
induced spin-up controls the large-scale flows of the outer enve-
lope, namely its differential rotation and meridional circulation.
Moreover, our model underlines the role of the outer boundary
conditions and shows that with realistic stress-free conditions we
should expect an unsteady flow. In addition, it shows that this
transient flow keeps a self-similar shape during its growth (if we
omit boundary layers).

When the star reaches the main sequence, the contraction
turns off and the flows in the envelope relax towards the steady
baroclinic flow on the Eddington-Sweet timescale. As far as
intermediate-mass stars are concerned, because of their fast ro-
tation, the Eddington-Sweet timescale is close to the Kelvin-
Helmholtz timescale and the transition to the quasi-steady state
of the main sequence is quite short (for instance for 7 M� star, the
Eddington-Sweet timescale is 2.8 Myr for a rotation near break-
up, to be compared to the 46 Myr of the lifetime of such stars).
On the other hand, if for some reason (such as the combination of
magnetic fields and mass loss) the star loses much angular mo-
mentum so that 2Ω � N at the beginning of the main sequence,
then the dynamic state of an outer envelope will be controlled
by slowly decaying baroclinic modes excited by the contraction
phase. The slow decay may occupy a significant fraction of the
main sequence and affect the mixing processes.

Back to fluid dynamics, the simple model that we used shows
other details about the dynamics of this system, like for instance
the shear layer (the Stewartson layer) that circumvent the core
on its tangent cylinder. This feature is clearly an artefact of the
model for stars with no convective cores like PMS stars, but it
is certainly an important feature for stars leaving the main se-
quence where the core contracts and the envelope expands. At
the core-envelope interface the build-up of a density jump due to
nuclear evolution, combined with rotation, triggers a Stewartson
layer on the tangent cylinder of the discontinuity. This layer may
indeed explain the efficient transport of angular momentum be-
tween the core and envelope of giant or subgiant stars that is
needed to explain the rather mild radial differential rotation ob-
served in these stars (Deheuvels et al. 2012; Mosser et al. 2012;
Eggenberger et al. 2012). Indeed, our model shows that there is
a tight coupling between the inner part of the tangent cylinder
and the core itself. This coupling is essentially a consequence
of the Taylor-Proudman theorem that imposes no velocity gradi-
ent along the rotation axis (columnar flow). Therefore, the trans-
port of angular momentum between the core and the envelope is
much enhanced by the Stewartson layer. Since such a layer has
a surface that is Rstar/Rcore larger than the surface of the core, we
expect that the flux of angular momentum between the core and

the envelope will be enhanced by a similar factor (viscosity and
velocity gradient being assumed similar) with respect to a 1D
shellular profile. Noting that the moment of inertia of the core
and of the matter inside its tangent cylinder are not much differ-
ent, we expect that the Stewartson layer plays a crucial role in
the angular momentum exchange between the core and envelope
and might well be the key feature that reconcile models and ob-
servations. It is clear that present 1D models do not take this fluid
dynamics feature into account and that the final answer will be
given by 2D models incorporating this flow. A dedicated study
is clearly needed to give a quantitative estimate of this effect and
to offer a new comparison with observations.

Hence, more than the numbers and the applicability to a
given object, the foregoing Boussinesq model underlines the
main features of the dynamics of a contracting and rotating en-
velope. It stresses the key role of outer boundary conditions and
the various flows that might govern a contracting phase depend-
ing on the strength of the stratification. The side effect of the
core in this model underlines the role of a Stewartson layer that
may appear either after a rapid change in density or in viscosity.
The model also stresses the fact that no steady state can be ex-
pected as for the interior flows, but that these flows may converge
towards a universal flow when gravitational contraction ceases.
The next step of these investigations focusing specifically on
stars will be developed with full physics using the ESTER code
of Espinosa Lara & Rieutord (2013).
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Appendix A: Numerical method
To solve the set of linear Eqs. (12), we discretize the equations
using a spectral method. We project the velocity field onto the
harmonics spherical base

u =
+∞∑
l=0

+l∑
m=−l

ul
mRm

l + v
l
mSm

l + w
l
mTm

l (A.1)

where

Rm
l = Ym

l er, Sm
l = ∇Ym

l , Tm
l = ∇ × Rm

l (A.2)

Ym
l are the normalized spherical harmonics, er is the radial unity

vector, and ∇ is defined on the unity sphere. We write the tem-
perature perturbation onto the spherical harmonics base too:

θT =

+∞∑
l=0

+l∑
m=−l

tl
mYm

l . (A.3)

We finally add the boundary conditions on this field:{
t′l (r = η) = 0
tl(r = 1) = 0. (A.4)

We discretize the radial direction for r ∈ [η; 1] onto the
Gauss-Lobatto grid associated with the Chebyshev polynomi-
als. Thereby, equations are solved in two dimensions (r, θ). The
system is axisymmetric, which implies m = 0.

The equation of continuity reads

vl
m =

1
Λ

1
r
∂

∂r

(
r2ul

m

)
(A.5)

where Λ = l(l + 1).

A15, page 11 of 12



A&A 572, A15 (2014)

The energy equation reads

BẼT

(
r2 ∂

2

∂r2
tl
m + 2r

∂

∂r
tl
m − Λtl

m

)
= n2

T (r)r2ul
m. (A.6)

The equation of motion is projected onto two directions because
equations on Rm

l and on Sm
l are redundant.

On Rm
l , it reads

Al
l−1rl−1 ∂

∂r

(
ul−1

m

rl−2

)
+ Al

l+1r−l−2 ∂

∂r

(
rl+3ul+1

m

)

+EΔlw
l
m = −

√
4π
3
δl1(

η2

r2
− rω̇) (A.7)

δi j is the Kronecker symbol.
On Tm

l , it reads

− Bl
l−1rl−1 ∂

∂r

(
wl

m

rl−1

)
− Bl

l+1r−l−2 ∂

∂r

(
rl+2wl+1

m

)

−l(l + 1)tl
m + EΔlΔl(rul

m) = −
√

16π
5

n2(r)δl2. (A.8)

We note Al
l−1,Al

l+1,Bl
l−1, and Bl

l+1 the coupling coefficients:⎧⎪⎪⎨⎪⎪⎩ Al
l+1 =

1
(l+1)

1√
(2l+1)(2l+3)

; Bl
l+1 =

l(l+1)(l+2)√
(2l+1)(2l+3)

Al
l−1 =

1
l

1√
(2l−1)(2l+1)

; Bl
l−1 =

l(l2−1)√
(2l−1)(2l+1)

· (A.9)

Noting that the forcing implies equatorially symmetric solutions
(the resulting differential rotation is equatorially symmetric), the
radial functions wl are non-zero only for odd l while ul and tl

only for even l. The series is therefore w1, u2, t2, w3, . . .

References
Boehm, T., & Catala, C. 1995, A&A, 301, 155
Brott, I., Evans, C. J., Hunter, I., et al. 2011, A&A, 530, A116
Charbonnel, C., & Talon, S. 1999, A&A, 351, 635
Deheuvels, S., García, R. A., Chaplin, W. J., et al. 2012, ApJ, 756, 19
Duck, P., & Foster, M. 2001, Annu. Rev. Fluid Mech., 33, 231
Eggenberger, P., Montalbán, J., & Miglio, A. 2012, A&A, 544, L4
Espinosa Lara, F., & Rieutord, M. 2007, A&A, 470, 1013
Espinosa Lara, F., & Rieutord, M. 2013, A&A, 552, A35
Fortney, J. J., & Nettelmann, N. 2010, Space Sci. Rev., 152, 423
Friedlander, S. 1976, J. Fluid Mech., 76, 209
Greenspan, H. P. 1969, The Theory of Rotating Fluids (Cambridge University

Press)
Maeder, A. 2009, Physics, Formation and Evolution of Rotating stars (Springer)
Maeder, A., & Meynet, G. 2001, A&A, 373, 555
Meynet, G., & Maeder, A. 2005, A&A, 429, 581
Mosser, B., Goupil, M. J., Belkacem, K., et al. 2012, A&A, 548, A10
Ogilvie, G. I., & Lin, D. N. C. 2004, ApJ, 610, 477
Pinsonneault, M. 1997, Annu. Rev. Astron. Astrophys., 35, 557
Rieutord, M. 2006a, A&A, 451, 1025
Rieutord, M. 2006b, in Stellar fluid dynamics and numerical simulations: From

the sun to neutron stars, eds. M. Rieutord, & B. Dubrulle (EAS Pub.) 21, 275
Rieutord, M., & Beth, A. 2014, A&A, 570, A42
Stewartson, K. 1966, J. Fluid Mech., 26, 131
Strittmatter, P. A. 1969, Annu. Rev. Astron. Astrophys., 7, 665
Wu, Y. 2005, ApJ, 635, 688
Zahn, J.-P. 1992, A&A, 265, 115

A15, page 12 of 12


	Introduction
	The model
	Description
	A digest of the following fluid dynamics
	Equations of motion
	Scaled equations and linearization
	The acceleration of the core
	General equation
	Boundary layer analysis

	Orders of magnitude
	Adding stratification
	Scaled equations


	An interesting solution with rigid outer boundary conditions
	The steady mass contraction induced flow
	The steady baroclinic flow
	Transition between the two steady flows: the baroclinic flow versus that induced by mass contraction

	The case of stress-free boundary conditions
	Scaling the steady mass contraction induced flow
	The transient phase
	Transient phase and stratification

	Discussion and conclusions
	Numerical method
	References

