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ABSTRACT

Aims. A new non-perturbative method to compute accurate oscillation modes in rapidly rotating stars is presented.
Methods. The effect of the centrifugal force is fully taken into account while the Coriolis force is neglected. This assumption is valid
when the time scale of the oscillation is much shorter than the inverse of the rotation rate and is expected to be suitable for high radial
order p-modes of δ Scuti stars. Axisymmetric p-modes have been computed in uniformly rotating polytropic models of stars.
Results. In the frequency and rotation range considered, we found that as rotation increases (i) the asymptotic structure of the non-
rotating frequency spectrum is first destroyed then replaced by a new form of organization (ii) the mode amplitude tends to concentrate
near the equator (iii) differences to perturbative methods become significant as soon as the rotation rate exceeds about fifteen percent
of the Keplerian limit. The implications for the seismology of rapidly rotating stars are discussed.
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1. Introduction

Since helioseismology revolutionized our knowledge of the so-
lar interior, great advances in stellar structure and evolution the-
ory are expected from asteroseismology. Major efforts including
space missions are under way to detect pulsation frequencies
with unprecedented accuracy across the HR diagram (Catala
et al. 1995; Walker et al. 2003). To draw information from the
observed frequencies, seismology relies on the theoretical com-
putation of eigenmodes for a given model of a star. Yet, except
for slowly rotating stars, the effect of rotation on the gravito-
acoustic modes is not fully taken into account in the present the-
oretical calculations (e.g. Rieutord 2001).

Rotational effects have been mostly studied through pertur-
bative methods. In this framework, both Ω/ω, the ratio of the
rotation rate Ω to the mode frequency ω, and Ω/

√
GM/R3, the

square root of the ratio of the centrifugal force to the grav-
ity at equator are assumed to be small and of the same or-
der. Solutions valid up to the first, second, and even third or-
der in Ω/ω have been obtained by Ledoux (1951), Saio (1981)
and Soufi et al. (1998). The first order analysis proved fully ad-
equate to match the observed acoustic frequency of the slowly
rotating sun (Dziembowski & Goode 1992). At the other ex-
treme, the perturbative methods are not expected to be correct for
stars approaching the Keplerian limit ΩK =

√
GM/R3

e, where Re
is the equatorial radius. Achernar is a spectacular example of
such star since interferometric observations showed a very im-
portant distortion of its surface, the equatorial radius Re being
at least one and a half times larger than the polar radius Rp
(Domiciano de Souza et al. 2003). In the context of Roche
models, such a flattening occurs at the Keplerian limit ΩK. For

� Appendices A–C are only in electronic form at
http://www.edpsciences.org

intermediate rotation rates, second or third order perturbative
methods might be used, but the main problem is that the limit
of validity of the perturbative methods is unknown. Departures
from the perturbative results would impact the values of indi-
vidual frequency but also other properties that are commonly
used to analyze the spectrum of observed frequencies. This con-
cerns in particular the rotational splitting, the asymptotic large
and small frequency separations or the mode visibility.

New methods able to compute accurate eigenmodes in ro-
tating stars are therefore needed to allow progress in the seis-
mology of rapidly rotating stars. Such methods would also as-
sess the limit of validity of perturbative analysis. The main
difficulty comes from the fact that, except in the special cases
of spherically symmetric media and uniform density ellipsoids,
the eigenvalue problem of gravito-acoustic resonances in arbi-
trary axially symmetric cavities is not separable in the radial
and meridional variables. For self-gravitating and rotating stars,
a two-dimensional eigenvalue problem has to be solved.

Clement (1981, 1998) made the first attempts to solve this
eigenvalue problem for gravito-acoustic modes, investigating
various numerical schemes. However, the accuracy of his cal-
culations is generally difficult to estimate. Moreover, the dif-
ferent numerical schemes could not converge for low frequency
g-modes when Ω/ω exceeds about 0.5. Since then, eigenmodes
in this frequency range have been successfully calculated by
Dintrans & Rieutord (2000) using spectral methods. These au-
thors however did not consider the effect of the centrifugal accel-
eration in their model. The search for unstable modes in neutron
stars also triggered the development of numerical schemes able
to solve the two-dimensional eigenvalue problem. But only sur-
face gravity modes (f-modes) and some inertial modes (r-modes)
have been determined in this context (Yoshida et al. 2005).
Espinosa et al. (2004) reported calculations of adiabatic acoustic
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modes in MacLaurin spheroids of uniform density neglecting the
Coriolis force, the potential perturbation and the Brunt-Väisälä
frequency.

In this paper, we present a new method to compute accu-
rate eigenmodes in rotating stars. For the first application of
the method, we only consider the effect of the centrifugal force
through its impact on the equilibrium state of the star; we thus
neglect the Coriolis force. This assumption is valid when the
time scale of the oscillation is much shorter than the inverse
of the rotation rate and is expected to be suitable for high ra-
dial order p-modes of δ Scuti stars. The problem is further
simplified by using uniformly rotating polytropes as equilib-
rium models and assuming adiabatic perturbations as well as the
Cowling approximation. Low frequency axisymmetric p-modes
have been computed for rotation rates varying from Ω = 0 up
to Ω/ΩK = 0.59, this ratio corresponding to a typical δ Scuti
star (M = 1.8 M�,R = 2 R�) with an equatorial velocity of
240 km s−1. The centrifugal force modifies the effective grav-
ity in two ways: it makes it smaller and aspherical. Decreasing
the effective gravity should affect sound waves by reducing the
sound speed inside the star and by increasing the star’s volume,
thus potentially the volume of the resonant cavity. The physical
consequences of the non-spherical geometry are unknown.

In the following, the formalism and the numerical method
are presented along with accuracy tests. Then, the parameter
range of the calculations is given together with the method used
to label the eigenmodes. The structure of the frequency spec-
trum, some properties of the eigenfunctions and the differences
with perturbative methods are further analyzed as a function of
the rotation rate. These results are discussed in the last section.

2. Formalism

Accurate numerical solutions of 2D eigenvalue problems require
a careful choice of the numerical method and the mathemati-
cal formalism. In this section we explain the choices that have
been made for the variables, the coordinate system, the numeri-
cal discretization, and the method to solve the resulting algebraic
eigenvalue problem. All play a role in the accuracy of the eigen-
frequency determinations that will be presented at the end of this
section.

2.1. Equilibrium model

The equilibrium model is a self-gravitating uniformly rotating
polytrope. It is therefore governed by a polytropic relation, the
hydrostatic equilibrium in a rotating frame, and Poisson’s equa-
tion for the gravitational potential:

P0 = Kρ1+1/N
0 (1)

0 = −∇P0 − ρ0∇
(
ψ0 − Ω2s2/2

)
(2)

∆ψ0 = 4πGρ0 (3)

where P0 is the pressure, ρ0 the density, K the polytropic con-
stant, N the polytropic index, ψ0 the gravitational potential, s the
distance to the rotation axis and G the gravitational constant.

The polytropic relation and uniform rotation ensure that the
fluid is barotropic. A pseudo-enthalpy can then be introduced
h0 =

∫
dP0/ρ0 = (1 + N)P0/ρ0 and the integration of the hydro-

static equation reads:

h0 = hc − (ψ0 − ψc) +
1
2
Ω2s2 (4)

where the subscript “c” denotes the value in the center of the
polytropic model. Equation (4) is then inserted into Poisson’s
equation to yield:

∆ψo = 4πGρc

(
1 − ψo − ψc

hc
+
Ω2s2

2hc

)N

· (5)

Equation (5) is solved numerically, using an iterative scheme.
Since the shape of the star is not spherical, a system of coordi-
nates (ζ, θ, φ) based on Bonazzola et al. (1998) is used, such that
ζ = 1 corresponds to the surface of the spheroid (more details
on the coordinate system are given in Sect. 2.3). This enables
the use of spectral methods both for the radial coordinate ζ and
the angular ones. The numerical method is further detailed in
Rieutord et al. (2005).

2.2. Perturbation equations and boundary conditions

Neglecting the Coriolis force, the linear equations governing the
evolution of small amplitude adiabatic perturbations read:

∂tρ + ∇ · (ρ0u) = 0, (6)

ρ0∂tu = −∇P + ρg0 − ρ0∇ψ, (7)

∂tP + u · ∇P0 = c2
0 (∂tρ + u · ∇ρ0) , (8)

∆ψ = 4πGρ (9)

where u, ρ, P and ψ, are the perturbations of velocity, den-
sity, pressure and gravitational potential. The sound speed is
c0 =

√
Γ1,0P0/ρ0, Γ1,0 being the first adiabatic exponent of the

gas, and the effective gravity g0 = −∇
(
ψ0 −Ω2s2/2

)
has been

introduced. In the framework of polytropic models of stars, the
polytropic relation (1) is assumed to give a reasonably good ap-
proximation of the relation between the pressure and the density
of the equilibrium state. As the first adiabatic exponent Γ1,0 is
obtained from the equation of state of the gas, Γ1,0 is in general
not equal to 1 + 1/N.

We simplified Eqs. (6)–(9) following two constraints: first,
the governing equations should be written for general coordinate
systems because we shall use a surface-fitting non-orthogonal
coordinate system. Second, they should take the form MX =
λQX where λ is the eigenvalue, X is the eigenfunction, andM
and Q are linear differential operators. Indeed, the method that
we shall use to solve the algebraic eigenvalue problem obtained
after discretization works for problem reading [M]X = λ[Q]X,
where X is the discretized eigenvector and, [M] and [Q] are ma-
trices. Taking the time derivative of Eqs. (7) and (9) and using
Eqs. (6) and (8) to eliminate the pressure and density perturba-
tions, we obtain two equations for the velocity and the gravita-
tional potential perturbation:

∂2
ttu = ∇

(
c2

0χ + u · g0 − ∂tψ
)
− χA0 (10)

∆∂tψ = −4πG (u · ∇ρ0 + ρ0χ) (11)

where χ = ∇ · u is the divergence of the velocity. The vector A0
characterizes the stratification of the equilibrium model:

A0 = c2
0

(
1
Γ1,0

∇P0

P0
− ∇ρ0

ρ0

)
=

c2
0N2

0

‖g0‖ n0, (12)

where N0 is the Brunt-Väisälä frequency and n0 is the unit vector
in the direction opposite to the effective gravity defined by:

g0 = −‖g0‖n0. (13)
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Note that the barotropicity of the fluid has been used to ob-
tain (10).

In addition to the gravitational potential perturbation, the
right hand sides of Eqs. (10) and (11) only involve the diver-
gence of the velocity and the scalar product of the velocity with
vectors parallel to gravity. Then, the scalar product of Eq. (10)
with gravity,

∂2
ttu · g0 = g0 · ∇

(
c2

0χ + u · g0 − ∂tψ
)
− χg0 · A0 (14)

and the divergence of Eq. (10),

∂2
ttχ = ∆(c2

0χ + u · g0 − ∂tψ) − ∇ · (χA0) (15)

yield, together with Eq. (11), a complete set of differential equa-
tions for the variables u ·g0, χ and ψ. Pekeris (1938) who studied
the oscillations of spherically symmetric polytropes considered
similar variables but, instead of Eq. (10), used a combination of
Eqs. (14) and (10) which does not involve second order deriva-
tive with respect to the radial coordinate. For general system of
coordinate as well, the order of the differential system can be
lowered replacing Eq. (10) by the following one:

∂2
tt

⎡⎢⎢⎢⎢⎣χ − g11∂1

⎛⎜⎜⎜⎜⎝u · g0

g1
0

⎞⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎦ = L(c2

0χ + u · g0 − ∂tψ)

−∇ · (χA0) + g11∂1

⎛⎜⎜⎜⎜⎝χg0 · A0

g1
0

⎞⎟⎟⎟⎟⎠ (16)

where the linear operatorL, defined by,

L(F) = ∆F − g11∂1

⎛⎜⎜⎜⎜⎝g0 · ∇F

g1
0

⎞⎟⎟⎟⎟⎠ (17)

does not contain second order derivatives with respect to the
first coordinate x1. In this expression, g1

0 is the first contravariant
component of the gravity in the natural basis (E1, E2, E3) de-
fined by Ei = ∂OM/∂xi, and g11 is the first contravariant com-
ponent of the metric tensor.

The equations are non-dimensionalized using the equatorial
radius, Re, as length unit, the density at the center of the poly-
trope, ρc, as density unit and T0 = (4πGρc)−1/2 as time unit. As
we look for harmonic solutions in time, the variable are written
F = F̂ exp (iωt). Dropping the hat and denoting dimensionless
quantities as previous dimensional ones, the governing equations
read:

λW = g0 · ∇
(
c2

0χ +W + Ψ
)
− c2

0N2
0χ (18)

λ

⎡⎢⎢⎢⎢⎣χ − g11∂1

⎛⎜⎜⎜⎜⎝W

g1
0

⎞⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎦ =

L(c2
0χ +W + Ψ) − ∇ · (χA0) + g11∂1

⎛⎜⎜⎜⎜⎝c2
0N2

0χ

g1
0

⎞⎟⎟⎟⎟⎠ (19)

0 = ∆Ψ − d0W − ρ0χ (20)

where λ = −ω2, W = u · g0, Ψ = −iωψ and d0 denotes

d0 =
‖∇ρ0‖
‖g0‖ · (21)

Another form of these equations may be obtained replacing W
by a new variable U = c2

0χ +W + Ψ. The set of equations then
reads:

g0 · ∇U − c2
0N2

0χ = λ(U −Ψ − c2
0χ) (22)

L(U) − ∇ · (χA0) + g11∂1

⎛⎜⎜⎜⎜⎝c2
0N2

0χ

g1
0

⎞⎟⎟⎟⎟⎠ =

λ

⎡⎢⎢⎢⎢⎣−g11∂1

⎛⎜⎜⎜⎜⎝U − Ψ
g1

0

⎞⎟⎟⎟⎟⎠ + χ + g11∂1

⎛⎜⎜⎜⎜⎝c2
0χ

g1
0

⎞⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎦ (23)

−d0U + (d0c2
0 − ρ0)χ + d0Ψ + ∆Ψ = 0. (24)

As in Pekeris (1938), the boundary conditions are that the gravi-
tational potential vanishes at infinity and that U and χ be regular
everywhere.

2.3. Coordinates choice

The choice of the coordinate system has been guided by two con-
siderations. First, for the accuracy of the numerical method, it
seems preferable to apply the boundary conditions on a surface
of coordinate. This imposes that the stellar surface is described
by an equation ζ = const., where ζ is one of the coordinates.
Second, when using spherical harmonic expansions, the regular-
ity conditions at the center have a simple form for spherical co-
ordinates only. Therefore, the coordinate system should become
spherical near the center. If (r, θ, φ) denotes the usual spherical
coordinates and r = S (θ) describes the surface, families of coor-
dinates (ζ, θ′, φ′) verifying both conditions have been proposed
by Bonazzola et al. (1998):

⎧⎪⎪⎪⎨⎪⎪⎪⎩
r = r(ζ, θ′)
θ = θ′
φ = φ′,

(25)

where

r(ζ, θ) = αζ + A(ζ) [S (θ) − α] . (26)

The polynomial A(ζ) = (5ζ3 − 3ζ5)/2 ensures that r ∝ ζ near
the center and that ζ = 1 describes the surface r = S (θ). The
scalar α is chosen so that the transformation (r, θ, φ) �→ (ζ, θ, φ)
is not singular and the numerical convergence is fast. We find
that α = 1 − ε is a convenient choice, ε = 1 − Rp/Re being the
flatness of the star surface. In the following, we shall refer to ζ
as the pseudo-radial coordinate.

To express the governing equations in this non-orthogonal
coordinate system, we use the covariant and contravariant com-
ponents of the corresponding metric tensor. The non-vanishing
components read:

g11 = r2
ζ g12 = g21 = rζrθ

g22 = r2 + r2
θ g33 = r2 sin2θ

g11 = (r2 + r2
θ )/(r2r2

ζ ) g12 = g21 = −rθ/(r2rζ)
g22 = 1/r2 g33 = 1/(r2 sin2θ),

(27)

and the square-root of the absolute value of the metric tensor
determinant is:

√| g | = r2rζ sin θ. (28)

In Appendix A, the linear operators involved in Eqs. (22)–(24)
are expressed in terms of the partial derivatives of r(ζ, θ). Note
that, for vectorial operators, we used the natural basis defined
above.
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2.4. The numerical method

The method follows and generalizes the one presented in
Rieutord & Valdettaro (1997). The numerical discretization is
done with spectral methods, spherical harmonics for the angular
coordinates θ and φ and Chebyshev polynomials for the pseudo-
radial coordinate ζ. The variables U, Ψ and χ are expanded into
spherical harmonics:

U(ζ, θ, φ) =
L∑
�=0

+�∑
m=−�

U�
m(ζ)Ym

� (θ, φ), (29)

and equivalent expressions for Ψ and χ, where � and m are re-
spectively the degree and the azimuthal number of the spherical
harmonic Ym

�
(θ, φ). Then, the governing equations are projected

onto spherical harmonics to obtain a system of ordinary differen-
tial equations (ODE) of the variable ζ for the coefficients of the
spherical harmonic expansion U�

m(ζ), χ�m(ζ),Ψ�m(ζ). This system
is then discretized on the collocation points of a Gauss-Lobatto
grid associated with Chebyshev polynomials. It results in an al-
gebraic eigenvalue problem [M]X = λ[Q]X, where X is the
eigenvector of L × Nr components and [M] and [Q] are square
matrices of L × Nr lines, L and Nr being respectively the trun-
cation orders on the spherical harmonics and Chebyshev basis.
The algebraic eigenvalue problem is solved using either a QZ al-
gorithm or an Arnoldi-Chebyshev algorithm. The QZ algorithm
provides the whole spectrum of eigenvalues while the itera-
tive calculation based on the Arnoldi-Chebyshev algorithm com-
putes a few eigenvalues around a given value of the frequency.

Because of the symmetries of the equilibrium model with
respect to the rotation axis and the equator, one obtains a sep-
arated eigenvalue problem for each absolute value of the az-
imuthal number | m | and each parity with respect to the equa-
tor. Thus, for a given m ≥ 0, we have two independent sets of
ODE coupling the coefficients of the spherical harmonic expan-
sion having respectively even and odd degree numbers, that is:

Û+ = Um+2k
m (ζ) χ̂+ = χm+2k

m (ζ) Ψ̂+ = Ψm+2k
m (ζ)

Û− = Um+2k+1
m (ζ) χ̂− = χm+2k+1

m (ζ) Ψ̂− = Ψm+2k+1
m (ζ),

(30)

where 0 ≤ k < +∞. The solutions of these two ODE systems are
either symmetric or antisymmetric with respect to the equator.

The two sets of ODE can be written in the form:(
A d2

dζ2
+ B d

dζ
+ C Id

)
Ξ = λ

(
D d

dζ
+ E

)
Ξ, (31)

where Ξ denotes

Ξ+ =

∣∣∣∣∣∣∣∣
Û+

χ̂+

Ψ̂+
or Ξ− =

∣∣∣∣∣∣∣∣
Û−
χ̂−
Ψ̂−

(32)

and where the matrices are defined by blocks as follows:

A =
⎛⎜⎜⎜⎜⎜⎜⎝

0 0 0
0 0 0
0 0 A33

⎞⎟⎟⎟⎟⎟⎟⎠ B =
⎛⎜⎜⎜⎜⎜⎜⎝

B11 0 0
B21 B22 0
0 0 B33

⎞⎟⎟⎟⎟⎟⎟⎠ (33)

C =
⎛⎜⎜⎜⎜⎜⎜⎝

C11 C12 0
C21 C22 0
C31 C32 C33

⎞⎟⎟⎟⎟⎟⎟⎠ (34)

D =
⎛⎜⎜⎜⎜⎜⎜⎝

0 0 0
D21 D22 −D21
0 0 0

⎞⎟⎟⎟⎟⎟⎟⎠ E =
⎛⎜⎜⎜⎜⎜⎜⎝

E11 E12 −E11
E21 E22 −E21
0 0 0

⎞⎟⎟⎟⎟⎟⎟⎠ . (35)

Equivalently, one can write Eq. (31) as:(
B11

d
dζ + C11

)
Û + C12χ̂ = λ

[
E11

(
Û − Ψ̂

)
+ E12χ̂

]
(
B21

d
dζ + C21

)
Û +

(
B22

d
dζ + C22

)
χ̂ =

λ
[ (

D21
d
dζ + E21

) (
Û − Ψ̂

)
+

(
D22

d
dζ + E22

)
χ̂
]

C31Û + C32Ψ̂ +
(
A33

d2

dζ2 + B33
d
dζ + C33

)
Ψ̂ = 0.

(36)

Each sub-matrices can be expressed in terms of the two follow-
ing functionals:

Im
��′ (G) = 2π

∫ π

0
G(ζ, θ)Ŷm

� (θ)Ŷm
�′ (θ) sin θdθ (37)

Jm
��′ (G) = 2π

∫ π

0
G(ζ, θ)Ŷm

� (θ)
∂Ŷm

�′

∂θ
(θ) sin θdθ (38)

where Ŷm
� (θ) = Ym

� (θ, φ)e−imφ is a normalized Legendre
polynomial.

In Appendix B, all the coefficient of the sub-matrices are
made explicit in terms of the function r(ζ, θ) and its first and
second order derivatives as well as in terms of the enthalpy of
the equilibrium model, its first and second order derivatives.

In the following, we consider the Cowling approximation
thus neglecting the gravitational potential perturbation. The
ODE system (31) is simplified accordingly and in particular re-
duces to the first order.

3. Tests and accuracy

The formalism and the numerical method presented in the previ-
ous section have been tested and the accuracy of the frequency
determinations has been estimated.

3.1. Tests

A first test of the method has been performed in the case of
axisymmetric ellipsoids of uniform density. We choose this
configuration because the eigenvalue problem is fully separable
using the oblate spheroidal coordinates (ξ, η, φ) defined as (x =
a cosh ξ sin η sin φ, y = a cosh ξ sin η cosφ, z = a sinh ξ cos η),
where 0 ≤ ξ < +∞, 0 ≤ η ≤ π et 0 ≤ φ ≤ 2π. The eigenfrequen-
cies obtained with this method were compared with the eigen-
frequencies computed with our general method, S (θ) describing
an ellipse. We found the same frequencies with a high degree of
accuracy for arbitrary values of the ellipsoid flatness between 0
and 0.5. Moreover, as the flatness goes to zero, the frequencies
were found to converge towards the values given by a first order
perturbative analysis in terms of flatness. More details about this
test are given in Lignières et al. (2001) and Lignières & Rieutord
(2004).

The frequencies of axisymmetric p-modes in a self-
gravitating uniformly rotating N = 3 polytrope that will be pre-
sented in the following sections have been also tested. As shown
in the previous section, the method involves lengthy analytical
calculations of the coefficients of the ODE system (31). Terms
involved in the non-rotating case have been tested by comparing
our result with the p-modes frequencies in a non-rotating self-
gravitating N = 3 polytrope published in Christensen-Dalsgaard
& Mullan (1994). The relative error is smaller than 10−7 for the
� = 0 to 3, n = 1 to 10 modes. In the rotating case, we compared
our results with the ones obtained by solving the same prob-
lem but using a different form of the starting equations. This
alternative system of equations aims at including the Coriolis
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Fig. 1. Evolution of the frequency relative error, E(L) = |ω(L) −
ω(Lmax)|/ω(Lmax), as the spatial resolution in latitude is increased.
Two modes labeled (� = 1, n = 1) and (� = 6, n = 8) are consid-
ered at the rotation rate Ω/ΩK = 0.46 with Lmax = 80 and Nr = 61.

force; thus the variables and the resulting ODE systems to be
solved are different. We verified that when the terms involving
the Coriolis force are omitted from the equations, eigenfrequen-
cies presented in the next section are recovered with a very high
precision (Reese et al. 2006a). For instance, the maximum rela-
tive error on the eigenfrequency for all the frequencies computed
at Ω/ΩK = 0.59 has been found of the order of 10−6, for a given
set of numerical parameters. This last test gives us strong confi-
dence in the method and its implementation.

3.2. Accuracy

As pointed out by Clement (1981, 1998), accurate numerical so-
lutions of the 2D eigenvalue problem are not easy to obtain. It is
therefore important to estimate the accuracy of our method. In
the following we first investigate the influence of the spatial res-
olution on the eigenfrequencies and then consider other sources
of errors.

A relative spectral error E is defined as the absolute value
of the relative difference between the frequency computed at
a given resolution and the frequency obtained at the maxi-
mum resolution considered. Let us first consider the effects
of the angular resolution. Figure 1 displays E(L) = |ω(L) −
ω(Lmax)|/ω(Lmax) as a function of L, the truncation order of the
spherical harmonic expansion, for two axisymmetric modes la-
beled (� = 1, n = 1) and (� = 6, n = 8) whose spatial struc-
tures are dominated by large and small length scales, respec-
tively (the labeling of the mode will be described in the next
section). The maximum angular resolution is Lmax = 80, the
resolution in the pseudo-radial coordinate is fixed to Nr = 61
and the rotation rate is Ω/ΩK = 0.46. In the same way, Fig. 2
illustrates the effects of the pseudo-radial resolution by show-
ing E(Nr) = |ω(Nr) − ω(Nmax

r )|/ω(Nmax
r ) as a function of Nr,

the truncation order of the Chebyshev polynomial expansion,
for the same modes and rotation rate. The maximum radial res-
olution is Nmax

r = 61 and the latitudinal resolution is fixed to
L = 62. In both figures, we observe that the error first decreases
and then reaches a plateau which means that a better approxi-
mation of the eigenfrequency cannot be obtained by increasing
the spatial resolution. The plateau are significantly higher for the
(� = 6, n = 8) mode than for the (� = 1, n = 1) mode. We ver-
ified that this difference is due to the presence of smaller radial
length scales (rather than to smaller angular length scales).

Fig. 2. Evolution of the frequency relative error, E(Nr) = |ω(Nr) −
ω(Nmax

r )|/ω(Nmax
r ) as the resolution in the radial coordinate is increased.

Two modes labeled (� = 1, n = 1) and (� = 6, n = 8) are considered at
a rotation rate Ω/ΩK = 0.46 with Nmax

r = 61 and L = 62.

Even when the spatial resolution is sufficient, two other
sources of numerical errors can indeed limit the accuracy of
eigenfrequency determination. First, the component of the ma-
trix L and M being computed numerically, they are determined
with a certain error. Second, even when this error is reduced to
round-off errors, the accuracy of the algebraic eigenvalue solver,
the Arnoldi-Chebyshev algorithm, remains limited.

Errors on the matrix component that arise from quadratures
(see Eqs. (37) and (38)) can approach round-off errors using
weighted Gauss-Lobatto quadratures. The other source of error
in the matrix components comes from the computation of equi-
librium quantities. Indeed, the accuracy of the enthalpy, its first
and second derivatives and the surface shape, is at best limited by
the effect of round-off errors on the convergence of the algorithm
used to compute the polytropic stellar models. The effect of these
errors on the eigenfrequencies have been investigated and ap-
pears to be smaller than the effect of the Arnoldi-Chebyshev
algorithm itself which is now described.

As any solver in linear algebra, the Arnoldi-Chebyshev
algorithm amplifies the round-off error that affect the matrix
components. Thus, the error on the eigenvalue and the as-
sociated eigenvector is usually much larger than the round-
off error of double precision arithmetic. The accuracy of the
Arnoldi-Chebyshev algorithm has been studied in details by
Valdettaro et al. (2006) in the context of inertial modes in
a spherical shell where the matrix component are known an-
alytically. Theoretically, it can be estimated by computing the
spectral portrait of the eigenvalue problem [M]X = λ[Q]X,
which shows how small variations of [M] and [Q] affects the
determination of each eigenfrequencies. In fact, as the itera-
tive Arnoldi-Chebyshev algorithm requires an initial guess of
the eigenfrequency, a practical alternative to measure the accu-
racy of a frequency determination is to compute frequencies for
slightly different values of the initial guess. This has been done
for a large number (100) of initial guess values randomly dis-
tributed around the eigenfrequency of the (� = 1, n = 1) and
(� = 6, n = 8) modes. The histogram in Fig. 3 shows the re-
sulting frequencies distribution around a most probable mean
eigenfrequency. The width of the histogram determined by the
standard deviation of the distribution provides a measure of the
algorithm accuracy. The standard deviation σ is equal to 5.6 ×
10−6 for the (� = 6, n = 8) mode and to 6.2 × 10−10 for the
(� = 1, n = 1) mode. The error thus grows with the radial or-
der of the mode, this trend being general in our results (as in
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Fig. 3. Histogram of 100 frequencies obtained for 100 different val-
ues of the initial guess of the Arnoldi-Chebyshev algorithm randomly
chosen in a small interval around ωm = 12.0547. The standard devia-
tion of this frequency distribution σ = 5.6 × 10−6 measures the algo-
rithm relative error on the frequency for this particular mode labeled
(� = 6, n = 8). The spatial resolution is Nr = 61 and L = 62 and the
rotation rate is Ω/ΩK = 0.46.

Valdettaro et al. 2006). Moreover, the width of the histogram
does not depend on the amplitude of the initial guess perturba-
tion provided it is sufficiently small.

We also observe that, except for the dependence of the (� =
1, n = 1) frequency on the angular resolution, the levels of the
plateau shown in Figs. 1 and 2 are of the same order as the er-
ror of the algorithm. It means that, in these cases, the changes in
the matrix component and size associated with the modification
of the resolution have a similar effect on the frequency as vary-
ing the initial guess of the algorithm. However, the convergence
of the (� = 1, n = 1) frequency at a 10−14 level, much lower
than the 6.2 × 10−10 accuracy of the algorithm, shows that it is
not always true and that the spectral error can underestimate the
true error.

Although it is too demanding to compute a global accuracy
by repeating the statistical study on the initial guess for all eigen-
frequencies, the relative accuracy on all tested frequencies is al-
ways better than 2 × 10−5 using double precision arithmetic.

Note that another potential source of error will be discussed
below when describing avoided crossings between modes.

4. Results

The parameter range of the calculations is first presented. Then,
we describe the method used to label the eigenmodes, the struc-
ture of the frequency spectrum, some properties of the eigen-
functions and the differences with perturbative methods.

4.1. Parameter range

Self-gravitating uniformly rotating polytropes of index N = 3
and specific heat ratio Γ1,0 = 5/3 have been computed for rota-
tion rates varying from Ω = 0 up to Ω/ΩK = 0.59. In this range,
the flatness of the star’s surface ε = 1 − Rp/Re increases from 0
to 0.15.

Low frequency axisymmetric p-modes have been computed
for each polytropic model. We started with the non-rotating
model and computed the � = (0, ..., 7), n = (1, ..., nmax) ax-
isymmetric p-modes, the largest radial order depending on the
degree �: nmax = 10 for � = (0, 1), nmax = 9 for � = (2, 3, 4)

and nmax = 8 for � = (5, 6, 7). All these 71 modes were then
calculated at higher rotation rates by progressively increasing
the rotation of the polytropic model. In the next section, we ex-
plain how we could track and label them from zero rotation to
Ω/ΩK = 0.59.

4.2. Mode labeling

In the absence of rotation, modes are identified and classified
by the three “quantum” numbers n, �,m characterizing their ra-
dial, latitudinal and azimuthal structure respectively. Because of
separability, independent 1D eigenvalue problems are solved for
each pair (�, m) and it is then an easy task to order the computed
frequencies, the order n additionally indicating the number of ra-
dial nodes of the mode. By contrast, in the presence of rotation,
independent 2D eigenvalue problems are solved for a given |m |
and a given equatorial parity. The computed modes are then ob-
tained without a priori information about their latitudinal and ra-
dial structures. Therefore, an important issue is whether it is pos-
sible to define a meaningful classification of these modes. In this
work, we investigate the possibility of associating unambigu-
ously each mode with a non-rotating mode thus identifying it
by the three quantum numbers n, �,m of the non-rotating mode.
Similarly, Clement (1986) followed some equatorially symmet-
ric acoustic modes to high rotation rates but in a limited fre-
quency range and using low spatial resolution calculations.

In practice, instead of backtracking modes towards zero ro-
tation, we started at zero rotation with a mode we are interested
in and tried to follow it by progressively increasing the rotation.
We managed to track all the � = (0, ..., 7), n = (1, ..., nmax) ax-
isymmetric p-modes from Ω = 0 to Ω/ΩK = 0.59, a global
view of the eigenfrequencies evolution being displayed in Fig. 4
(left panel). As explained below, the main difficulty comes from
avoided crossings between modes of the same equatorial parity.

Zooms in the ω − Ω plane displayed in Fig. 4 (right panels)
provide two examples of avoided crossings respectively between
odd (� = 1, n = 6 and � = 5, n = 5) and even (� = 0, n = 4 and
� = 4, n = 3) modes. Modes tends to cross because their fre-
quencies are not affected in the same way by the centrifugal force
but, as two eigenstates of the same parity cannot be degenerate,
an avoided crossing takes place during which the two eigenfunc-
tions exchange their characteristics. This exchange of property
is illustrated in Fig. 5 in the case of the (� = 0, n = 4), (� =
4, n = 3) crossing. A mean Legendre spectrum is displayed be-
fore, near the closest frequency separation and after the avoided
crossing. The mean Legendre spectrum of a field U is defined
as C(�) = maxnr |U(�, nr)|/max|U(�, nr)|, where U(�, nr) are the
components of the Legendre/Chebyshev expansion, nr being the
degree of the Chebyshev polynomial. The quantity C(�) thus rep-
resents the largest Chebyshev component for a given value of �
normalized by the maximum over all spectral components. The
mean Legendre spectra peak at one characteristic degree before
and after the avoided crossing, thus showing that the modes re-
cover their original properties after the crossing and therefore
can be unambiguously recognized. Up to the fastest rotation con-
sidered, the � = 0−7, n = 1−10, m = 0, p-modes undergo
a limited number of avoided crossing and could be followed
unambiguously.

It remains that near the crossing the labeling is somewhat
ambiguous. First, it is difficult to define a criterion to assign a la-
bel. Here, we mostly use the degree at which the mean Legendre
spectrum reaches a maximum. But it occurred that the two inter-
acting modes peak at the same degree in which case we deter-
mined the location of the smallest frequency separation. Second,
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Fig. 4. Evolution of all the computed p-modes frequencies from Ω = 0 to Ω/ΩK = 0.59. The frequencies have been adimensionalized
by (GM/R3

p)1/2 because we expect that the polar radius Rp does not change much as the rotation of the star increases. Non-rotating � = (0, ..., 7),
n = (1, ..., nmax) p-modes have been followed by progressively increasing the rotation. This mode tracking requires special care when an avoided
crossing occurs between two modes of the same equatorial parity. The figure on the left shows an overview of the frequency evolution while the
two right figures display zooms to illustrate avoided crossings between the � = 1, n = 6 and � = 5, n = 5 modes and the � = 0, n = 4 and
� = 4, n = 3 modes, respectively. Although the two “interacting” modes have a mixed character near the closest frequency approach, their original
properties are recovered after the crossing which enables to unambiguously follow and label the modes. This is illustrated in Fig. 5 by considering
the spectra of Legendre expansion components of the � = 0, n = 4 and � = 4, n = 3 modes at the rotation rates marked by an arrow. Note that
in the above figures crossings do occur between equatorially symmetric and anti-symmetric modes. In the global view, there are two examples
of discontinuous frequency changes due to avoided crossing with modes which frequency is not represented on the figure. Actually, the � = 8,
n = (1, 2, 3) modes have been displayed in this view to avoid more discontinuous changes.

Fig. 5. Evolution of the Legendre components
C(�) = maxnr |U(�, nr)| of the � = 0, n = 4 and
� = 4, n = 3 modes during the avoided cross-
ing shown in Fig. 4. Prior to (Ω/ΩK = 0.38)
and after (Ω/ΩK = 0.55) the avoided crossing,
the spectrum of Legendre components peaks at
a given degree while, near the closest approach
(Ω/ΩK = 0.46), the double peaks of the spectra
show the mixed character of the eigenmodes.

as shown by Fig. 5, a more fundamental problem is that a single
label cannot reflect the mixed nature of the eigenfunction.

Another issue related to avoided crossings concerns their
influence on the accuracy of the eigenfunction computation.
Indeed, if a large-scale, well resolved eigenfunction undergoes
an avoided crossing with a small-scale unresolved mode, the
accuracy of the eigenfunction determination will be affected.
The effect on the frequency accuracy should be small as the
frequency gap induced by the avoided crossing of two modes
of well separated length scales is small. But, at the closest ap-
proach, the eigenfunctions will be much affected. At zero rota-
tion, the highest degree mode present in our frequency range is
� = 51, n = 1. Thus, if one of the low degree modes that we
computed undergoes an avoided crossing with a mode of such
a high degree, the high degree mode should be resolved to en-
sure an accurate determination of the eigenfunction of the low
degree mode.

4.3. The structure of the frequency spectrum

The effect of the centrifugal force on the acoustic frequency
spectrum of axisymmetric modes is investigated. The mean
modifications of the spectrum are discussed then we investigate
how regularities in the frequency spacings evolve with rotation.
Finally, differences between equatorially symmetric and anti-
symmetric modes are outlined.

4.3.1. Global spectrum evolution

Figure 6 compares the frequency spectrum of the � = 0−7, n =
1 − nmax,m = 0 modes at Ω = 0 (upper panel) and at Ω/ΩK =
0.59 (lower panel), the height of the vertical bars corresponding
to the degree � of the mode. It appears that the centrifugal force
induces a mean contraction of the frequency spectrum. This is
expected as the decrease of the sound speed and the increase
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Fig. 6. Frequency spectrum of � = 0−7, n =
1− nmax,m = 0 modes at Ω = 0 (top panel) and
Ω/ΩK = 0.59 (bottom panel). The degree num-
ber � associated with the frequency is shown by
the height of the vertical bar.

of the star volume induced by the centrifugal force both tend to
lessen the frequency of acoustic modes.

To illustrate this effect, consider a spherically symmetric
decrease of the effective gravity. In a homologous series of
spherical models of increased volume V , the decreasing rate of
the frequencies ∆ω/ω is −(1/2)(∆V/V), as the normalized fre-
quencies ω/(GM/R3)1/2 remain constant. For non-homologous
spherically symmetric changes, ∆ω/ω is asymptotically equal

to −∆(ln
∫ Rp

0
dr/c) for high order modes verifying the following

asymptotic formula valid for low degree and high order p-modes
(Tassoul 1980):

ω =
π∫ R

0
dr
c

(n + (� + 1/2)/2 + α) (39)

where 1/
∫ R

0
dr
c is the sound travel time along a stellar radius

and α is a constant. When, as in these two previous cases, ∆ω/ω
does not depend on the frequency, the concentration of the fre-
quency spectrum is homothetic.

This is clearly not the case here since the frequencies cross
each other (see Fig. 4). But there is still an average contrac-
tion rate which is of the order of −(1/2)(∆V/V), where now V
is the volume of the centrifugally distorted star. In addition, the
contraction rates of individual frequencies appears to be com-
prised between the logarithmic derivative of the sound travel
times computed respectively along the polar and equatorial radii:

∂Ω

(
ln

∫ Rp

0

dr
c

)
≤ −∂Ω(lnω) ≤ ∂Ω

(
ln

∫ Re

0

dr
c

)
· (40)

Another interesting property is that, at small rotation rates, say
Ω/ΩK ≤ 0.05, the contraction rate ∂Ω(lnω) tends to be inde-
pendent of � and n for the large degree modes � ≥ 3. This
suggests that an asymptotic regime exists for modes with hor-
izontal wavelengths smaller than the dominant length scales of
the centrifugal distortion. In this regime, the contraction rate has
a constant value that is not equal to −(1/2)(∆V/V). We already
found such behaviour in the case of homogeneous ellipsoids
(Lignières et al. 2001) where a perturbative analysis shows that

the contraction rate of axisymmetric modes is constant for high �
and n and that it can be related to the increase of the ellipse
perimeter.

Nevertheless, for the low degree modes � ≤ 2 belowΩ/ΩK ≈
0.05, and for all modes at higher rotation rates, ∂Ω(lnω) depends
on � and n. This differential effect modifies the structure of the
frequency spectrum as the rotation increases.

4.3.2. Regular frequency spacings

In a non-rotating star, the frequency spectrum presents some
regular frequency spacings which can be accounted for by
an asymptotic theory in the high frequency limit ω → ∞.
The asymptotic formula (39), valid for low degree and high or-
der modes, shows that the large frequency separation between
modes of consecutive order n,∆n = ωn+1,�−ωn,�, does not depend

on � and n and is equal to π/
∫ R

0
dr
c . A more detailed asymptotic

analysis also shows how the so-called small frequency separa-
tion δ = ωn+1,� − ωn,�+2 vanishes as a function of the frequency.
Although our calculations are restricted to the low frequency
part of the acoustic spectrum, we observe a clear tendency to-
wards these asymptotic behaviors in the non-rotating case. We
can therefore investigate whether these properties are modified
by rotation.

Figure 7 presents the large frequency separation ∆n and the
frequency separation between consecutive modes of the same
order and parity:

∆2,� = ωn,�+2 − ωn,�, (41)

as a function of the radial order n for four different rotation
rates, (a) Ω = 0, (b) Ω/ΩK = 0.32, (c) Ω/ΩK = 0.46 and
(d) Ω/ΩK = 0.59. As in the previous figures, the frequencies are
adimensionalized by (GM/R3

p)1/2. Continuous lines have been
drawn between frequencies of the same degree �. We first ob-
serve that the large frequency separation tends to be independent
of n and � at all rotation rates. In accordance with the mean con-
traction of the frequency spectrum mentioned above, the large
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Fig. 7. Regularities in the frequency spacings of
axisymmetric (m = 0) modes. The large fre-
quency separation between modes of consec-
utive order ∆n = ωn� − ωn−1�, the frequency
separation between � + 2 and � modes, ∆2,� =
ωn,�+2−ωn,�, and the small frequency separation
δ = ∆n − ∆2,� are displayed as a function of the
radial order n for four different rotation rates,
a) Ω = 0, b) Ω/ΩK = 0.32, c) Ω/ΩK = 0.46
and d) Ω/ΩK = 0.59. We plotted the opposite
of the small frequency separation −δ for clar-
ity. Continuous lines have been drawn between
frequencies of the same degree �.

frequency separation decreases with rotation. It is always be-
tween π/

∫ Rp

0
dr/c and π/

∫ Re

0
dr/c.

The dispersion of the large frequency separations around
their mean value also has an interesting evolution with rotation.
In the non-rotating case, the dispersion reflects a regular depar-
ture from the asymptotic limit. It is larger for high degrees and
monotonically decreases with frequency (see Fig. 7a). In the ro-
tating cases, the dispersion is not as regular. The largest depar-
tures, some of which are most clearly visible in Fig. 7c, can be
attributed to an ongoing avoided crossing. The residual disper-
sion is irregular and decreases with rotation. At Ω/ΩK = 0.59,
if we exclude all n < 4 values from our sample, the mean large
frequency separation 〈∆n〉 is equal to 1.095(GM/R3

p)1/2 and its
standard deviation is 0.017〈∆n〉.

We now consider the small frequency separation δ = ∆n −
∆2,�. As expected, in the absence of rotation the small frequency
separation tends to vanish as n increases. But, at Ω/ΩK = 0.32,
the small frequency separation no longer decreases with n for
some values of � and for the higher rotation rates it becomes
nearly constant. At the same time, the ∆2,� separation becomes
more and more uniform as rotation increases. As shown in
Fig. 7b, ∆2,� becomes approximatively constant with n first for
low degree modes while it still increases with frequency for high
degree modes. In addition, equatorially antisymmetric modes
reach this new regime at a lower rotation rate than the equa-
torially symmetric modes of similar degree. This is illustrated
in Fig. 7d by the ∆2,�=4 curve which still remains above the
mean ∆2,� value while the ∆2,�=5 separation collapses with the
other curves. At Ω/ΩK = 0.59, if we exclude all n < 4 values
from our sample, the mean frequency separation ∆2,� is equal
to 0.387(GM/R3

p)1/2 and its standard deviation is 0.033〈∆n〉.
As a consequence of the near uniformity of ∆n and ∆2,�, the

frequencies of low degree and high order modes can be approx-
imated by the following expressions:

ω̃n� =

{
nδn + pδ� + α+ if � = 2p
nδn + pδ� + α− if � = 2p + 1 (42)

where δn = 〈∆n〉, δ� = 〈∆2,�〉, α+ and α− only depend on the
equilibrium model. Using a reference frequency to determine
the α constants (the � = 0, n = 8 frequency for α+ and the
� = 1, n = 8 frequency for α−), we computed the root mean
square error

√
1/N

∑
(ω̃ − ω)2 and the maximum error made in

using the approximate expressions (42). For a frequency subset
containing the n > 4 and � < 5 modes, the rms error is 0.017δn

while the maximum error amounts to 0.05δn. Both errors are
a very small fraction of the large separation which shows that
Eq. (42) yields useful approximations of the frequency spectrum.

4.3.3. Equatorially symmetric versus anti-symmetric
frequency spectra

We have seen that the regular frequency spacings ∆n and ∆2,�
have similar values for symmetric and anti-symmetric modes
with respect to the equator. The evolution of the equatorially
symmetric and anti-symmetric frequency spectra are neverthe-
less quite different. Indeed, considering two modes of similar
frequency but of opposite equatorial parity, the frequency of the
symmetric mode generally decreases faster with rotation than
the frequency of the antisymmetric modes. The consequence is
that the frequency separation between modes of consecutive de-
gree (and thus of opposite parity) ∆l = ωn,�+1 − ωn,� tends to
increase when � is even and to decrease when � is odd. The fre-
quency separation ∆l can even become negative which implies
that, contrary to the non-rotating case, frequencies of a given
order n do not increase monotonically with the degree �. This
striking modification of the usual frequency ordering is apparent
in Fig. 6 where the (� = 2, n) frequencies are smaller than the
(� = 1, n) frequencies for all the order n that we calculated, that
is n = (1, ..., 10). In the same way, the (� = 4, n) frequencies are
smaller than the (� = 3, n) frequencies if n ≥ 3, and again the
(� = 6, n) frequencies are smaller than the (� = 5, n) frequencies
if n ≥ 5.
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Fig. 8. Isocontours of the � = 4, n = 4 mode
amplitude in a meridional plane as a function
of the rotation a) Ω = 0, b) Ω/ΩK = 0.32,
c) Ω/ΩK = 0.46 and d) Ω/ΩK = 0.59. The
amplitude is normalized to the maximum of
its absolute value. Continuous lines correspond
to positive amplitudes, dashed lines to the
zero amplitude and dotted lines to negative am-
plitudes. At zero rotation, the angular distribu-
tion is given by the Ŷ0

4 (θ) Legendre polynomial
while the radial distribution is characterized by
the surface concentration of the amplitude and
the presence of n = 4 nodes in the inner part.
For larger rotation rates, the largest amplitudes
concentrates toward the equator. We also note
that the number of radial nodes decreases along
the polar radius while it increases along the
equatorial radius.

4.4. Equatorial concentration

In this section, we focus on the most notable effect of the cen-
trifugal force on the eigenmodes, namely the equatorial con-
centration and consider its consequences on the mode visibility.
Note that Clement (1981) also reported an equatorial concentra-
tion of the equatorially symmetric modes that he calculated.

Figure 8 shows this effect on the (� = 4, n = 4) mode.
Contours of the amplitude of the Lagrangian pressure pertur-
bation are plotted in a meridional plane for increased rotation
rates, (a) Ω = 0, (b) Ω/ΩK = 0.32, (c) Ω/ΩK = 0.46 and
(d) Ω/ΩK = 0.59. We observe that the number of nodes in-
creases along the equatorial radius and decreases along the polar
one. Along the surface, the number of nodes remains equal to �
before Ω/ΩK = 0.59 where additional nodes appear. The equa-
torial concentration is clearly seen in the outermost layers.

In Fig. 9, the equatorial concentration is shown for other
modes including the lowest and highest degree modes of our
sample as well as symmetric and anti-symmetric modes. The lat-
itudinal variation of the mode amplitude is displayed at the sur-
face for the following modes, (a) � = 0, n = 1, (b) � = 1, n = 1,
(c) � = 6, n = 8, (d) � = 7, n = 8. In each case, the equa-
torial concentration grows with rotation. At the largest rotation
rate, symmetric modes are maximal at the equator while anti-
symmetric modes peak at small latitudes since they must vanish
at the equator. The contrast between these maxima and the polar
amplitude is strong.

The equatorial concentration reveals a modification of the
resonant cavity of the acoustic waves. In particular, the reduction
of the volume of the resonant cavity should tend to increase the
frequency. The equatorial concentration seems also to be asso-
ciated with the near-uniformity of the frequency separation ∆2,�.
At low rotation rates, the concentration is not completed and ∆2,�
is clearly not constant. At the largest rotation rate, all modes are
concentrated near the equator and ∆2,� is nearly uniform.

Besides its effect on the frequency spectrum, the equatorial
concentration of eigenmodes should induce a profound modi-
fication of the mode visibility as compared to the non-rotating
case. The photometric mode visibility is determined by the in-
tegration over the visible part of the star’s perturbed surface of
the radiation intensity perturbations associated with a particular
pulsation mode. Rigorous calculations of photometric visibili-
ties are beyond the scope of the present paper as they require
non-adiabatic calculations of the oscillation modes and stellar
atmosphere models (e.g. Daszyńska-Daszkiewicz et al. 2002).
But we can still determine the effects of averaging the perturba-
tions over the visible surface which have a direct impact on the
visibility. The disk-averaging factor is defined as:

D(i) =
1

πR2
eδT0

∫∫
S v

δT (θ, φ)dS · ei (43)

where i is the inclination angle between the line-of-sight and the
rotation axis, ei is a unit vector in the observer’s direction and δT
is the spatial part of the Lagrangian temperature perturbation at
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Fig. 9. The mode amplitude at the surface of
the polytropic model as a function of the ro-
tation rate a) � = 0, n = 1, b) � = 1, n = 1,
c) � = 6, n = 8, d) � = 7, n = 8. The
amplitude is normalized to the maximum of
its absolute value. While the angular distribu-
tion is given by the corresponding Legendre
polynomial Ŷ0

� (θ) in the absence of rotation,
the oscillation amplitude progressively concen-
trates towards the equator (θ = π/2) as rotation
increases.

Fig. 10. The disk-averaging factor D(i) is
shown as a function of the inclination angle i
for various axisymmetric modes at two differ-
ent rotation rates Ω = 0 a) and Ω/ΩK = 0.59.
The degree of the modes varies from � = 0 to
� = 7. In the rotating case, the surface distri-
bution also depends on the order of the mode.
Two values n = 1 b) and n = 8 c) have been
considered at Ω/ΩK = 0.59.

the stellar surface, δT being proportional to the velocity diver-
gence χ in the approximation of adiabatic perturbations. The
mode amplitude is normalized by δT0 the root mean square of
the perturbation over the whole stellar surface

δT0 =

(∫∫
S
δT 2(θ, φ)dS

)1/2

(44)

and the visible surface S v has been normalized by πR2
e, the visi-

ble surface of a star seen pole-on. With these normalizations the
disk-averaging factor of a radial mode seen pole-on is unity.

In the absence of rotation, the surface distribution of modes
is determined by a unique spherical harmonic and the disk-
averaging factor takes a simple analytical form (Dziembowski
1977). For even degree and for � = 1, the disk-averaging fac-
tor varies with the inclination angle as the Legendre polyno-
mial Ŷm

� (i) while it vanishes altogether for odd degree � ≥ 3.
For rotating stars, the method of the calculation is detailed in
Appendix C. Note that for modes that are equatorially anti-
symmetric and axisymmetric, the disk-averaging factor also has

a simple dependency on the inclination angle as it is proportional
to cos(i).

Figure 10 shows the disk-averaging factor of various axisym-
metric modes as a function of the inclination angle. The non-
rotating case is displayed in Fig. 10a where � = 0 to � = 7 modes
are considered. We recall that, atΩ = 0, modes of different radial
orders but same � and m have the same surface distribution. This
is not true in the rotating case and, at Ω/ΩK = 0.59, Figs. 10b
and c present the disk-averaging factor for modes of the same
degree numbers but for two different radial orders n = 1 and
n = 8, respectively. Note also that the disk-averaging factor was
allowed to take a negative value for clarity of the figure although
it is its absolute value that is relevant for the mode’s visibility.
Figure 10 shows that rotation strongly modifies the dependency
of the disk-averaging factor on the inclination angle as well as
on the degree number.

Figure 10c shows that for all n = 8 equatorially symmetric
modes the absolute value of the disk-averaging factor tends to
increase with the inclination angle. This is due to the equato-
rial concentration of these modes (see for example the surface



618 F. Lignières et al.: Acoustic oscillations of rapidly rotating polytropic stars. I.

Fig. 11. The variation of the disk-averaging fac-
tor as a function of the degree � is shown at
two fixed values of the inclination angle (i = 0
and i = π/2). The three curves in each fig-
ure correspond to the non-rotating case and, at
Ω/ΩK = 0.59, to two different orders, n = 1
and n = 8. The absolute value of the disk-
averaging factor has been rescaled by its maxi-
mum value among the different degree consid-
ered to outline its dependency on the degree
number. In sharp contrast to the non-rotating
case, the disk-averaging factor at Ω/ΩK = 0.59
does not show a strong decrease with �.

distribution of the (� = 6, n = 8) mode at Ω/ΩK = 0.59 shown
in Fig. 9c). This tendency is less pronounced for the n = 1 sym-
metric modes shown in Fig. 10b (except for the � = 2 mode)
although these modes are also equatorially concentrated. This is
due to a cancellation effect between positive and negative pertur-
bations concentrated near the equator as illustrated by the sur-
face distribution of the (� = 0, n = 1) mode in Fig. 9a. The
non-rotating case strongly differs since the absolute value of the
disk-averaging factor for even degree � > 0 modes does not vary
monotonically with the inclination. Indeed, they have �/2 nodes
between 0 and π/2. For odd � modes, the disk-averaging factor
is also modified by rotation since it no longer vanishes for � ≥ 3.
This occurs because the projected elementary surfaces dS · ei

are no longer symmetric with respect to the observer’s direction
and because the projection of the eigenmode surface distribution
onto the Legendre polynomial Ŷ0

1 is not zero for � ≥ 3 modes.
In non-rotating stars, the cancellation effect between posi-

tive and negative perturbations results in a rapid decrease of
the disk-averaging factor as the degree � of the mode increases.
Consequently, modes above a certain degree � ≥ 3−4 are not
expected to be detectable with photometry and are therefore not
included when trying to identify the observed frequencies. As
shown in Fig. 11, this property must be reconsidered for rapidly
rotating stars. The absolute disk-averaging factor normalized by
its maximum value over the degree considered 0 ≤ � ≤ 7,
|D(i)|/max�|D(i)|, is plotted as a function of � for two fixed values
of the inclination angle, i = 0 in Fig. 11a and i = π/2 in Fig. 11b.
The three curves correspond to Ω = 0 and to Ω/ΩK = 0.59 for
the n = 1 and n = 8 modes, respectively. In contrast to the
non-rotating case, the disk-averaging factor has no tendency to
decrease above � = 2. Again, this can be explained by the equa-
torial concentration as modes of different degree have a similar
surface distribution.

4.5. Comparison with perturbative methods

According to the perturbative analysis, centrifugal effects appear
at second order in Ω (Saio 1981). To determine the second-
order perturbative coefficient from our complete calculations,
we performed a series of calculations for small rotation rates
(Ω = 0, 1.8 × 10−3, 1.8 × 10−2, 4.6 × 10−2, 0.09 × 10−2, ...
in units of ΩK). From them, we determined the second-order
perturbative coefficient, denoted ω1, as the limit of the ratio
(ω(Ω) − ω0)/Ω2, where ω0 denotes a non-rotating eigenfre-
quency. Thus the approximate frequencies valid up to the second
order in Ω read ωpert = ω0 + ω1Ω

2, where the frequencies are in
units of (GM/R3

p)1/2 and the rotation is in units of ΩK. To assess
the range of validity of the second order perturbative approach,
we compared these approximate frequencies to the “exact”

Fig. 12. The relative difference between exact frequencies and their sec-
ond order perturbative approximation (second order in terms of the
small parameter Ω/ΩK), namely δω/ω where δω = ω − ωpert is dis-
played as a function of the rotation rate for the � = 0−2, n = 1−10, m =
0 modes.

frequencies. In Fig. 12, the relative differences between the
two calculations, (ω − ωpert)/ω, is plotted as a function of the
rotation rate for the � = 0−2, n = 1−10 modes. The departures
computed for the other modes, � = (3, ..., 7), n = (1, ..., nmax),
are smaller than the extremal differences shown in Fig. 12 and
are not displayed for clarity. The relative differences are gener-
ally larger for low degree modes and, for small rotation rates, are
a monotonic function of the radial order n (an increasing func-
tion for the � = 0−2 modes shown in Fig. 12). As mentioned
before the low degree modes seem to be sensitive to the precise
form of the distortion that occurs at similar lengthscales. As rota-
tion increases, it appears that higher than second order effects are
important to describe the effect of the centrifugal distortion on
these modes. The second order approximation is much better for
large � modes which are sensitive to global distortion properties.

As compared to the observational uncertainties on the fre-
quency determinations, the error made in using second order
perturbative methods becomes rapidly significant as rotation in-
creases. For a ratio Ω/ΩK = 0.24, corresponding to a typical
δ Scuti star with an equatorial velocity of 100 km s−1, the max-
imum absolute difference is 11 µHz which is much larger than
typical observational uncertainties.
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The fact that in our frequency sample the absolute difference
increases with frequency suggests that departure from the pertur-
bative approach could be detectable for moderately rotating stars
pulsating in high order modes. In our data limited to n ≤ 10, the
largest relative difference is 2.87 × 10−3 for a Ω/ΩK = 0.139 ro-
tation corresponding to a solar-type star with an equatorial veloc-
ity of 60 km s−1. If we assume that the same relative difference
holds for high order p-modes in the range of 2000 µHz generated
in convective envelopes of these stars, the absolute difference is
5.7 µHz for a typical 2000 µHz frequency. This would be also
easily detectable given the observational uncertainties (Bouchy
et al. 2005). However, a firm conclusion should await a direct
comparison between the perturbative approach and the complete
calculation for p-modes generated in the convective envelope of
rotating solar-type stars.

5. Discussion and conclusion

A new non-perturbative method to compute accurate oscillation
modes in rotating stars was presented. The accuracy of the com-
puted frequencies has been obtained by testing the effect of the
different parameters of the numerical method. Then, the effects
of the centrifugal force on low frequency axisymmetric acoustic
oscillation modes were investigated in uniformly rotating poly-
tropic models of stars. Seventy-one low degree � ≤ 7 and low
order n ≤ 10 modes were first determined at zero rotation and
then tracked at higher rotation rates up to Ω/ΩK = 0.59.

In the frequency and rotation ranges considered in this paper,
the zero rotation quantum numbers � and n were used to label the
modes. This labeling turned out to be meaningful since we found
regular frequency spacings between modes of the same degree
and consecutive orders, ∆n, and, within the subsets of modes of
the same equatorial parity, between modes of the same order and
consecutive degree, ∆2,�. We noted however that near avoided
crossings, when the eigenfunction is a mix of the two “interact-
ing” modes, a unique label cannot reflect the actual eigenfunc-
tion structure. Although successful in the frequency and rotation
ranges considered, it remains to be proved that this labeling can
be performed in practice at higher rotation and at higher fre-
quencies. Indeed, the main difficulty of the labeling procedure
arises from the avoided crossing between modes of the same
equatorial parity and such crossings will be more frequent as the
eigenfrequency density increases with the frequency. The cou-
pling between modes is also stronger at higher rotation rates. It
might then be necessary to investigate tools other than the mean
Legendre power spectrum to characterize the modes.

The study of the frequency spectrum showed a quite unex-
pected result, namely that, at the highest rotation rates, a new
form of organization sets in after the zero rotation asymptotic
structure of the spectrum has been destroyed. In the absence of
rotation, the asymptotic theory is directly related to the spherical
symmetry of the stars and ultimately to the integrability of the
underlying ray dynamics. In the presence of rotation, the eigen-
value problem is not fully separable and the underlying acous-
tic ray dynamics is most probably not integrable. The regular
spacings observed at high rotation rates were not expected. They
might be the sign of a near-integrable ray dynamic rather than
a chaotic system. These aspects will be investigated in a ray dy-
namic study of rotating polytropic models of stars.

Most importantly for asteroseismology, the existence of reg-
ular spacings in the spectrum can potentially provide tools
for the mode identification in rapidly rotating pulsating stars.
A complete acoustic frequency spectrum including m � 0 modes
and the effects of the Coriolis acceleration should however be

computed and analyzed to assess the practical relevance of these
regular spacings.

Apparently, there is a relation between the new spectrum
structure and the equatorial concentration of the mode ampli-
tudes. A consequence would be that this spectrum structure does
not apply to the whole spectrum. Indeed, sufficiently high de-
gree modes should still be of the whispering gallery type (e.g.
Rieutord 2001). Then, being so different from equatorially con-
centrated modes, they are not expected to follow the same regu-
lar spacings.

Another interesting issue is the difference between the modes
of different equatorial symmetry. We have seen that although the
structure of the symmetric and anti-symmetric spectra is simi-
lar, the frequency spectrum of the symmetric modes as a whole
seems to evolve independently from the anti-symmetric spec-
trum. The equatorial symmetry also influences the “strength” of
the avoided crossings measured by the frequency separation at
the closest frequency approach. As illustrated in Fig. 4 (right
panels), avoided crossings between symmetric modes are always
stronger than avoided crossings between anti-symmetric modes
since they remain further apart.

Modes undergoing an avoided crossing are particular be-
cause they have close frequencies and similar eigenfunctions. As
a consequence, both can be excited to observable levels by some
excitation mechanism. They are therefore good candidates to ex-
plain the occurrence of close frequencies in observed spectra
(Breger & Pamyatnykh 2006) as well as the associated amplitude
variations induced by beating between the two close frequencies.

The most striking effect of the centrifugal force on the eigen-
function is the equatorial concentration of the mode amplitude.
Again, the study of the ray dynamics should help specify the
conditions in which the sound waves stay focused in the equato-
rial region. As compared to the non-rotating case, the equatorial
concentration strongly modifies the integrated light visibility and
in particular its variation with respect to the mode degree and the
inclination angle. Our results showing a global increase of the
disk-integration factor as the star is seen equator-on are com-
patible with observations of δ Scuti pulsations which also sug-
gest an increase of the pulsation amplitudes with i (Suárez et al.
2002). Another finding of practical interest is that, for rapidly
rotating stars, the cancellation effect of the disk averaging no
longer sharply decreases with the degree of the mode and also
varies with the order of the mode. Realistic calculations of the
mode visibility including non-adiabatic calculations of the os-
cillation modes, stellar atmosphere models as well as the gravity
and limb darkening effect will however be needed to draw firm
observational conclusions.

The omission of the Coriolis force did not allow a complete
treatment of the rotational effects. However, the effect of the
Coriolis force vanishes for sufficiently large frequency (as the
time scale of the Coriolis acceleration 1/Ω becomes much larger
than the pulsation period) while the modification of the equi-
librium model by the centrifugal force affects all frequencies.
Therefore, the results presented here should be useful for the
high frequency part of the acoustic spectrum in rotating stars. In
a companion paper (Reese et al. 2006b), we extend the present
results by taking into account the Coriolis acceleration which,
among other things, allows us to specify the domain of validity
of perturbative calculations.
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Appendix A: Linear operators in spheroidal
coordinates

Let us now express the linear operators involved in
Eqs. (22)–(24), using the spheroidal coordinates given by
Eq. (25). We need the general expression of the divergence

∇ · V = 1√| g |∂i

( √| g |Vi
)

(A.1)

and the Laplacian:

∆Φ =
1√| g |∂i

( √| g |gin∂nΦ
)

(A.2)

where V = V1 E1+V2 E2+V3E3 = V1E1+V2E2+V3E3 is written
in the natural basis Ei = ∂OM/∂xi or the conjugated basis Ei

verifying Ei · E j = δi j, gin are the components of the metric
tensor and |g| is the absolute value of metric tensor determinant.

From these expressions, we derived the form of the following
operators:

g0 · ∇ ≡ (g1
0E1 + g

2
0E2) · ∂i Ei ≡ g1

0∂ζ + g
2
0∂θ (A.3)

r2∆ ≡ h1∂
2
ζζ − 2h2∂

2
θζ + h4∂ζ + ∆θφ (A.4)

r2L ≡ −
⎛⎜⎜⎜⎜⎝h1

g2
0

g1
0

+ 2h2

⎞⎟⎟⎟⎟⎠ ∂2
θζ + h4∂ζ −

⎡⎢⎢⎢⎢⎣h1∂ζ

⎛⎜⎜⎜⎜⎝g
2
0

g1
0

⎞⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎦ ∂θ + ∆θφ (A.5)

r2∇ · ( • A0) ≡ (r2A1
0)∂ζ + (r2A2

0)∂θ + r2∇ · A0[id] (A.6)

where ∆θφ represent the horizontal part of the Laplacian in spher-
ical coordinates:

∆θφ ≡ ∂2
θθ + cot θ∂θ +

1

sin2θ
∂2
φφ, (A.7)

and

h1 =
r2 + r2

θ

r2
ζ

(A.8)

h2 =
rθ
rζ

(A.9)

h3 =
r
rζ

(A.10)

h4 =
1
rζ

⎡⎢⎢⎢⎢⎣∂ζ
⎛⎜⎜⎜⎜⎝ r2 + r2

θ

rζ

⎞⎟⎟⎟⎟⎠ − 1
sin θ

∂θ(rθ sin θ)

⎤⎥⎥⎥⎥⎦ . (A.11)

We recall that:

r = (1 − ε)ζ + A(ζ) (S (θ) − 1 + ε) (A.12)

where S (θ) describes the stellar surface.

Appendix B: Coupling matrix

The components of the sub-matrices which define the ODE sys-
tem (36) are specified below using the functionals Im

��′ and Jm
��′

defined in Eqs. (37) and (38):

A33 Im
��′ (h1) (B.1)

B11 Im
��′ (r

2g1
0) (B.2)

B21 Im
��′ (h4) − Jm

��′

⎛⎜⎜⎜⎜⎝2h2 + h1
g2

0

g1
0

⎞⎟⎟⎟⎟⎠ (B.3)

B22 Im
��′

⎛⎜⎜⎜⎜⎝h1
c2

0N2
0

g1
0

− r2A1
0

⎞⎟⎟⎟⎟⎠ (B.4)

B33 Im
��′ (h4) − Jm

��′ (2h2) (B.5)

C11 Jm
��′ (r

2g2
0) (B.6)

C12 − Im
��′(r

2c2
0N2

0 ) (B.7)

C21 − �(� + 1)δ��′ − Jm
��′

⎡⎢⎢⎢⎢⎣h1∂ζ

⎛⎜⎜⎜⎜⎝g
2
0

g1
0

⎞⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎦ (B.8)

C22 Im
��′

⎡⎢⎢⎢⎢⎣h1∂ζ

⎛⎜⎜⎜⎜⎝c2
0N2

0

g1
0

⎞⎟⎟⎟⎟⎠ − r2∇ · A0

⎤⎥⎥⎥⎥⎦ − Jm
��′ (r

2A2
0) (B.9)

C31 − Im
��′(r

2d0) (B.10)

C32 Im
��′

[
r2(d0c2

0 − ρ0)
]

(B.11)

C33 − �(� + 1)δ��′ + Im
��′ (r

2d0) (B.12)

D21 − Im
��′

⎛⎜⎜⎜⎜⎝h1

g1
0

⎞⎟⎟⎟⎟⎠ (B.13)

D22 Im
��′

⎛⎜⎜⎜⎜⎝h1c2
0

g1
0

⎞⎟⎟⎟⎟⎠ (B.14)

E11 Im
��′ (r

2) (B.15)

E12 − Im
��′ (r

2c2
0) (B.16)

E21 − Im
��′

⎡⎢⎢⎢⎢⎣h1∂ζ

⎛⎜⎜⎜⎜⎝ 1

g1
0

⎞⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎦ (B.17)

E22 Im
��′

⎡⎢⎢⎢⎢⎣r2 + h1∂ζ

⎛⎜⎜⎜⎜⎝ c2
0

g1
0

⎞⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎦ (B.18)

where � = m + 2k, �′ = m + 2k′ when applied to the Ξ+m vector
and � = m + 2k + 1, �′ = m + 2k′ + 1 for Ξ−m.

For a polytropic model of index N, the quantities describing
the equilibrium can be expressed in terms of the dimensionless
enthalpy H as follows:

g0 = ∇H A0 =
(
1 − NΓ1,0

N+1

)
∇H

c2
0 =

Γ1,0

N+1 H c2
0N2

0 =
(
1 − NΓ1,0

N+1

)
‖∇H‖2

ρ0 = Λ
N HN d0 = NΛN HN−1,

(B.19)

where Λ is such that

Λ =
4πGρcR2

e

hc
(B.20)

where hc and ρc are the dimensional enthalpy and density at the
center of the polytropic model.

The components of the ODE, given by Eqs. (B.1) to (B.18),
can then be expressed in terms of the enthalpy and its derivatives,
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Hζ ,Hθ,Hζθ,HζζHθθ. This has been done in order to minimize the
numerical error in the calculation of these components. The most
useful expressions are:

g1
0 =

h1Hζ − h2Hθ

r2
(B.21)

g2
0 =
−h2Hζ + Hθ

r2
(B.22)

‖∇H‖2 =
h1H2

ζ − 2h2HζHθ + H2
θ

r2
(B.23)

h1
c2

0N2
0

g1
0

− r2A1
0 =

(
1 − NΓ1,0

N + 1

)
H2
θ

r2
ζ g

1
0

(B.24)

∂ζ

⎛⎜⎜⎜⎜⎝g
2
0

g1
0

⎞⎟⎟⎟⎟⎠ = 1(
r2g1

0

)2

[
h2

3

(
HζθHζ − HζζHθ

)
+

(
h2∂ζh1

− h1∂ζh2

)
H2
ζ − ∂ζh1HζHθ + ∂ζh2H2

θ

]
(B.25)

h1∂ζ

⎛⎜⎜⎜⎜⎝c2
0N2

0

g1
0

⎞⎟⎟⎟⎟⎠ − r2∇ · A0 = −
(
1 − NΓ1,0

N + 1

)
r2L(H) (B.26)

r2L(H) = −h1

⎡⎢⎢⎢⎢⎣g
2
0

g1
0

Hθζ + ∂ζ

⎛⎜⎜⎜⎜⎝g
2
0

g1
0

⎞⎟⎟⎟⎟⎠ Hθ

⎤⎥⎥⎥⎥⎦ − 2h2Hθζ

+ h4Hζ + ∆θφH (B.27)

d0c2
0 − ρ0 = −

(
1 − NΓ1,0

N + 1

)
ΛN HN (B.28)

∂ζ

⎛⎜⎜⎜⎜⎝ 1

g1
0

⎞⎟⎟⎟⎟⎠ = − r2

(
r2g1

0

)2

[
h1Hζζ − h2Hζθ +

(
∂ζh1

− 2h1/h3) Hζ +
(
2h2/h3 − ∂ζh2

)
Hθ

]
(B.29)

∂ζ

⎛⎜⎜⎜⎜⎝ c2
0

g1
0

⎞⎟⎟⎟⎟⎠ = Γ1,0

N + 1

⎡⎢⎢⎢⎢⎣H∂ζ
⎛⎜⎜⎜⎜⎝ 1

g1
0

⎞⎟⎟⎟⎟⎠ + Hζ

g1
0

⎤⎥⎥⎥⎥⎦ (B.30)

where

∂ζh1 = 2

(
rθζ
rζ

h2 − rζζ
rζ

h1 + h3

)
(B.31)

∂ζh2 =
rθζ
rζ
− rζζ

rζ
h2 (B.32)

Appendix C: Calculation of the disk-integration
factor

According to the definition of the disk-integration factor,
Eq. (43), we are led to calculate integrals of the following form:

I =
∫∫

S v

F(θ, φ)dS · ei (C.1)

=

∫∫
S v

G(θ, φ, i)dµdφ (C.2)

where µ = cos (θ) and F(θ, φ) is the surface distribution of the
eigenfunction obtained in the coordinate system (25) in which
the polar axis is the rotation axis. The integral is most simply
calculated in the coordinate system in which the polar axis is
aligned with the direction of the observer. This coordinate sys-
tem results from a rotation of angle i around the y axis of the
original coordinate system, the new angular variables being de-
noted θ′ and φ′. To express G in these coordinates, we use the
formula relating the spherical harmonics in both systems:

Ym
� (θ, φ) =

+�∑
m′=−�

d�mm′(i)Y
m′
� (θ′, φ′) (C.3)

where d�mm′(i) do not generally have a simple form (Edmonds
1960). Then, using the spherical harmonic expansion of G, we
obtain:

G =
+∞∑
�=0

+�∑
m=−�

G�
m(i)Ym

� (θ, φ) (C.4)

=

+∞∑
�=0

+�∑
m=−�

+�∑
m′=−�

G�
m(i)d�mm′(i)Y

m′
� (θ′, φ′). (C.5)

Then, integrating over the longitude φ′, from 0 to 2π, the terms
involving Ym′

� (θ′, φ′) vanish if m′ � 0. It follows that

I = 2π
+∞∑
�=0

+�∑
m=−�

J�G
�
m(i)Ŷm

� (i) (C.6)

where we used the following relations,

d�m0(i) =

√
4π

2� + 1
Ŷm
� (i) (C.7)

dµdφ = dµ′dφ′ where µ′ = cos θ′ (C.8)

and defined J� as,

J� =

√
4π

2� + 1

∫ 1

0
Ŷ0
� (µ′)dµ′ (C.9)

=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0 if � is even and � � 0,
1 if � = 0,
(−1)

�−1
2

1.3...(�−2)
2.4...(�+1) if � is odd and � � 1,

1
2 if � = 1.

(C.10)

Because of axial axial symmetry, the function to integrate reads

F(θ, φ) = W(θ)eimφ. (C.11)

Then, from the expression of the vector dS at the star’s surface:

dS = ∂θOM × ∂φOMdθdφ = E2 × E3dθdφ =
√
gE1dθdφ (C.12)

we deduce that

G = rA(θ, φ, i)W(θ)eimφ (C.13)

where

A(θ, φ, i) = rrζE1 · ei =

√
r2 + r2

θes · ei (C.14)

= r (sin θ cosφ sin i + cos θ cos i)

+rθ (sin θ cos i − cos θ cosφ sin i) (C.15)

= cos i
d
dθ

(r sin θ) − sin i cosφ
d
dθ

(r cos θ) (C.16)
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where es denotes the unit vector perpendicular to the surface, r
and rθ are calculated at the star surface ζ = 1. Thus the depen-
dency of G on i, φ and θ can be specified as follows:

G = A(θ) cos ieimφ − B(θ) sin i cosφeimφ (C.17)

where

A = r
d
dθ

(r sin θ) W(θ) (C.18)

B = r
d
dθ

(r cos θ) W(θ). (C.19)

It follows that

G�
k = 0 if k � m − 1,m,m + 1 (C.20)

so that the integral now reads:

I/2π = Im−1 + Im + Im+1 where (C.21)

Im = cos iÂm(i) (C.22)

Im−1 = − sin i
2

B̂m−1(i) (C.23)

Im+1 = − sin i
2

B̂m+1(i) (C.24)

where Âm denotes:

Âm(i) =
+∞∑
�=|m|

J�A
�
mŶm

� (i) (C.25)

A�
m = 2π

∫ π

0
A(θ)Ŷm

� (θ) sin θdθ (C.26)

the B̂m terms being defined accordingly.
Note that for modes which are equatorially anti-symmetric

and axisymmetric (m = 0), Â0(i) = J0A0
0Ŷ0

0 (i) and Â1(i) =
Â−1(i) = 0, thus the integral I reduces to:

I = 4π
√
πA0

0 cos(i). (C.27)


