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Abstract. The ESTER project aims at building a stellar evolution code in
two dimensions of space for the study of effects of rotation. The numerical
scheme is based on spectral methods with a spherical harmonic decomposi-
tion in the horizontal direction and a Chebyshev polynomial expansion in the
vertical direction. Coordinates adapted to the centrifugally distorted shape
are mapped to spherical coordinates. First tests on rotating polytropes are
presented.

1 Introduction

Rotating stars are more and more focusing the attention of stellar physicists, espe-
cially because of the recent progress of observational technics like interferometry
or high precision photometry. The best illustrative example is certainly the nearby
star Altair whose rotation, diameter, etc. have been determined by interferometry
(Domiciano de Souza et al. 2005, Peterson et al. 2005) and which has also been
identified as an oscillating δ-Scuti star (Buzasi et al. 2005).

There is therefore much need to develop stellar evolution codes which deal with
rotation and all the associated hydrodynamical effects in an accurate way. The
challenge is to understand:

• The structure of a rapidly rotating star, the flows in radiative regions and
their effects on surface abundances,

• the mechanism of angular momentum loss,

• the effects of rotation on stellar oscillations,

• the relation between rotation and magnetic activity.
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Hence to be able to understand the effects of rotation at all evolutionary time
scales in the life of a star.

Work on two-dimensional stellar models started with James (1964) with the
computation of the structure of rotating polytropes. More physics has then been
incorporated into the models but since 25 years 2D-models make no real progress
because the physics is still essentially one dimensional: a barotropic approximation
is used, and only Poisson’s equation is solved in two dimensions. Most recent works
are those of Roxburgh (2004) and Jackson et al. (2005). All these models neglect
the dynamics and none have reached the ’evolution stage’.

The project ESTER (Evolution STEllaire en Rotation) takes up the challenge
of computing the structure of a rapidly rotating star with a self-consistent descrip-
tion of the hydrodynamics.

2 A first step: the bipolytrope

As a first step we considered a simple model of a star, namely the bipolytrope.
In this model the radiative and convective zones are describred by polytropic
equations. Typically, we use a n = 3/2-polytrope for the convective region and a
n = 3-polytrope for the radiative one.

In order to derive the set of equations to be solved, it is useful to recall some
properties of a one dimensional composite polytrope (see Chandrasekhar 1939).

The continuity of pressure (mechanical equilibrium) together with the conti-
nuity of temperature (thermal equilibrium) imply the continuity of density. From
the expression of the “enthalpy” h = (n+ 1)P/ρ, we see that this quantity is not
continuous at the interface. From the equation of hydrostatic,

(n+ 1)P/ρ+ φ−
1

2
Ω2s2 = Cte

the constants are not necessarily the same in each domain (see below). We also
note that φ, the gravitational potential, is not constant at the interface but φeff =
φ − 1

2
Ω2s2 is constant and discontinuous. In the first (central) domain we write

ρ = Hn1 with

H = 1− (φ− φ0) +
1

2
Ω2s2

φ0 is the central value of φ, s = r sin θ and the density is scaled by its central
value. In the second domain, the enthalpy has the same form, but the constant is
not unity:

H = C − (φ− φ0) +
1

2
Ω2s2 = C − φeff = (n2 + 1)K2ρ

γ2−1

Since P = Kργ , pressure continuity implies K2 = K1ρ
γ1−γ2

1 so that

C = φeff(1) + (n2 + 1)K1ρ
γ1−1
1
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Scaling potentials with h0 = (n1 + 1)K1ρ
γ1−1
0 , we find

ρ = ρ1

(

1 +

(

n1 + 1

n2 + 1

)

H−1
1 (φeff(1)− φeff)

)n2

(2.1)

The index 1 represents the surface where the polytropic index changes. Setting

H< = 1− (φ − φ0) +
1

2
Ω2s2, H> = 1 +

(

n1 + 1

n2 + 1

)

H−1
1 (φeff(1)− φeff)

the equations to be solved are:

∆φ = ΛHn1

< , Λ =
4πGρ0R

2

h0

(2.2)

in the inner domain and
∆φ = Λρ1H

n2

> (2.3)

in the outer domain; ρ1 is the density at the interface scaled by the central density.

We note that φeff(1) = 1− ρ
1/n1

1 = 1−H1 so that

H> = 1 +

(

n1 + 1

n2 + 1

)

H−1
1

(

1−H1 − Λ(Φ− Φ0) +
1

2
Ωs2

)

where we set φ = ΛΦ. Parameters of the configuration are n1, n2 and ρ1. Λ must
be such that the density vanishes at the equator. From the expression of H>, we
find that

Λ =
H1

Φeq − Φ0

(

n2 − n1

n1 + 1

)

+
1 + 1

2
Ω2

Φeq − Φ0

=
Ω2

2(Φeq − Φpole)

Note that in a non-rotating polytrope with n1 = n2, the radius of the polytrope
is ξ1 =

√
Λ with classical notations.

3 Results

To solve (2.2) and (2.3) we use the method developed by Bonazzola et al. (1998).
Briefly, the computational domain is divided into two domains: the inner one
contains the star, the outer one the vacuum. The outer boundary is a sphere
where boundary conditions on the potential can be applied. Poisson’s equation is
solved iterativly following Bonazzola et al. (1998).

The result is shown in figure 1, where the density distribution and the gravita-
tional potential have been plotted. The dashed line on the graph shows the surface
of the star. The configuration which has been computed mimics a young solar type
star with an outer convective envelope represented by a n=3/2-polytrope and a
radiative core by a n=3 polytrope. The density at the interface is at ρ1 = 0.677.
In figure 2 we plotted the spectra of Φ in the vertical and horizontal directions.
Note the fast convergences. In the domain with matter the vertical convergence
is not so fast because of the jump in polytropic index. Spectral convergence can
be recovered if separating the two parts of the star into two separate domains.
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Fig. 1. A bipolytrope in rapid rotation (core n=3, envelope n=3/2). Left is gravitational

potential; right is density. Ratio of equatorial to polar radius is 1.27 .

Fig. 2. Spectra in Chebyshev polynomial (left) and in spherical harmonics (right) and

in inner (1) and outer (2) domains. Note the fast convergence except in the vertical

direction in the star because of polytropic index jump.
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