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Abstract. We carry out an investigation of axisymmetric shear Alfvén waves in a spherical layer of an incompressible resistive
fluid when a strong dipolar magnetic field is applied. A decomposition on the spherical harmonics base is used to compute
the eigenmodes of the system. Numerical results show that the least-damped Alfvénic modes naturally concentrate near the
magnetic polar axis. These modes also show internal shear/magnetic layers associated with resonant field lines. This model is
useful when modelling planetary cores sustaining a dynamo, magnetic neutron stars or to the magnetic layer of roAp stars. In
this latter case, it shows that shear Alfvén waves provide a good instance of non-perturbative effects due to the strong magnetic
field of such stars.
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1. Introduction

Asteroseismological observations of roAp stars over the last
twenty years (Kurtz 1990) have raised the question of the un-
derstanding of the oscillations in a star when a global and per-
manent magnetic field is present. Non-radial oscillations of
roAp stars have periods between 4 and 16 min. The observed
photometric variations indicate that they are likely high-order,
low-degree p-modes, perturbed by some physical process re-
lated to the presence of a permanent magnetic field, which is
known to be mainly dipolar at the surface of these stars. One
of the arguments in favor of this interpretation is that the oscil-
lations can be interpreted with the so-called “oblique rotator”
model of Kurtz (1990) which considers the oscillations as es-
sentially � = 1 modes aligned with the dipolar magnetic field
of the star. Recently, Bigot & Dziembowski (2002) noticed that
this alignment need not be strict and that the pulsation axis lies
somewhere between the rotation and magnetic axis.

Balmforth et al. (2001) suggested that oscillations were
likely to be excited near the poles of the star rather than near
the equator because in the first case, the magnetic field is al-
most vertical and inhibits convection (in a frozen field pic-
ture), allowing some κ-mechanism excitation, whereas in the
second case, magnetic fields lines are nearly horizontal, per-
mitting turbulent convective motions and thus preventing any
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κ-mechanism. Although this kind of separated treatment be-
tween the magnetic pole and the equator is sufficient to recover
some properties of the roAp stars, Balmforth et al. (2001) ac-
knowledge that their model has some drawbacks, mainly their
neglect of the direct contribution of the Lorentz force to the
momentum equation.

Other previous studies by Shibahashi (1983) and Cox
(1984) made a more satisfactory treatment of the magnetic
field by taking it into account explicitly in the equations. They
discovered that convective overstable magneto-gravity modes
could be excited at the poles of the star rather than at the equa-
tor and found that the oscillation periods of their model were
comparable to those observed in roAp stars. However, as they
pointed out, they only made a local analysis which is not suf-
ficient to describe the probable global nature of roAp oscilla-
tions.

As Biront et al. (1982), Roberts & Soward (1983) and
Campbell & Papaloizou (1986) explained, the study of oscilla-
tions in presence of a magnetic field is a difficult mathematical
problem, since magnetic fields can be treated as small perturba-
tions in the interiors of stars but give a major contribution to the
pressure in the atmospheres, where regular perturbative meth-
ods consequently break down. Dziembowski & Goode (1996)
and Bigot et al. (2000), following up the work of Roberts &
Soward (1983), calculated the shift of p-modes frequencies in-
duced by the presence of a strong dipolar magnetic field in
a boundary layer approximation. They found that these shifts
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were significant, supporting the idea that the field plays an im-
portant role in the mode selection. However, their predictions
do not match the observations.

The inferences that we draw from all these studies are of
two types: first, they show that many complex processes may
explain the observed anisotropy in the oscillations, but that
none of them rules the others out. Second, they emphasize the
fact that the geometry of the magnetic field plays an essential
role in the excitation mechanism of the oscillations in mag-
netic stars. These two remarks let us think that a general the-
ory of oscillations in magnetic stars including compressibility,
stratification, elemental diffusion and radiative transfer is out
of reach at the moment. We believe that simpler systems need
to be considered in order to progress in the understanding of
these astrophysical objects.

For this purpose, we consider in this paper an outrageously
simplified star made of an incompressible conducting fluid fill-
ing a spherical shell bathed by a dipolar magnetic field. Thus
doing we will be able to concentrate on the properties of the
global axisymmetric oscillations of such a system, extending
in passing the work of Malkus (1967) or Friedlander (1987,
1989) who studied similar systems but with toroidal fields.

Despite its apparent simplicity, this system has many in-
teresting features. First, it is a rather realistic representation of
planetary cores sustaining magnetic fields like the ones of the
Earth or of the giant planets. In such object density variations
are much less important than in stars and the dipolar field is
a main component. Other objects like neutron stars also need
models in which a strong dipolar magnetic field is taken into
account, although in this case Alfvén waves should be replaced
by cyclotron-vortex waves (Mendell 1998).

Considering roAp stars, it is clear that we cannot identify
shear (solenoidal) Alfvénic modes with the observed pulsa-
tions of such stars, which correspond to photometric fluctua-
tions. However, we expect that such waves will be important in
more realistic models of these stars. Indeed, if we consider a
thin spherical layer like the atmosphere of the star, bathed by a
dipolar magnetic field with B ∼ 1 kG, ρ ∼ 10−6 g/cm3 and a
thickness of 1000 km, the period of Alfvén modes is P ∼ 440 s,
quite comparable to the actual frequencies of roAp stars.

Our system may rather be thought as a preliminary model
of the magnetic layer introduced by Roberts & Soward (1983)
which is essential in previous approaches of the oscillations of
these stars (Dziembowski & Goode 1996; Bigot et al. 2000). In
these models, the dynamics inside the layer is strongly simpli-
fied so as to provide the interior dynamics with tractable bound-
ary conditions. Our system will therefore shed some light on
the properties of such layers.

As will be clear below, axisymmetric modes are split into
two families: toroidal and poloidal modes. As a first step we
will only consider poloidal modes for they couple more eas-
ily with acoustic or gravity modes; we surmise that because
of these coupling, they can influence the observable modes of
magnetic stars.

In the following, we shall first describe the set of equations
verified by the perturbations and the numerical technics used to
solve them (Sect. 2). Next, the results obtained for axisymmet-
ric poloidal modes are detailed considering the case of standing

(Sect. 3) and propagating modes (Sect. 4). A discussion con-
cludes the paper.

2. Magnetohydrodynamic waves in a spherical
conducting shell

2.1. Model

Since magnetic stars exhibit a permanent and roughly dipo-
lar surface magnetic field, we consider a star with an infinitely
electrically conducting core surrounded by a spherical layer of
fluid with aspect ratio η, electrical conductivity σo and kine-
matic viscosity ν. The core is supposed to be the source of a
permanent magnetic dipole covering the whole layer. Note that
such a partition of the star is necessary in order to avoid the
problem of the definition of the magnetic field in the core of the
star, the dipole field being singular at the centre. The density ρo

of the fluid layer is taken to be constant; we thus eliminate phe-
nomena related to compressibility such as p-modes (rapid and
slow magnetic waves, when a magnetic field is applied). This
assumption also removes effects of stratification. Finally, we
neglect rotation effects which are known to split the frequen-
cies of oscillation in roAp stars. Classical MHD approxima-
tions are used, that is fluid particles have sizes far greater than
the typical Debye length of the plasma and all the motions are
assumed to be non-relativistic, so that the electric displacement
can be neglected in Ampère’s law.

2.2. Governing equations

We now turn to the mathematical description of the model. The
permanent magnetic field (Mc Tavish 2000) is

Bo = Bo

(
cos θ

r3
er +

sin θ
2r3

eθ

)
(1)

using the spherical coordinate base (er, eθ, eϕ). This field is ir-
rotationnal, so that equilibrium currents vanish in this case. As
it was assumed that the fluid is incompressible,

∇ · u = 0. (2)

Introducing the Lorentz force µo
−1(∇ × B) × B, we write the

momentum equation for an incompressible fluid as

∂u

∂t
+ u · ∇u = − 1

ρo
∇P +

1
ρoµo

(∇ × B) × B + ν∆ u (3)

where u is the velocity field and B is the total magnetic field
(dipole field plus perturbations); µo is the magnetical perme-
ability of vacuum.

For a conducting fluid, Ohm’s law together with Ampère’s
law yield

∂B
∂t
= ∇ × (u × B) + νm ∆ B (4)

where νm = (σo µo)−1 is the magnetic diffusivity. Conservation
of the magnetic flux states that

∇ · B = 0. (5)



F. Rincon & M. Rieutord: Shear Alfvén waves in magnetic stars 665

Six boundary conditions are required. On the inner boundary
r = ηR (η < 1), the magnetic field perturbations have only tan-
gent components because the core is assumed to be infinitely
conducting. On the surface, the magnetic field matches the ex-
ternal field which is potential, as there are no currents in the
external vacuum. Note that on both boundaries surface currents
can occur. As for the velocity field, we choose stress-free con-
ditions (e.g. Chandrasekhar 1961, Chap. 6) on both inner and
outer boundaries of the spherical shell

vr(r = ηR, θ) = vr(r = R, θ) = 0

∂2(rvr)
∂r2

(r = ηR, θ) =
∂2(rvr)
∂r2

(r = R, θ) = 0.
(6)

A non-dimensional form of the previous equations can be ob-
tained by defining the parameters

VA =
Bo√
ρo µo

, E =
ν

R VA
, Em =

νm
R VA

(7)

where VA is the Alfvén speed, E is the inverse of a kinetic
Reynolds number and Em the inverse of the magnetic Reynolds
number; for simplicity we will refer to these numbers simply
as “diffusivity numbers”. We note that 1/

√
EEm is just the

Hartmann number. In roAp stars, typical values for the various
physical quantities are

Bo ∼ 1 kG, ρo ∼ 2.5 kg m−3, R ∼ 1.5 R�,

σo ∼ 6.5 × 10−4 T 3/2 ohm−1 m−1, T ∼ 105 K
(8)

thus VA ∼ 60 m s−1, Em ∼ 10−8, E ∼ 10−13.
We assume that the background mean flow is zero and study

infinitesimal perturbations of the equilibrium state. A time de-
pendence of the form eλt is assumed, where λ = iω+ τ (τ is the
damping rate of the solution, ω is the frequency and i2 = −1),
and non-dimensional variables are used:

r → R r

u → VA u(r) eλt

B → BoB(r) + Bo b(r) eλt (9)

ρ → ρo

P → Po(r) + Po p(r) eλt

where b(r), u(r) and p(r) are now first order adimensional
quantities. Linearization of Eq. (2)–(5) results in the following
MHD set of differential equations

λ ∇ × u = ∇ × ((∇ × b) × B) + E ∇ × ∆ u
λ b = ∇ × (u × B) + Em ∆ b
∇ · u = 0
∇ · b = 0

 (10)

where the curl of the momentum equation has been taken in or-
der to eliminate the pressure term, and the property ∇ × B = 0
has also been used.

2.3. Local analysis

For later use, we first recall the dispersion relation of Alfvén
waves in a uniform field (Chandrasekhar 1961). From Eqs. (2)
and (5), we find that

−(λ − νmk2)(λ − νk2) = k2V2
A cos2 θ (11)

where θ is the angle between the wave vector k and the per-
manent magnetic field B. When there is no ohmic and viscous
dissipation, Eq. (11) reduces to

ω

k
= VA cos θ. (12)

On the other hand, when non-adiabaticity is taken into account,
the damping rate is related to the diffusivity numbers in the
following way:

τ = −k2 (Em + E)
2

· (13)

In roAp stars where Em � E, the damping of the oscillations
is mainly ohmic. In the general case, kinetic and magnetic dif-
fusion play a rather symmetric role.

2.4. Harmonic projection and symmetries

To solve the eigenvalue problem expressed by Eq. (10), we
project the set of equations on the spherical harmonics in a sim-
ilar way as in Rieutord (1987, 1991). The velocity and magnetic
perturbated fields are expanded as follows:

u ≡
+∞∑
�=0

+�∑
m=−�

u�mRm
� + v

�
mSm
� + w

�
mTm
�

b ≡
+∞∑
�=0

+�∑
m=−�

a�mRm
� + b�mSm

� + c�mTm
� .

(14)

If Ym
� (θ, ϕ) denotes the normalized spherical harmonic, then

Rm
� = Ym

� er, Sm
� = r∇Ym

� and Tm
� = r∇ × Rm

� (15)

where the poloidal parts of the velocity (resp. magnetic) fields
(u�m, v

�
m) (resp. (a�m, b

�
m)) and its toroidal part w�m (resp. c�m) have

been introduced. Equation (10) formally reduces to the gener-
alized eigenvalue problem:

Ax = λBx (16)

where A and B are differential operators with respect to the r
variable only (their expression is given in Appendix A), and

xλm(r) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

...
u�m(r)
w�m(r)
a�m(r)
c�m(r)
u�+1

m (r)
w�+1

m (r)
a�+1

m (r)
c�+1

m (r)
...

(17)
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is an eigenvector (� is running from m to +∞) associated with
the eigenvalue λ solution of (16). As an axisymmetric back-
ground has been chosen, eigenvectors are given by a single m
value (this is a two-dimensional problem). The v�m, b

�
m com-

ponents are omitted because they can be deduced straightfor-
wardly from the others variables by using the incompressibility
condition and magnetic flux conservation.

Numerically, we discretize the A and B operators radially
on a Gauss-Lobatto grid given by the roots of the Chebyshev
polynomial of order Nr, and make a truncation of the problem
at a given harmonical degree � = L, so that we consider matri-
ces of order Nr×L (see Rieutord & Valdettaro 1997, for more
details). We compute the solutions of the resulting eigenvalue
problem with the following tools:

1. a QZ algorithm giving all the eigenvalues λ but poor esti-
mations of the eigenvectors;

2. an iterative algorithm for the determination of small sub-
set of modes (λ, xλm) around a given shift in the complex
plane.

Couplings between the different components of the fields are
introduced by the dipolar field, which breaks the spherical sym-
metry of the shell. These coupling may be written symbolically

D1(u�m) = D2(a�+1
m ) + D3(a�−1

m ) + imD4(c�m)
F1(w�m) = F2(c�+1

m ) + F3(c�−1
m ) + imF4(a�m)

(18)

where Di and Fi are some discretized differential operators.
In the axisymmetric case m = 0, eigenvectors look like

xλ = (u1
0, a

2
0, · · · , u2�−1

0 , a2�
0 , · · ·) odd poloidal

xλ = (a1
0, u

2
0, · · · , a2�−1

0 , u2�
0 , · · ·) even poloidal

xλ = (w1
0, c

2
0, · · · , w2�−1

0 , c2�
0 , · · ·) odd toroidal

xλ = (c1
0, w

2
0, · · · , c2�−1

0 , w2�
0 , · · ·) even toroidal

(19)

in which even (+) or odd (−) parity specifies whether the ve-
locity field is symmetric or antisymmetric with respect to the
equator. Indeed, odd solutions for the magnetic field are even
for the velocity field and vice versa. Therefore, each axisym-
metric mode has a well defined parity±1. This is a simple prop-
erty related to the dipolar background, already emphasized by
Dziembowski & Goode (1996). An other important feature of
m = 0 modes is that the poloidal and toroidal components of
both u and b are not coupled.

In the non-axisymmetric case, eigenvectors take the follow-
ing form:

xλm(r) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

...
u�m(r)
w�+1

m (r)
c�m(r)
a�+1

m (r)
u�+2

m (r)
w�+3

m (r)
c�+2

m (r)
a�+3

m (r)
...

(20)

In this latter case it is no longer possible to label the whole
mode with a parity±1. Instead, the toroidal part of the magnetic

field has the same parity as the poloidal part of the velocity field
and vice versa.

We therefore see that finding a single mode requires the
solution of an infinite set of differential equations as a con-
sequence of the coupling introduced by the dipolar field. Of
course, the numerical solution needs the system to be truncated
at a given harmonic, say L; however, when solutions are con-
verged, the neglected harmonics only represent an exponen-
tially small error compared to the true solution. The resolu-
tion needed to achieve convergence depends, as we shall see,
on diffusion coefficients which control the size of small-scale
structures of the modes (boundary and internal layers). It turns
out that the actual stellar values are out of reach numerically;
nevertheless, the accessible range of parameters remains suffi-
ciently large to be helpful at deciphering the mode properties.
Typically, we could compute modes with fair confidence down
to E ∼ Em ∼ 10−6 using 1700 spherical harmonics and 500 ra-
dial grid points.

2.5. Axisymmetric poloidal modes

From the foregoing discussion we see that three sub-problems
emerge: the one of axisymmetric poloidal perturbations, the
one of axisymmetric toroidal perturbations and the one of non-
axisymmetric perturbations. Because of the complexity of their
solutions, they need to be considered separately. As already
pointed in the introduction, we shall focus here on the first
one. This of course does not mean that other types of modes
do not play any part. From the numerical point of view, ax-
isymmetric poloidal modes are twice less demanding than their
non-axisymmetric counterparts which gives more freedom in
the parameter choices.

3. Diffusion modes

Poloidal solutions are themselves split into two classes: decay-
ing diffusion modes (ω = 0, τ � 0) and oscillating modes
(non-vanishing ω and τ). We first investigate the properties of
diffusion modes.

3.1. Mode structure

As can be seen in Fig. 1, ω = 0 modes are strongly featured by
the background magnetic field. In Fig. 2 we compare diffusion
modes of opposite parity. We see that symmetric modes for
the magnetic field variable (0−) show an empty zone near the
equator of the star for both electric current and magnectic field,
which is obviously not the case for antisymmetric modes (0+).
It is worth noticing that this empty zone can only be mapped
with the internal field lines of the magnetic dipole.

As τ is necessarily 0 when there is no dissipation, we call
these modes diffusion modes because they can only be found
when the resistivity does not vanish. Furthermore, a numerical
investigation (Fig. 3) shows that the damping rate of a given
mode (of a given spatial periodicity) is proportional to Em; we
also find that the velocity field is O(Em) with respect to the
electric current, and does not depend on E.
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Fig. 1. Meridional section of a shell with aspect ratio η = 0.35, for two stationary odd modes with respect to the magnetic field. For each mode,
we plot the magnetic energy b2 on a log color scale on the right quadrant, and the associated ohmic dissipation (∇ × b)2 on the left quadrant.
The damping rate obviously increases with the order of the modes. The diffusivity numbers are Em = 10−4 and E = 10−13. The resolution for
the radial grid is Nr points and we used L spherical harmonics.

Fig. 2. Comparison between the distribution of magnetic energy and dissipation over the shell for even (left) and odd (right) modes with respect
to the magnetic field (same parameters as in Fig. 1). The perturbations vanish for even modes in the equatorial zone, which is mapped by
internal magnectic field lines.

3.2. Interpretation

As shown by Figs. 1 and 2, the structure of the diffusion modes
is closely related to the field lines of the dipole field. This
is quite natural if we consider the dispersion relation (12) of
Alfvén waves: it states that the pulsation of the oscillations is
equal to the Alfvén velocity multiplied by the cosine of the
angle between the wave vector and the magnetic field. When
ω = 0, the wave vector is orthogonal to the field lines. Leaving
aside local analysis and using the fact that the observed eigen-
modes are highly spatially periodic, we make a global analysis
of the equations using WKB theory (see Bender & Orzag 1978
for an extensive description of WKB methods). Practically, this
means that the variations of the permanent magnetic field occur
on a far larger length scale than those of the perturbations and
therefore we will neglect the former. Using this assumption,
Eq. (10) can be rewritten in terms of electric current j = ∇ × b
and vorticityΩ = ∇ × u as

λ Ω = (B · ∇) j + E ∆Ω
λ j = (B · ∇)Ω + Em ∆ j. (21)

This set of equations is completely symmetric for the magnetic
and kinematic variables, which seems to be quite surprising if
we look at diffusion modes, for which the velocity field per-
turbations are small compared to the magnetic field ones. In
fact, the difference comes from the boundary conditions met
by Ω and j. When the curvature of the spherical coordinates
is neglected, stress-free conditions on the velocity field are

Fig. 3. Evolution of the damping rate of four diffusion eigenmodes
with the magnetic diffusivity (E has been fixed to 10−3 but τ does not
depend on it for these modes). The aspect ratio is η = 0.35 and a
resolution of L = 400 and Nr = 100 has been used.

equivalent toΩ = 0 on the boundaries, whereas surface electric
currents can occur on the inner and outer spheres.
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Combining equations of system (21) and using λ = τ for
diffusion modes, the following relations are obtained in the
WKB approximation:

τ2 Ω = (B · ∇)2Ω + τ(E + Em)∆Ω − EEm∆∆Ω

τ2 j = (B · ∇)2 j + τ(E + Em)∆ j − EEm∆∆ j. (22)

We assume thatΩ, j, and τ can be expanded in series involving
powers of Em and E:

Ω = Ωo + f1(E, Em)Ω1 + · · · + fn(E, Em)Ωn

j = jo + f1(E, Em) j1 + · · · + fn(E, Em) jn (23)

τ = f1(E, Em)τ1 + · · · + fn(E, Em)τn

where the fn are functions of the diffusivity numbers at a given
power n only (τo = 0 results from the fact that there is no
damping in absence of dissipation processes). Using order of
magnitudes in powers of E and Em, Eq. (21) result in

(B · ∇)Ωo = 0
(B · ∇) jo = 0

(24)

at zeroth order; hence, zeroth order variables are functions of
the field line on which they are calculated only.

We introduce dipolar coordinates µ and ν (Radoski 1967;
Cummings & O’Sullivan 1969) to map a meridional section of
the star:

µ =
cos θ

r2
, ν =

sin θ√
r
· (25)

Using these coordinates, a new orthogonal set of base vectors
can be defined, one with µ that is tangent to the field lines and
one with ν orthogonal to the field lines. With these new vari-
ables, Eq. (24) states that the field lines indexed by ν form
a web of characteristics. As boundary conditions on Ω are
Ω(r = η) = Ω(r = 1) = 0 whatever θ (and therefore what-
ever ν), Ωo = 0 all over the star, as the boundary conditions
propagate along the characteristics. Note that the situation is
quite different for the electric current jo, which does not ver-
ify such boundary conditions. Therefore j is at least one order
larger than Ω in terms of powers of the diffusivity numbers, as
the numerical results show.

The empty zone in Fig. 2 can be understood in the same
way. For axisymmetric magnetic poloidal even modes, j is
purely toroidal and vanishes in the equatorial plane because
of the symmetry condition on b. According to Eq. (24) this
property propagates along the field lines (which are in this case
internal field lines, i.e. field lines that intersect the equatorial
plane inside the shell), so that there can be no currents and
magnetic field in the whole equatorial zone mapped by inter-
nal field lines.

It is difficult to tell more about this kind of modes. Despite
their apparent simplicity, no analytic solution could be found.
The reason lies, as expected, in the probable absence of any
suitable coordinate system which allows the separation of vari-
ables. For instance, we observe that in the diffusionless case j
obeys

( j · ∇)B = (B · ∇) j. (26)

The general solution for this equation is

j = jeϕ = H(ν)r3/2eϕ (27)

where H(ν) is an undetermined function; despite the fact that
the dependence of j with r3/2 is conspicuous numerically,
no differential equation can be obtained for H only because
∆(H(ν)r3/2) is not separable.

4. Oscillatory modes

We now turn to the most interesting modes, namely oscillatory
modes, as they may be related to the observed periodic oscilla-
tions of roAp stars.

4.1. The eigenvalue spectrum

We first consider the properties of eigenvalues (i.e. eigenfre-
quencies and damping rates) when the parameters are varied.
In Fig. 4 we plot the distribution of eigenvalues in the com-
plex plane for E = 10−13, Em = 10−4, η = 0.35. The regular
distribution which we observe shows that each eigenvalue is
associated with an eigenfunction whose structure is dominated
by non-diffusive effects. The regular spacing indeed shows that
no small-scale effects control the energy containing features;
the opposite situation occurs for instance with inertial modes
(modes sustained by Coriolis force in rotating fluids see e.g.
Rieutord et al. 2001).

As expected for a two dimensional problem, eigenvalues
are determined by two quantum numbers. Quite strikingly, the
frequencies seem to depend only on one quantum number.
The damping rates vanish when diffusion effects vanish: as
shown in Fig. 5, the damping rates are roughly proportional
to max(E, Em); actually, the convergence to the adiabatic fre-
quency follows the same law.

The vanishing of the real part of the eigenfrequencies in the
adiabatic limit raises the possibility of a singular behaviour of
the frequency spectrum in this limit. Indeed, either the eigen-
values of a given horizontal branch all collapse at the same
frequency which are thus infinitely degenerate or they densely
cover the frequency axis yielding a continuous spectrum; a
third possibility is that eigenvalues all disappear if eigenfunc-
tions lose their square integrability. As will be shown below, the
existence of internal boundary layers make the adiabatic limit
singular but the exact nature of the singularity is still an open
question.

A final comment in Fig. 4 concerns the line ω(τ) followed
by least-damped modes; it is the expression of the dispersion
relation of Alfvén waves since the damping rates τ roughly
scales with the square of the wavenumber.

4.2. Associated eigenfunctions

The foregoing properties of the eigenvalues may let us think
that the eigenmode structure may be computed with a sim-
ple adiabatic model, just like acoustic or gravity modes in a
spherical star. The situation is in fact more complex but as we
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Fig. 4. Spectrum of the eigenvalues in the complex plane for a poloidal
axisymmetric configuration with η = 0.35, Em = 10−4, E = 10−13. The
bottom-left region of the plane is empty because the resolution needed
is too large for the calculator, but eigenvalues should be found in this
zone. On the contrary, no eigenvalue is found in the top-right region
as a consequence of the dispersion relation between the pulsation and
the wavenumber (or damping rate).

Fig. 5. Dependence of the damping rate and difference between the
real and inviscid eigenfrequencies with respect to Em when E = 10−10.
We see that the damping rate quite closely follows the linear law in this
range of values.

shall see modes can be split into their adiabatic part and non-
adiabatic complement. We first analyse the adiabatic part which
is the main component.

4.2.1. Adiabatic features

First, as we noted, eigenfrequencies seem to depend only on
one quantum number. A look at the actual eigenmodes explains
such a situation. As shown in Fig. 6 modes of similar frequency
but different damping rates are characterized by different num-
ber of nodes in the direction perpendicular to the field lines.

On the other hand, modes of different frequency possess a dif-
ferent number of nodes in the field lines direction (see Fig. 7).
Recalling that in local analysis

ω = kxBx + kzBz (28)

it is obvious that the variation of ω when kx is incremented
(kz remains constant) is far smaller than the variation of ω
when kz is changed at constant kx, because Bz � Bx near the
pole where the eigenmodes are found. Therefore the dipolar
field is responsible for the existence of Alfvén waves in both
directions and the ratio of the intensity of the field in the two
directions is responsible for the quasi-degeneracy of the eigen-
frequencies with respect to the horizontal wavenumber.

To further illustrate the weak dependence of eigenfunc-
tions on the horizontal (compared to vertical) structure of the
modes, we consider the following simplified model describing
polar regions: a horizontal perfectly conducting inviscid fluid
layer is bathed by a vertical magnetic field whose strength de-
creases with 1/z3 (we neglect the horizontal component of the
field); not surprisingly the layer lies between z = η and z = 1.
Moreover, we consider the high frequency limit and thus make
a WKB analysis. Neglecting diffusivities, we find that velocity
and magnetic field perturbations must verify:

iωb = B(z)
∂u

∂z
(29)

and

iωu = −∇p + j × B. (30)

We further simplify this system, considering perturbations u =
v(z)ex and b = b(z)ex, where ex is the unit vector along the x-
axis. From the curl of Eq. (30) and the use of Eq. (29), we find
that

d3v

dz3
+ ω2z6 dv

dz
= 0

which can be solved at zeroth order (in 1/ω) by

v(z) = A exp

(
iωz4

4

)
+ B exp

(
− iωz4

4

)
· (31)

The behaviour of the solution as exp(iωz4/4) is not suprising
and consistent with the non-regular spacing of the nodes of the
eigenfunctions (see Fig. 7). Boundary conditions for v(z) are
simply that v = 0 at z = η (no motion of the field lines is
authorized as they are frozen in a solid). At z = 1, which is
the interface between the fluid and the vacuum, no boundary
condition is required, since the motion is parallel to the bound-
ary, b needs just be continuous. Thus, a whole class of velocity
fields may solve the problem. However, we are more particu-
larly interested in those which verify v′(z) = 0 at z = 1 like in
our original problem where stress-free boundary conditions are
used. Selecting these velocity fields yields the following quan-
tization of the frequencies:

ωn =
2(2n + 1)π

1 − η4
· (32)
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Fig. 6. Magnetic dissipation and magnetic energy in a meridional plane for four eigenmodes around frequency 18. They all share the same
number of nodes along the field lines but have different wavenumbers in the orthogonal direction. We used Em = 10−5, E = 10−5 and η = 0.35,
L = 1000 spherical harmonics and 300 radial grid points. Note that the resonant field lines are slightly visible on the magnetic dissipation.

Fig. 7. Meridional distribution of electric current (left) and magnetic energy (right) for four given eigenmodes with Em = 10−4, E = 10−13 and
η = 0.35. Each mode has a different radial periodicity and pulsation. The main feature of these waves is the localization of energy near the
dipolar axis.

As shown by Table 1, these frequencies are surprisingly close
to those given by numerical solutions. Moreover, the frequency
spacing ∆ω = ωn+1 − ωn = 4π/(1 − η4) is in very good agree-
ment with the numerical results as shown in Fig. 8.

Another striking feature of the axisymmetric Alfvén modes
is their localization on the polar caps. As the preceding results

show, the dynamics of these modes is mostly adiabatic and
therefore this other property is also contained in the dissipa-
tionless equations. However, even thus simplified the problem
remains cumbersome. We found more illuminating to consider
a toy problem where the characteristic features of the back-
ground magnetic field are partly simplified. Thus, as above,
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Table 1. Comparison between the simple WKB model and the ac-
tual frequencies issued from the resolution of the complete sys-
tem Eq. (10). the parameters used for the numerical solutions are
η = 0.35, E = 10−10, Em = 10−5 using 1000 spherical harmonics
and 300 radial grid points.

n ωn ωnum

1 19.14 18.00

2 31.89 30.82

3 44.65 43.50

4 57.41 56.14

5 70.17 68.77

6 82.93 81.40

7 95.68 94.02

8 108.4 106.7

9 121.2 119.3

we consider a horizontal inviscid and perfectly conducting
fluid layer bathed by a vertical magnetic field whose inten-
sity now depends on the horizontal coordinate, i.e. we assume
B = B(x)ez. Within such a background we examine the neces-
sary conditions for the existence of Alfvén modes.

To mimic poloidal oscillations, we need to take perturba-
tions of the velocity and magnetic fields which are of the form
u = v(x, z)ex, b = b(x, z)ex. A toroidal field would be along the
y-axis. As shown in appendix, the perturbations obey

∂2vx

∂x2
+ 2k2

‖
B′

B
(
k2
‖ − ω

2

B2

) ∂vx
∂x
− k2
‖ vx = 0 (33)

where primes denote x-derivatives. This equation also shows
that a dispersion relation like (12) is no longer valid in a non-
uniform magnetic field.

Equation (33) shows that eigenmodes are trapped around a
maximum of B(x). Let us indeed consider a magnetic field of
the form B = exp(−x2). in this case

∂2vx

∂x2
−

4k2
‖ x(

k2
‖ − ω2 exp(2x2)

) ∂vx
∂x
− k2
‖ vx = 0. (34)

At xc such that B(xc) = ω/k‖, the equation is singular and solu-
tions should be searched for in the two domains 0 ≤ x < xc or
x > xc. Symmetry considerations impose that vx = 0 for x = 0.
In the first domain the solution is not known analytically, how-
ever, if x > xc � 1, the solution are exponentially decaying,
i.e. vx = exp(−k‖x), thus showing the trapping of the modes.

We therefore understand that in our spherical system where
the field intensity is maximum at the poles (B2

z ∝ cos2 θ),
Alfvén modes are localized on polar caps.

4.2.2. Non-adiabatic effects

We already observed one non-adiabatic effect: the removal of
the quasi-degeneracy of modes with the same number of nodes
along the field lines. We know that such a situation does not
occur with other type of modes like gravity or acoustic ones
which can be calculated with an adiabatic model. Indeed, these

Fig. 8. Spacing of the observed pulsations as a function of the as-
pect ratio η. The numerical values are plotted with crosses and are
compared to the WKB approximation of the solution (solid line)
∆ω = 4π/(1 − η4).

modes are usually computed in a spherically symmetric back-
ground which authorizes the separation of variables. In such a
case, the problem is one dimensional for each spherical
harmonic component and degeneracy of frequencies ωnl is ac-
cidental.

The introduction of non-adiabatic effects, namely viscos-
ity and magnetic diffusion, solves this problem but also in-
troduces numerical difficulties. These are associated with the
appearance of boundary layers and internal shear layers. The
formers are the well-known Hartmann layers which are in gen-
eral extremely thin, i.e. scaling like

√
EEm; choosing stress-

free boundary conditions minimizes their influence on the so-
lutions; other techniques are also available to remove them
(Potherat et al. 2002). Internal layers are certainly nastier fea-
tures and we discovered that they strongly limit the computa-
tion of eigenmodes.

Internal layers come into play through resonant field lines.
Indeed, if we consider a mode with n nodes along the field
lines and located around the pole, then it is easy to see that
for the same frequency, other field lines, which are necessarily
longer and weaker, will be resonant with n+ 1, n + 2, ... nodes,
until the critical field line, which connects the inner boundary
to the outer shell equator, is reached. This feature of the modes
is clearly illustrated in Fig. 9 using a thin spherical shell with
η = 0.9. There, the main part of the mode has one node and we
can identify resonant lines up to n = 7. In passing, we see that
the thickness of the shell does not change the broad properties
of the modes.
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Fig. 9. Left: the magnetic energy of the mode n = 1 in a thin shell with η = 0.9; like the thick shell case, the amplitude of the mode is located
on the polar cap. Right: the adiabatic part of the mode has been filtered out and the resonant field lines which are barely visible on right are
now clearly visible from n = 2 up to n = 7.

Fig. 10. Spectral decomposition of the magnetic (solid line) and velocity (dashed line) fields for the first mode of Fig. 6 when E = Em = 10−4.
Left: the maximum, over all spherical harmonic components, of the absolute value of the Chebyshev coefficients. Right: the maximum, over
all Chebyshev coefficients, of the absolute value of the spherical harmonic components. This latter spectrum clearly shows the large scale
component of the mode � ≤ 60 and the internal layers contribution at � > 60.

The width of these shear layers is obviously controlled by
dissipative effects while the amplitude of the flow (or magnetic
perturbation) is not. A preliminary investigation of the width
of these layers seems to show a scaling with Ha−1/3; the fact
that the amplitude of the flow is independent of the diffusion
parameters is conspicuous from the spectral signature of the
layers which is clear in the spherical harmonic decomposition
(see Fig. 10).

One consequence of this situation is that such layers
may strongly damp some modes and therefore insidiously

participate to the selection of visible modes. We can indeed
conjecture that such modes have a damping rate scaling like:

τ = (E + Em)
(
τinv + A/Eαm

)
where α ∼ 1/3 and A ∼ 10−3 from numerical investigations.
The second term A/Eαm is an evaluation of the contribution of
the internal layers. The rather small value of the A coefficient
shows that these layers do not influence the damping rates at
high diffusivities but when these are reaching stellar values
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Em ∼ 10−8, their role may be important. Since their dynamic is
quite involved, their study is left to future investigations.

5. Discussion

In this paper, we have considered the case of pure shear Alfvén
waves propagating in an incompressible viscous conducting
fluid bathed by a dipolar magnetic field. We have shown that the
axisymmetric poloidal eigenmodes of this system are trapped
around the magnetic poles and that they are composed of an
adiabatic part and internal shear layers associated with reso-
nant field lines. The adiabatic part most likely results from the
trapping of Alfvén waves in the region with most intense mag-
netic fields. The resonant frequency of this “trapping cavity”
is also a resonant frequency for some specific field lines; these
lines generate internal shear/magnetic layers which may give
an important contribution to the damping rates and therefore to
the excitability of the modes.

Most calculations have been done using a thick spherical
shell which is appropriate for a planetary core like the Earth’s.
However, the case of a thin layer shares the same properties
as illustrated by Fig. 9. In this case the modes still stay on the
polar caps but their horizontal extension is much larger than
the vertical one. Also, the frequency increases like the inverse
of the thickness of the layer as shown by Eq. (32).

Back to the question of the oscillations of roAp stars which
motivated this work, we see that the dynamics of a magnetic
layer is fairly more complex than previously thought and in
our system only Alfvén modes are possible! Despite its sim-
plicity our model is also interesting as it shows the role of the
magnetic field in the localization of the oscillations around the
magnetic pole (most of the amplitude is within 12◦ around the
magnetic pole). The localization also appears in the spherical
harmonic decomposition of the modes which peaks at rather
high orders (� ∼ 20). Such a feature of the mode, if it persist in
more realistic models, is not incompatible with observations.
Indeed, observations are usually interpreted with the oblique
pulsator model where it is assumed that intensity fluctuations
result from the excitation of low-degree high order acoustic
modes. In many cases low degree means � = 1 (e.g. Kurtz
1990). However, this interpretation is not unique as underlined
by previous authors (e.g. Kurtz 1992). Another possibility is
that the oscillation is localized on the polar caps and because of
limb-darkening effects it is modulated by rotation in the same
way as a � = 1 mode.

Quite clearly more work is needed to grasp the full com-
plexity of these systems. Here the exploration has been re-
stricted to axisymmetric poloidal modes, but the knowledge of
the complete spectrum calls for an investigation of both purely
toroidal axisymmetric modes and non-axisymmetric modes;
these latter modes, which are numerically much more demand-
ing, will be presented in subsequent work. Finally, it is clear
that the hypothesis of incompressibility need to be relaxed,
first for the allowance of a variable density background but
also to fully appreciate the interaction of acoustic and magnetic
modes.
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Appendix A: Spherical harmonics expansion
of the MHD equations

In this appendix, we expand each term of Eq. (10) on the spher-
ical harmonics using Eq. (14) when B is a dipolar field. The Sm

�

components are omitted because they can be deduced from the
incompressibility and magnetic flux conservation conditions
according to:

∇ · u = 0 ⇒ v�m =
1

�(� + 1)r
∂ r2u�m
∂r

(A.1)

∇ · b = 0 ⇒ b�m =
1

�(� + 1)r
∂ r2a�m
∂r
· (A.2)

The following notations are used:

Br(r) =
1
r3

B′r(r) = − 3
r4

Bθ(r) =
1

2r3

B′θ(r) = − 3
2r4

A�
�−1 =

1
�2

√
�2 − m2

(2� − 1)(2� + 1)

A�
�+1 =

1
�2

√
(� + 1)2 − m2

(2� + 1)(2� + 3)

(A.3)

∇ × u = �(� + 1)
r

w�mRm
�

+



1
r

(
1 − 2
�(� + 1)

)
u�m
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�(� + 1)
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∇ × ∆ u = �(� + 1)
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∇ × ((∇ × b) × B) =
�(� + 1)
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Appendix B: A toy model for understanding
the trapping of Alfvén waves

We derive a simple model to study the trapping of Alfvén waves
when a non uniform magnetic field B = B(x)ez (cartesian ge-
ometry) is applied. The plasma layer has an infinite horizontal
extent and is assumed to be inviscid and perfectly conducting.
The magnetic field is maintained by a permanent electric cur-
rent J = −∂xBey. Taking the curl of the momentum equation
and using the fact that the problem does not depend on the y
coordinate, we obtain

iω

(
∂vx
∂z
− ∂vz
∂x

)
= B
∂ jy
∂z
+ bx
∂Jy
∂x

(B.1)

where small case letters represent small perturbations. The in-
duction equation shows that

iωbx = B
∂vx
∂z

(B.2)

and

iω jy = B
∂2vx

∂z2
+ 2B′

∂vx
∂x
+ B′′vx + B

∂2vx

∂x2
· (B.3)

Next we differentiate Eq. (B.1) with respect to x and make
use of the incompressibility condition. Then, combining with
Eqs. (B.2) and (B.3), we finally find an equation involving the
horizontal velocity perturbation vx only (primes stand for the
x-derivatives of the background field).

−ω
2

B2
∆vx =

∂2

∂z2

(
∆vx +

2B′

B
∂vx
∂x

)
· (B.4)

As the non-uniformity of the magnetic field is in the horizontal
direction, we can consider a plane-wave expansion in the z di-
rection, i.e. ∂zvx = ik‖vx. Using this in Eq. (B.4), a second order
differential equation in x can be obtained

∂2vx

∂x2
+

2k2
‖B
′

B
(
k2
‖ − ω

2

B2

) ∂vx
∂x
− k2
‖ vx = 0 (B.5)

which is the same as Eq. (33).
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