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ABSTRACT

Context. The observations of rapidly rotating stars are increasingly detailed and precise thanks to interferometry and asteroseismol-
ogy; two-dimensional models taking into account the hydrodynamics of these stars are very much needed.
Aims. A model to study the dynamics of baroclinic stellar envelopes is presented.
Methods. This model treats the stellar fluid with the Boussinesq approximation and assumes that it is contained in a rigid spherical
domain. The temperature field and the rotation of the system generate the baroclinic flow.
Results. We give an analytical solution to the asymptotic problem at small Ekman and Prandtl numbers. We show that, provided the
Brunt-Väisälä frequency profile is smooth enough, differential rotation of a stably stratified envelope takes the form a fast rotating
pole and a slow equator while it is the opposite in a convective envelope. We also show that at low Prandtl numbers and without
µ-barriers, the jump in viscosity at the core-envelope boundary generates a shear layer staying along the tangential cylinder of the
core. Its role in mixing processes is discussed.
Conclusions. Such a model provides an interesting tool to investigate the fluid dynamics of rotating stars in particular for the study
of the various instabilities affecting baroclinic flows or a dynamo effect.
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1. Introduction

Thanks to the development of new observational techniques,
like interferometry or high precision photometry, rapidly rotat-
ing stars are increasingly focusing the interest of the scientific
community. The best example is the nearby star Altair whose
shape, rotation and inclination of axis have been determined by
interferometry (de Souza et al. 2005; Peterson et al. 2006) and
which has also been identified as an oscillating δ-Scuti star (see
Buzasi et al. 2005). Modelling such stars is therefore a challenge
which needs to be taken up in order to extract the best science
from these observations.

The role of rotation in the physics of stars appears at vari-
ous levels. First is the determination of the shape and thermal
structure which control the way we “see” the star and at this
stage the differential rotation is certainly important. Then, if we
are concerned by the eigenspectrum, in addition to the shape
(which influences the frequency and the visibility of the modes,
see Lignières et al. 2005), we also need to know the distribution
of elements able to excite eigenmodes through the κ-mechanism.
Finally, it has long been known that rotation drives many hydro-
dynamical instabilities in stably stratified radiative zones which
inevitably lead to some small-scale turbulence (e.g. Spiegel &
Zahn 1970). Much work has already been done in this direc-
tion following Zahn (1992), in particular to understand the sur-
face abundances in stars across the HR diagram (see Maeder &
Meynet 2000).

The case of rotation is therefore fundamental in stellar
physics and needs to be well understood. Presently, the difficul-
ties concentrate on the hydrodynamical effects generated by the

associated inertial accelerations (Coriolis and centrifugal ones).
Indeed, the analysis of these flows is quite demanding as it re-
quires two-dimensional models.

The present paper focuses on one aspect of the dynamics
of rotating stars: namely, we want to specify the shape of the
baroclinic flow inside the radiative envelope of a rapidly rotating
star. In such stars, it is well known that the Eddington-Sweet
time scale is short enough for a steady state to be reached. But
this steady flow, in which viscous effects need to be taken into
account, has never been computed in its full two-dimensionality.

Previous work on this subject is quite scarce. First attempts
include those of Tassoul & Tassoul (1982, 1983a,b, 1984, 1986)
who, for analytical tractability, restricted the velocity field to its
first Legendre polynomial component and therefore give an al-
most one dimensional description of the flow. Still in the quasi-
one-dimensional approach, the work of Zahn (1992) presents a
self-consistent description based on the assumption of a strong
horizontal turbulent viscosity compared to the vertical one.
Later, Uryu & Eriguchi (1994, 1995) touched upon the ques-
tion of modeling rotating baroclinic stars in two dimensions but
their neglect of viscosity removed any meridian circulation and
left differential rotation incomplete. Including viscosity, Garaud
(2002) investigated the dynamics of the radiative core of the sun
stressed by the differential rotation of the convective zone; in
this latter case the flow is essentially driven by the boundary
conditions. This is certainly the most advanced work on stellar
baroclinic flows to date but baroclinicity is not the main driving.

Although the full solutions are still not known, the sta-
bility of some generic situation of baroclinic shear flows has
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been investigated by Knobloch & Spruit (1982, 1983); Knobloch
(1985); Schneider (1990) and are reviewed in Zahn (1993).

Computing the baroclinic flow in a centrifugally distorted
envelope with realistic density and temperature profiles is not
an easy task. Therefore, we concentrate on a simpler version of
such a flow, namely a “Boussinesq version in spherical geome-
try”, which still contains a good deal of the actual physics of the
problem. This model has two purposes: to reveal the main dy-
namical features of such flows and eventually find some robust
property that may persist in actual stars and to devise a model in
which hydrodynamics can be investigated more easily and which
can be used as a template for the construction of more elaborated
models.

The next section of the paper describes our approach includ-
ing the simplifications that we use and the physics we keep. In
Sect. 3, we discuss the asymptotic properties of this model in
the limit of small Ekman numbers, appropriate to stellar appli-
cations. Then, after describing the numerical method, we investi-
gate some aspects of the general case. Conclusions and outlooks
follow.

2. The model

2.1. Description

We consider a system in which a self-gravitating fluid of con-
stant density is enclosed in an undeformable sphere of radius R.
The gravitational field is thus simply g = −gr where the radial
coordinate is scaled with R (i.e. 0 ≤ r ≤ 1) and g is the surface
gravity. The thermal and mechanical equilibrium of this fluid is
governed by:⎧⎪⎪⎪⎨⎪⎪⎪⎩
−∇Peq + ρeqg = 0
∇ · (χ∇Teq) + Q = 0
ρeq = ρ0(1 − α(Teq − T0))

(1)

where α is the dilation coefficient, χ the thermal conductiv-
ity and Q the heat sinks (since we study a stably stratified sit-
uation). The essential characteristic of this equilibrium is the
Brunt-Väisälä frequency profile

N2(r) = α
dTeq

dr
g(r). (2)

We now let this system rotate at an angular velocity Ω around
the z-axis. In the rotating frame, because of the combination of
rotation and stratification, a steady baroclinic flow appears. It is
a solution of

ρ(2Ω ∧ u + u · ∇u) = −∇P + ρ(g + Ω2ses) + µ∆u

ρcpu · ∇T = ∇ · (χ∇T ) + Q

where µ is the dynamical shear viscosity, cp the specific heat
capacity at constant pressure, s the radial cylindrical coordinate
and es the associated unit vector. We decompose the thermody-
namical quantities into their equilibrium and fluctuating parts,
namely

P = Peq + δP, ρ = ρeq + δρ, T = Teq + δT.

After subtracting Eq. (1), the momentum and heat equations
read:

ρ(2Ω ∧ u + u · ∇u) = −∇δP + δρ(g + Ω2ses)

+ρeqΩ
2ses + µ∆u

ρcp(u · ∇Teq + u · ∇δT ) = ∇ · (χ∇δT ).

These equations are further simplified by using the Boussinesq
approximation which yields:

2Ω ∧ u + u · ∇u = −∇δP − αδT (g + Ω2ses)

−αδTeqΩ
2ses + ν∆u

u · ∇Teq + u · ∇δT = κ∆δT.
We removed the barotropic contribution of the centrifugal accel-
eration, ρ0Ω

2ses; fluctuations of density are retained whenever
they are multiplied by an acceleration (g or Ω2ses) as should be
done when using the Boussinesq approximation. This approxi-
mation implies the Cowling approximation (i.e. the neglect of
variations of self-gravity). We also simplified the system by as-
suming a constant heat conductivity. Taking the curl of the mo-
mentum equation we derive the equation of vorticity:

∇ ×
(
2Ω ∧ u + u · ∇u + αδT (g + Ω2ses) − ν∆u

)
=

−εN2(r) sin θ cos θeϕ (3)

where we used the Brunt-Väisälä frequency profile (2) and intro-
duced ε = Ω2R/g, the ratio of centrifugal acceleration to gravity.
These equations are of course completed by the equation of mass
conservation which reads

∇ · u = 0

at the Boussinesq approximation.
The foregoing equations show that our problem is that of a

forced flow driven by the baroclinic torque−εN2(r) sin θ cos θeϕ.
We may wonder at this stage how such a system compares

with a real star and especially its baroclinicity. In a star, the
isothermal and isentropic surfaces are more spherical than the
equipotentials or isobars (e.g. Busse 1982); since the stellar en-
velope is stably stratified, entropy increases outwards which im-
plies that, on an equipotential, entropy also increases from pole
to equator. In our Boussinesq model, entropy (actually potential
temperature) is represented by temperature; our equipotentials
being oblate ellipsoids and the temperature gradient being posi-
tive outwards, we see that there too, entropy increases from pole
to equator of an equipotential surface. As shown by Zahn (1974),
the baroclinic torque is proportional to the latitudinal gradient of
entropy on an equipotential.

2.2. Scaled equations

Gathering vorticity, energy and continuity equations, we need to
solve the following system:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
∇ ×

(
2Ω ∧ u + u · ∇u + αδT (g + Ω2ses) − ν∆u

)
=

−εN2(r) sin θ cos θeϕ
u · ∇Teq + u · ∇δT = κ∆δT
∇ · u = 0

(4)

since this is a forced problem, we wish to have a forcing of or-
der unity as well as the solution. These considerations lead us
to the following scaling of the velocity field and temperature
perturbations:

u =
ΩN2R2

2g
u, δT = εT∗θ with N2 =

αT∗g
R

where N is the scale of the Brunt-Väisälä frequency. This scal-
ing takes into account the fact that the baroclinic flow and the
associated temperature perturbations vanish when either rotation
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or the Brunt-Väisälä frequency vanishes. We thus find the sys-
tem of dimensionless dependent variables:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
∇ × (ez ∧ u + Ro u · ∇u − (rer − εses) − E∆u) =

−n2
T (r) sin θ cos θeϕ

(n2
T/r)ur + εu · ∇θ = ẼT∆θ
∇ · u = 0

(5)

where we introduced the numbers:

E =
ν

2ΩR2
, ẼT =

κ

2ΩR2

(
2Ω
N

)2

, Ro =
N2R
4g

E is the Ekman number which measures the viscosity, ẼT mea-
sures heat diffusion and Ro is the Rossby number. In addition to
these numbers we will need the Froude number, Fr, the Prandtl
number P and the λ-parameter introduced by Garaud (2002);
these are respectively:

Fr =
V
NR
=
ΩNR

2g
, P = ν

κ
, λ =

E

ẼT
= P N

2

4Ω2
·

n2
T (r) is the scaled Brunt-Väisälä frequency.

2.3. Boundary conditions

This systems needs to be completed by boundary conditions. We
assume the regularity of the solutions at the sphere’s centre and
impose stress-free boundary conditions on the velocity field at
the outer surface. Thus doing, the velocity field is determined up
to a solid rotation; if u is a solution of Eq. (5) then u + Aez × r
is also a solution (A is an arbitrary constant). For actual stars,
such a degeneracy is lifted by initial conditions and conservation
of angular momentum. Here, we lifted it by imposing that the
solution u of Eq. (5) has no total angular momentum, i.e. that∫

(V)
suϕdV = 0

so that the total angular momentum of the star is in the back-
ground solid rotation measured by Ω (which therefore appears
as the mean rotation rate).

We further complete Eq. (5) by also imposing a zero temper-
ature fluctuation on the outer surface.

2.4. Discussion

As can be seen, the problem is controlled by a large number of
parameters namely

– the ratio of the centrifugal acceleration ε to surface gravity
which is also the ellipticity of equipotentials;

– the Rossby number Ro;
– the diffusion coefficients, E, ẼT ;
– the profile of Brunt-Väisälä frequency n2

T (r).

Moreover, two other parameters will be necessary to described
molecular weight gradients, namely the Brunt-Väisälä frequency
profile n2

µ(r), and the related diffusion coefficient, while another
one will characterize the viscosity jump at the core-envelope in-
terface. We therefore need some guidance in this large parameter
space.

For this purpose and in order that this model enlighten us on
real systems, we shall consider the case of a 3 M� star with a one
day rotation period. Thus we will use a radius R = 2 × 109 m,

a typical Brunt-Väisälä frequency of N = 10−3 Hz and a sur-
face gravity of g = 102 m/s2. The profile of the Brunt-Väisälä
frequency needs to reflect more realistic models. In Fig. 1a we
plot such a profile for a 3 M� star at different stages of its evo-
lution on the main sequence. Such profiles should not be taken
at face value, especially the contribution of the µ-gradients since
only microscopic diffusion is included in this model (produced
by the code CESAM, see Morel 1997). In fact it is the aim of
the present work to understand the mechanisms by which ele-
ments move in the radiative envelope. Therefore we consider the
generic situation visualized in Fig. 1b.

Because of our choice of scalings, the amplitude of non-
linear terms in the momentum equation is independent of ro-
tation and can be appreciated directly from a non-rotating stellar
model. In Fig. 2, we display the values of the Rossby number as
a function of radius for our typical 3 M� star. Indeed, the non-
dimensional function

Ro(r) =
N2(r)r
4g(r)

gives an interesting approximation of the amplitude of these non-
linear terms. As can be seen, this number is generally less than
unity except near the surface layers where it reaches Ro ∼ 5.

Recalling that ε < 1, we see that the other non-linear terms
are also less than unity (in fact very much less than unity as
shown below). As a first step in the investigation, we ignore them
altogether so as to be able to examine the properties of the sys-
tem with linear equations.

Setting Ro = ε = 0, we obtain the system:

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∇ × (ez ∧ u − θr − E∆u) = −n2
T sin θ cos θeϕ

(n2
T/r)ur = ẼT∆θ

∇ · u = 0.

(6)

3. The asymptotic analysis at E� 1

Before solving the full system (6), we first discuss the case
of asymptotically small Ekman numbers found in stellar
applications.

3.1. The inviscid profile

When viscosity is neglected the Eqs. (6) admit a particular solu-
tion called (in geophysics) the thermal wind; in our case it reads⎧⎪⎪⎪⎨⎪⎪⎪⎩

u0 =
(
s
∫

n2(r)
r dr + F(s)

)
eϕ,

θ = 0
(7)

where s = r sin θ is the radial cylindrical coordinate and F(s) an
arbitrary function describing a pure geostrophic solution.

As already pointed out by Busse (1981, 1982), the so-called
thermal disequilibrium induced by centrifugal acceleration does
not imply meridional circulation. A slight differential rotation
where the baroclinic torque is balanced by the Coriolis torque
gives a steady solution.

However, we also see that such a solution is largely under-
determined since the function F needs to be specified; this
degeneracy is lifted by viscosity. The qualitative importance
of F(s) comes from the fact that it controls the latitudinal dif-
ferential rotation.
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Fig. 1. a) Profiles of the Brunt-Väisälä frequency from the 1D evolution code CESAM for a 3 M� star at 0 (solid), 20 Myr (dotted line), 284 Myr
(dashed line); these models include microscopic diffusion of Michaud & Proffitt (1993). b) Adopted profiles for a star with (dashed line) and
without (solid line) a µ-barrier.

Fig. 2. a) Profiles of the Rossby number rN2(r)/4g(r) from the 1D evo-
lution code CESAM for a 3 M� star at 0 (solid), 20 Myr (dotted),
284 Myr (dashed).

3.2. The Ekman boundary layer

The foregoing thermal wind solution usually does not satisfy
the viscous boundary conditions and thus a boundary layer
correction needs to be added. Let us review here its main
properties.

If u0 is the inviscid interior solution and ũ the boundary layer
correction such that u0 + ũ satisfies both the flow equations and
the boundary conditions, it is well-known (see Greenspan 1969;
Rieutord 1997) that ũ verifies

er ∧ ũ + iũ = C(u0) exp
(
−ζ√i| cos θ|

)

where ζ = (1 − r)/
√

E is the radially stretched coordinate and
C a complex vector. In the boundary layer the flow is essentially
tangential and we may write the full velocity field:

uθ + iuϕ = C exp
(
−ζ

√
i| cos θ|

)
+ iu0

ϕ

where the constant C is such that the horizontal stress is zero;
namely

∂

∂r

(
uθ + iuϕ

r

)
= 0

which yields

C ≡ C(θ) = (1 + i)

√
E
2
Γ(θ)

with

Γ(θ) =
F(sin θ) − sin θF′(sin θ) − n2(1) sin θ√| cos θ| (8)

where the prime indicates derivatives. From these results we find
the meridian velocity in the boundary layer:

uθ =

√
E
2
Γ(θ)(cos ξ + sin ξ)e−ξ (9)

with ξ = ζ
√| cos θ|/2.

Such a flow however does not verify mass conservation. This
is taken care of by the so-called Ekman pumping which yields
the radial component:

ũr = EU(sin θ) cos ξe−ξ (10)

with

U(s) = n2(1)(1 + q(s)) + sF′′(s) + q(s)(F′ − F/s),

and

q(s) = 1 +
s2

2(1 − s2)
·
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These expressions show us that near the surface there exists a
latitudinal flow O(

√
E) which induces an O(E) circulation in the

bulk of the fluid; in turn, this circulation controls the geostrophic
flow F(s)eϕ and thus removes the degeneracy of the thermal
wind solution. The boundary layer solution is singular at equator
(θ = π/2); this is the classical equatorial singularity of Ekman
layers whose thickness changes to O(E2/5) in a region O(E1/5)
around the equator (see also Greenspan 1969).

3.3. The thermal wind

Since differential rotation is a major feature of the baroclinic
flow, it is useful to push further its analysis and express F(s)
as a function of the Brunt-Väisälä frequency profile. For this
purpose, we express the meridian circulation as a function of F.
We thus write the ϕ-component of the momentum equation in
cylindrical coordinate

us = E(∆ − 1/s2)u0
ϕ

where ∆ is the Laplacian operator; this equation expresses the
local balance between advection and diffusion of angular mo-
mentum. It yields

us = E
(
F′′ + F′/s − F/s2 + sC(r)

)
, (11)

with C(r) =

(
n2

r

)′
+

4n2

r2
·

Mass conservation gives the z-component of the flow:

uz = −
∫ z

0

1
s
∂sus

∂s
dz = −EL3(F)z − E

∫ z

0

1
s
∂s2C(r)
∂s

dz′ (12)

with L3(F) =
1
s
[
(sF′)′′ − (F/s)′

]
while in the integral r2 = z′2 + s2.

Now, ur = 0 must be satisfied at order O(E) on the outer
boundary. Hence, setting r = 1, we have

sus + zuz + ũr = 0

which gives the following differential equation for F:

sF′′ + F′ − F/s + s2C(1) − ζ(s)2L3(F)

−ζ(s)
∫ ζ(s)

0

(
2C(r) + s2 C′(r)

r

)
dz

+n2(1)(1 + q(s)) + sF′′(s) + q(s)(F′ − F/s) = 0 (13)

with ζ(s) =
√

1 − s2. This complicated equation is of the form
L(F) = b, namely a forced third order differential equation. We
do not try to find the general solution of it, but will examine the
polynomial solution F = As+as3+bs5, formally valid at s 
 1,
with the hope that since s ≤ 1, it will give a good idea of the
flow.

As expected, the solution is invariant to the addition of a
solid rotation; thus A is arbitrary. The first interesting term is as3.
Substitution into Eq. (13) gives the following result:

a = −1
2

∫ 1

0

n2(r)
r2

dr,

b =
1

48

(
n2

r

)′
(1) +

19
192

n2(1)

− 1
24

∫ 1

0

{
n2

r2
+

1
3r

[(
n2

r

)′′
+ 4

(
n2

r2

)′]}
dr

and thus we expect the following differential rotation close to the
z-axis

δΩ =

∫
n2(r)

r
dr − s2

2

∫ 1

0

n2(r)
r2

dr + bs4 (14)

which is now an explicit function of the Brunt-Väisälä fre-
quency profile.

3.4. The role of stratification

In the foregoing solution we set θ to zero and therefore did not
bother about stratification. In order to understand its role, we
need to evaluate the amplitude of θ, i.e. the scaled temperature
fluctuation.

Equation (6b) shows that since ur (i.e. meridian circulation)
is O(E), then θ is O(E/ẼT ) that is of the order of λ = PN2. Thus,
in the limit of small λ, our solution is valid. Stellar fluids are
characterized by small Prandtl numbers and usually in rapidly
rotating stars one considers that λ 
 1 which makes our neglect
of buoyancy acceptable.

However, as was pointed out by Spiegel & Zahn (1970)
it is likely that some turbulence is driven by the shear of the
baroclinic flow. The viscosity, changed to a turbulent one, is
then increased by some factor which therefore also increases the
Prandtl number. From the discussion of Zahn (1993), this tur-
bulent Prandtl number may reach values close to unity; hence,
even in a rapidly rotating star, the λ-parameter may be larger
than unity (typically up to 102).

The consequence of such a situation is that a thermal bound-
ary layer appears. Its scale is of course 1/

√
λ and we now assume

that λ � 1. Outside this layer, quantities vary on an O(1) scale;
noting that us ∼ ur, using the ϕ-component of the momentum
equation together with the heat equation, it follows that

θ ∼ λuϕ.
Now, the ϕ-component of the vorticity Eq. (6a) shows that in this
region

uϕ ∼ λ−1, ur ∼ Eλ−1, and θ ∼ 1.

Roughly speaking, outside the thermal layer the temperature
fluctuation is of order unity and the velocity perturbation is re-
duced by a factor O(λ), while in the thermal layer, radial gradi-
ents are increased by a factor

√
λ which gives:

uϕ ∼ λ−1, ur ∼ E, and θ ∼ 1.

Hence, all the dynamics described above for P 
 1 become
squeezed inside the thermal layer with differential rotation re-
duced by a factor λ. This is very similar to the solar tachocline
where turbulent diffusion inhibits the diffusion of momentum
with the help of stratification.

3.5. Discussion

The foregoing solution potentially shows very interesting prop-
erties of the baroclinic flow; however, it may not be reli-
able mathematically considering the crudeness of the solution
of Eq. (13).

The accuracy of the as3 solution of Eq. (13) may only be esti-
mated by direct comparison to numerical solutions. Anticipating
the next section we numerically solve Eq. (6) in the limit of
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Fig. 3. Differential rotation (right) and meridional circulation (left) for a Brunt-Väisälä frequency profile n(r) = r.

small Prandtl number. We used a very simple Brunt-Väisälä fre-
quency profile, n2 = r2, which is standard in the literature (see
Chandrasekhar 1961). With such a profile the estimate of the dif-
ferent components of the flow are easy to evaluate (a = − 1

2 and
b = 15

192 ); as for the differential equation we find

δΩ =
1
2

z2

neglecting b; this solution compares extremely well with the nu-
merical solution (see Fig. 3) as soon as P ≤ 0.1. It shows that
the second term bs5 does not much influence the shape of the so-
lution. From the expression of b we see that this is true because,
in this case, n2 is a smooth function of r. In stellar situations,
the coefficient (n2/r)′(1) might be very large if sharp gradients
develop in the upper layers of the star.

Reassured by these computations, Eq. (14) therefore shows a
very interesting result: if the Brunt-Väisälä frequency profile of
a star is sufficiently smooth, the latitudinal differential rotation
in a stably stratified envelope driven by the sole baroclinicity is
a fast rotating pole and a slower rotating equator. Moreover,
the a-coefficient being an integral over the star, it is not sensitive
to the detailed shape of the Brunt-Väisälä frequency profile and
therefore is a rather robust quantity.

Conversely, in a convecting envelope, with viscous-like
Reynolds stresses, baroclinic torques induce a fast rotating equa-
tor and slow poles, like the sun actually. Of course, in the solar
case, this may just be a coincidence since baroclinicity in the
convective zone of the sun does not come from a centrifugal ef-
fect but rather from the convection itself (see Brun & Toomre
2002). Nevertheless, in rapidly rotating (i.e. young) solar type
stars, our result shows that baroclinicity drives a solar-like dif-
ferential rotation.

Finally, the solution also gives the form of the meridian cir-
culation through Eqs. (11) and (12). For instance the number of
cells can be retrieved from the expression of us. At equator, s = r
and us reads

us = E

(
1
r3

d(r3n2)
dr

− 4r
∫ 1

0

n2

r2
dr

)
.

The number of zeros of this function, plus one, gives the number
of cells according to the Brunt-Väisälä frequency profile. The
expression of uθ in the Ekman layer (9) shows that at the sur-
face, uθ ∼ −n2(1)s, which means that the flow is poleward. If the
Brunt-Väisälä frequency profile is smooth enough this motion
extends to low latitudes. However, because of the sin ξ + cos ξ
dependence, the boundary layer flow reverses just below the sur-

face at r = 1 − 3π
4

√
2E
| cos θ| .

From the amplitude of the meridian flow, one can estimate
the circulation time scale which is:

Tcirc =
2Ω
NFr

Tvisc =
Tvisc

Ro
·

Since Ro ∼ 1, this time scale is of the order of the viscous dif-
fusion time scale Tvisc which is very large if only microscopic
viscosity is diffusing momentum.

4. The general case

We now turn to a more complex model with which we analyse
the effects of a convective core and of µ-gradients. The inclu-
sion of µ-gradients amounts to the addition of the equation of a
concentration c and the modification of the buoyancy term; the
linear system (6) needs to be changed into:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∇ × (ez ∧ u − (θ − c)r − E∆u) = −n2 sin θ cos θeϕ

(n2
T/r)ur = ẼT∆θ

−(n2
µ/r)ur = Ẽc∆c

∇ · u = 0

(15)

where we introduced n2 = n2
T + n2

µ and Ẽc = (Dc/2ΩR2) ×
(2Ω/N)2 with Dc being the diffusivity of element “c”. This ele-
ment is supposed to be heavier than the surrounding gas.

Since solutions are much more complicated we use numeri-
cal solutions and first describe the numerical technique.
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4.1. The numerical method

To solve the system (15) we first project the variables onto the
spherical harmonic base (see Rieutord 1987)

u =
+∞∑
�=0

+�∑
m=−�

u�mRm
� + v

�
mSm
� + w

�
mTm
� ,

θ =
+∞∑
�=0

+�∑
m=−�
θ�mYm

� , c =
+∞∑
�=0

+�∑
m=−�

c�mYm
�

where

Rm
� = Ym

� er, Sm
� = ∇Ym

� , Tm
� = ∇ × Rm

�

with Ym
� being the usual normalized spherical harmonic function.

Since the flow is divergenceless, vlm may be expressed as:

v�m =
1

�(� + 1)
1
r

dr2u�m
dr
·

Then, projecting the equations (the vorticity equation needs be
projected only on Rm

� and Tm
� ), we get

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

E∆�w�m + A(�)r�−1 ∂
∂r

(
u�−1

m

r�−2

)
+ A(� + 1)r−�−2 ∂

∂r

(
r�+3u�+1

m

)
= 0

E∆�∆�(ru�m) = B(�)r�−1 ∂
∂r

(
w�−1

m

r�−1

)
+ B(� + 1)r−�−2 ∂

∂r

(
r�+2w�+1

m

)

+�(� + 1)(θ�m − c�m) − (n2
T + n2

µ)N2δ�2

ẼT∆�θ
�
m − n2

T/ru�m = 0

Ẽc∆�c�m + n2
µ/ru�m = 0

where N2 =

√
16π

5 and

A(�) =
1
�2

√
�2 − m2

(2� − 1)(2� + 1)
, B(�) = (�2 − 1)�2A(�).

This coupled system of differential equation needs to be com-
pleted by boundary conditions at the surface of the sphere (at
the centre we only demand the regularity of the solutions).
Concerning the velocity, we impose stress-free conditions, thus

u�m = 0,
d2ru�m

dr2
(1) = 0,

d
dr

(
w�m
r

)
= 0

while on the temperature and concentration we impose respec-
tively no fluctuation and no flux at r = 1, namely

θ�m = 0,
dc�m
dr
= 0.

Further, we need interface conditions at the core-envelope
boundary. These conditions express the continuity of the veloc-
ity, temperature, concentration, fluxes and stress fields. The con-
tinuity of first quantities simply translates as the continuity of

u�m,
du�m
dr
, w�m, θ

�
m, c�m (16)

while the continuity of fluxes and stresses must reflect the
changes in the transport coefficients between the turbulent con-
vective core and the radiative envelope. Continuity of the three
components of stress demands the continuity of

E

(
r

d2u�m
dr2
+ 2

du�m
dr
+ (�(� + 1) − 2)u�m/r

)

E

(
dw�m
dr
− w

�
m

r

)

p�m − 2E
du�m
dr

or E

(
d3u�m
dr3
+

6
r

d2u�m
dr2
+

3(2 − �(� + 1))
r2

du�m
dr

)

while continuity of heat flux and concentration flux impose the
continuity of

ẼT
dθ�m
dr

and Ẽc
dc�m
dr
·

4.2. The shape of the baroclinic flow

We investigate the baroclinic flow which is represented by both
the differential rotation and the associated meridian circulation.
We focus our attention on the influence of the main uncertainties
of the problem, namely the sensitivity to viscous transport and
the height of the µ-barrier.

4.2.1. With no jump in viscosity

We first consider a simple configuration where we set a Brunt-
Väisälä frequency profile with no µ-barrier, no viscosity jump at
core-envelope interface. We thus find a plain baroclinic flow and
can check the agreement with our foregoing theoretical results.
The meridian circulation is shown in Fig. 4 together with the
associated differential rotation. The plot of the angular veloc-
ity shows the typical shape of the thermal wind solution given
by Eq. (7). This shape remains identical if the viscosity is de-
creased (i.e. with lower Ekman or Prandlt numbers). This flow
is essentially azimuthal with faster rotating poles as predicted
above. The meridian circulation is much weaker (see Fig. 5), be-
ing essentiallyO(E). As expected from the above boundary layer
analysis, near the surface the latitudinal component increases
very strongly by a factor E−1/2 (this is an effect of mass con-
servation). A detailed view of the velocity profiles in the Ekman
layer is given in Fig. 6.

To have further information on the baroclinic flow we ex-
amined the case where the Prandtl number is of order unity. In
that case the value of λ is important and we set it to 100 accord-
ing to our typical rotating star. The meridian circulation along
with the radial profiles of the velocity field are shown in Fig. 7.
Obviously, the circulation has much decreased. This is a direct
consequence of the heat Eq. (6b) which imposes a reduction of
radial velocity when heat diffusion decreases; as a consequence,
advection of momentum is less and therefore diffusion of mo-
mentum must decrease, which is obtained by reducing the dif-
ferential rotation as shown in Fig. 7b.

4.2.2. With a viscosity jump at the core-envelope boundary

To look for more realistic models, we now consider the effect
of the viscosity jump at the core-envelope boundary which is
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Fig. 4. Left: the meridional circulation of the baroclinic flow generated by the Brunt-Väisälä frequency profile in Fig. 1b (solid curve) for a fluid
with constant viscosity. Right: the associated differential rotation showing the fast rotating pole and slow equator (solid lines are for positive
contours, dotted lines for negative ones).

Fig. 5. Radial profile at θ = 1rd of the velocity components of the baro-
clinic flow. Note that the vr and vθ have been multiplied by a factor
O(E−1/2)� 1.

brought about by turbulent convection in the core. The convec-
tive core is thus considered as a much more viscous fluid with
negligible stratification (Brunt-Väisälä frequency is set to zero).

The interesting result is that the meridian circulation is
strongly modified, as shown in Fig. 8. This figure shows that
the jump in the mean mechanical properties of the fluids gener-
ates a shear layer parallel to the axis of rotation. Such a layer is
a Stewartson layer, well-known in the dynamics of rotating flu-
ids. The dynamics of these layers is controlled by a delicate bal-
ance between viscous stress, pressure gradient and the Coriolis

Fig. 6. Same as Fig. 5, but with emphasis on the Ekman layer.

acceleration. As shown by Stewartson (1966), such layers are
nested layers whose width scales with ν1/3, ν1/4 or ν2/7. However,
while the properties of such layers are well known in the simple
case of incompressible fluids, they remain unexplored when the
fluid is stably stratified like here.

The interesting point of this feature is that the scale of
the meridian flow is much reduced in one direction; the scale
controlling the shear layer pumping is O(E1/4) if we follow
Stewartson theory. This means that the circulation time is
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Fig. 7. Left: same as Fig. 4a but with P = 1. Right: the associated velocity profiles. Note the squeezed circulation in the thermal layer which width
is ∼0.1, and the reduction of the azimuthal velocity in the bulk of the domain.

Fig. 8. Same as Fig. 4 but the core viscosity is 104 higher than that of
the envelope.

reduced by a factor O(E1/4). Indeed, mass conservation implies
that

∂V⊥
∂x⊥

= −∂V//
∂x//

where V⊥ is the pumping induced by the shear layer and which
should be identified as the meridian flow (see Fig. 9). Since
∂/∂x⊥ ∼ E−1/4 and ∂/∂x// ∼ 1, V// ∼ E−1/4V⊥; hence the ad-
vection time from core to surface is reduced by a factor O(E1/4)
which is quite small as shown below.

Will this dynamical feature resist to the building of µ-barriers
during the evolution of the star? To answer this question, we
computed a model with a µ gradient as shown in Fig. 1b (dashed
line); namely the height of the µ-barrier has been raised such

Circulation Circulation

layer

Shear

Fig. 9. Schematic view of the Stewartson layer.

that N2
µ ∼ N2

T . We assumed that elemental diffusivity is of
the same order of magnitude as the viscosity, i.e. the Schmidt
number ν/Dc is of order unity. Figure 10 shows the result: the
Stewartson layer has disappeared. It is replaced by a meridional
flow within the core.

4.3. Stability

After the computation of the global baroclinic flow, we may
wonder whether it is stable or not. This question is not an easy
one since many instabilities are possible (see Knobloch & Spruit
1982), but we can discuss it qualitatively.

A first class of instabilities are the barotropic ones; they do
not take advantage of the baroclinic state and are basically due to
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Fig. 10. Same as Fig. 8 but with a µ-barrier where N2
µ = N2

T = 100. Note
the disappearance of the Stewartson layer.

Fig. 11. Angular momentum distribution and its derivative. The dotted
lines in ∂Lz/∂θ show regions where the barotropic axisymmetric insta-
bility may develop (solid lines are for positive contours, dotted lines for
negative ones).

the shear. The axisymmetric instability is also known as the cen-
trifugal instability and is controlled by the angular momentum
profile. The Rayleigh criterion, taking into account the stable
stratification, defines the onset of instability as

∂Lz

∂s
< 0 at r = const., ⇐⇒ 1

cos θ
∂Lz

∂θ
< 0

that is, when the angular momentum decreases with the cylindri-
cal radius. The constraint r = const. avoids the stabilizing effect
of the Brunt-Väisälä frequency profile.

For our system the angular momentum of the flow is

Lz = Ωs2 + sVϕ = ΩR2
(
s2 + 2Ro suϕ

)
so that the flow is unstable if

r cos θ + Ro
∑
�

�(� + 1)w�mYm
� < 0.

This formula shows that the Rossby number controls this insta-
bility. As discussed above, this parameter is in the range [0.1,
10] in our reference star. We find that for Ro <∼ 3 the flow is sta-
ble and, as shown in Fig. 11, equatorial regions at destabilized
first when Ro increases. We shall not push further the analysis
since at this point only a detailed analysis would give sensible
results. We just conclude that in view of Fig. 2, we expect such
instability only in equatorial surface layers.

The other barotropic instability is the non-axisymmetric
shear instability. Basically, in a stably stratified fluid it is con-
trolled by the Richardson number, e.g.

Ri =
N2

(dvϕ/dr)2
= Fr−2.

In our case this number appears to scale with the inverse square
of the Froude number which we found of order unity. The large-
scale flow is most likely stable and a rigorous stability anal-
ysis is needed to give precise answers in stellar conditions.
Nevertheless, following Zahn (1993), this flow may still desta-
bilize scales small enough that they are insensitive to the stable
stratification because of the large heat diffusion coefficient. The
instability of small scales might thus provide the rotating radia-
tive zone with some turbulence and hence some turbulent vis-
cosity. Zahn (1993) shows that such turbulent viscosity is within
the range

Recν ≤ νT = �2 dvϕ
dr
≤ κRic

N2

(
dvϕ
dr

)2

where Rec is the critical Reynolds number for shear flow, typ-
ically around 1000, and Ric the critical Richardson number for
stably stratified shear flow, around 0.25. These bounds on the
turbulent viscosity show that the viscosity is increased at least
by a factor Rec and at maximum by a factor O(P−1). This raises
the Ekman number from 10−18 to the range [10−15, 10−12] which
is still very small. Moreover, the Prandtl number is increased by
a factor between Rec and P−1 which means, in the latter case, an
effective Prandtl number of order unity and a λ-number signifi-
cantly larger than unity. The turbulence is likely anisotropic and
the values of the effective Prandtl number depend whether one
considers horizontal or vertical diffusion. An effective Prandtl
number of unity is certainly an upper bound.

Besides these classical instabilities (for fluid flows), there are
also baroclinic instabilities which are specific to this type of flow
driven by the baroclinicity. As discussed by Spruit & Knobloch
(1984), one should separate the true baroclinic instability which
develops because a fluid parcel may move in a direction between
entropy levels and isobars, and diffusive instabilities (Goldreich-
Schubert-Fricke and ABCD) which take advantage of double
diffusion. These instabilities, specific to baroclinic flows, are
rather weak and one question is whether they would persist if
the diffusivities are increased by some turbulence generated by
the barotropic ones. More work is needed to characterize them,
especially in a global approach.

5. Discussion

5.1. Stellar numbers

Our test star is a 3 M� object rotating with a period of one day.
On the ZAMS, its radius is 2.6 R� = 2 × 109 m. The typical
kinematic viscosity of the plasma is ν = 10−3 m2/s yielding an
Ekman number of E ∼ 2× 10−18 which is very small. The corre-
sponding viscous time is Tvisc = R2/ν ∼ 1014 yr. The circulation
time is typically a viscous time:

Tcirc =
R
vr
∼ 1

FrN uϕ
∼ Tvisc

Ro

since Ro ∼ 1. As we discussed above, various instabilities may
trigger turbulence and hence raise the viscosity to turbulent val-
ues. From the typical value of the microscopic Prandtl number,
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namely 10−6, and that of critical Reynolds numbers, ∼103, we
can expect an increase of the Ekman number to 2 × 10−15 →
2 × 10−12 and hence a reduction of the circulation time to
1011 → 108 yr (108 yr is the Kelvin-Helmoltz time of our
model). In the early phase of evolution, when µ-barriers are not
strong enough, this time scale may be further reduced by the
presence of the Stewartson layer. However, this layer is sensitive
to the λ-number, which means sensitive to the Prandtl number.
Thus, if turbulence is strong enough to raise the Prandtl num-
ber to order unity values, the Stewartson layer disappears. If it
is mild enough and increases the viscosity by a factor 103 only,
the Stewartson layer has a thickness O(2 × 10−4) which reduces
the circulation time further by a factor of 5 × 103; thus, mild
turbulence and Stewarson layer may reduce the circulation time
by a factor of 5 × 106 leaving a time scale for partial mixing of
around 107 yr. On the other hand if turbulence is strong, circu-
lation outside the thermal layer, which reaches the core, is ∼P−1

faster thanks to the increased viscosity, but λ−1 slower because
of stratification. However, the λ−1 factor only reduces the advec-
tion time; if turbulence is strong, elements may diffuse just like
momentum and the time scale is TviscP = 108 yr.

Rather than the numbers, the role played by the different hy-
drodynamical processes in controlling the transport of element is
important. These processes may control each other: a mild turbu-
lence being helped by a strong Stewartson layer yields a mixing
time scale not much different from the one derived in the strong
turbulence case. This leaves the possibility that mixing may not
be too sensitive to the hydrodynamical details. In particular, we
do not include angular momentum loss through a stellar wind
(see Zahn 1992); our result shows the possible mixing occuring
in the weak wind limit.

We now examine the differential rotation induced by baro-
clinicity. The scalings give the following relation:

∆Ω

Ω
= 2Ro δΩ

where δΩ = uϕ/s. The numerical solutions show that δΩpole −
δΩeq ∼ 0.5 when P 
 1 and decreases to 0.01=O(λ−1)
when P ∼ 1.

From these values we see that such a model predicts a large
differential rotation when the Prandtl number is small and a
strong reduction of it if some turbulence develops (and behaves
as a Newtonian fluid!).

5.2. Non-linear terms

What is the importance of the non-linear terms that we ne-
glected? They are Ro (u·∇u) and εu·∇θ. NeglectingO(E) terms,
the momentum nonlinear term is just −Ro u2

ϕ/seϕ, i.e. a centrifu-
gal correction to that of the background rotation. We thus expect
a slight modification of the baroclinicity but no qualitatively im-
portant change.

Concerning the heat advection, the weakness of meridional
circulation O(E), plus the O(λ) amplitude of θ, make this non-
linear term O(ελE), thus extremely small and negligible.

Thus nonlinear terms are either very small or do not bring
new physical phenomena in the steady solution. Taking into ac-
count the initial assumption of the Boussinesq approximation,
refining the solution with these terms is unnecessary.

5.3. The Boussinesq approximation

In a more realistic approach, taking into account density vari-
ations of the background, would our results persist? The

Boussinesq approximation is indeed the consequence of two lim-
its: the fluid velocity is small compared to the sound velocity
and the density scale height is large compared to the size of
the container (see Rieutord 1997). The first constraint is easily
met: Mach numbers are small. The second one is not because
the density varies on a scale comparable to the size of the star.
Thus, the simplification of the equation of mass conservation
from ∇ · ρu = 0 into ∇ · u = 0 is inappropriate and quantita-
tively our model should be taken with care. Qualitatively, how-
ever, density variations cannot modify the hydrodynamical fea-
tures like the sign of the differential rotation, the appearance of
Stewartson layer, etc. The use of the momentum ρu instead of u
would solve this problem, but then would be inconsistent with
the neglect of the effects of centrifugal distortion. Thus, even if
the use of the Boussinesq approximation seems exagerated for a
star, it provides an interesting view of its hydrodynamics: it takes
into account all the force fields that control the flows and gives a
physically self-consistent model.

5.4. Conclusions

To end this paper we would like to stress the most interesting
points of this model, namely:

– The determination of the differential rotation in radiative en-
velope as a function of the Brunt-Väisälä frequency profile
and its sensitivity to the amplitude of the turbulent viscosity.

– The demonstration that, when the Brunt-Väisälä frequency
varies on a scale of the order of the radius, baroclinicity gen-
erates a fast rotating pole and slow equator and the opposite
in the case the envelope is convective.

– The determination of the meridian circulation, its shape
and amplitude, its sensitivity to Prandtl number and Brunt-
Väisälä frequency profile.

– The appearance of Stewartson layers induced by the jump in
the mechanical properties of the fluid at the core-envelope
boundary and the sensitivity of this layer to the µ-gradients
or the Prandtl number.

– The richness of the dynamics of these envelopes and the
compensation, as far as mixing is concerned, which may
result from large-scale flows (Stewartson layer) and small-
scale turbulence.

Naturally, such a model cannot pretend to describe actual stars at
face value. It should rather be viewed as a laboratory experiment
aimed at studying some aspects of the stellar dynamics. Its (rel-
ative) simplicity indeed authorizes the study of hydrodynamical
instabilities at global scale through either linear analysis or full
numerical simulations. For instance, one may think to use it to
study dynamo effect in radiative envelope following Braithwaite
(2006) and to study the effects of an additional driving like the
angular momentum loss generated by a wind.

The next step is to compute the same flow in the real,
spheroidal geometry of rapidly rotating stars. Such realistic
models will determine aspects of the dynamics of stellar en-
velopes that are robust and can be studied with our Boussinesq
model. They may also suggest some intermediate (artificial)
models where a baroclinic torque is applied in a spherically sym-
metric stellar model to study the dynamical aspects that are not
sensitive to the true spheroidal shape.
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