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ABSTRACT
Two approximations, namely the subseismic approximation and the anelastic approximation,
are used to filter out the acoustic modes when computing low-frequency modes of a star (gravity
modes or inertial modes). In a previous paper, we observed that the anelastic approximation
gave eigenfrequencies much closer to the exact ones than the subseismic approximation. Here,
we try to clarify this behaviour and show that it is a result of the different physical approach
taken by each approximation. On the one hand, the subseismic approximation considers the
low-frequency part of the spectrum of (say) gravity modes and turns out to be valid only
in the central region of a star; on the other hand, the anelastic approximation considers the
Brunt–Väisälä frequency to be asymptotically small and makes no assumption concerning the
order of the modes. Both approximations fail to describe the modes in the surface layers but
eigenmodes issued from the anelastic approximation are closer to those including acoustic
effects than their subseismic equivalent.

We conclude that, as far as stellar eigenvalue problems are concerned, the anelastic approx-
imation is better suited for simplifying the eigenvalue problem when low-frequency modes of
a star are considered, while the subseismic approximation is a useful concept when analytic
solutions of high-order low-frequency modes are needed in the central region of a star.

Key words: stars: oscillations.

1 I N T RO D U C T I O N

When considering the low-frequency modes of a star, namely gravity
modes or inertial modes, the compressibility of the fluid is often a
side effect in the determination of eigenfrequencies and eigenmodes;
in other words, the dynamics of these modes may be simplified by
neglecting the elasticity of the fluid or, equivalently, by filtering
out acoustic modes. This is the aim of the subseismic and anelastic
approximations; the resulting equations for eigenmodes are much
simpler than the original ones and are very useful when dealing
with the low-frequency oscillations of rotating stars (e.g. Dintrans
& Rieutord 2000).

Recently, we compared these two approximations (Dintrans &
Rieutord 2001 referred to as Paper I hereafter). We found that in
the two cases that we analysed, namely two polytropes, the anelas-
tic approximation performed much better than the subseismic ap-
proximation. We attributed this behaviour to an inconsistency of the
subseismic approximation, but our argument turns out to be not gen-
eral and Smeyers (2001) showed that for low-frequency high-order
modes, the subseismic approximation gives the first-order equations
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in regions not close to the surface of the star. These results prompted
us to re-examine this question in order to clarify the origin of the
different behaviour of the two approximations. For this purpose
we will focus, in Section 2, on two asymptotic developments: first,
where we use, as in Smeyers (2001), the frequency as a small pa-
rameter and secondly, where we use the Brunt–Väisälä frequency
as the small parameter. These asymptotic developments will prove
to be at the origin of each of these approximations and will allow us
to clarify the physics attached to each of them. In Section 3, using
the same examples as in Paper I, we will compare the approximate
eigenfunctions with their exact counterparts and show the better be-
haviour of the anelastic approximation. Our conclusions are drawn
in Section 4.

2 T H E A S Y M P TOT I C E QUAT I O N S

As was shown in Paper I, both approximations imply Cowling’s
approximation; we shall therefore neglect the perturbation of the
gravitational potential and will start from the following equations:

ρ ′ + div (ρξ) = 0, (1)

ω2ξ = ∇
(

P ′

ρ

)
− N 2

ρg
δPer , (2)

C© 2002 RAS



1088 M. Rieutord and B. Dintrans

δP = c2δρ, (3)

where we have assumed a time-dependence of the form exp(iωt)
and considered adiabatic oscillations. ξ is the displacement; P ′ and
ρ ′, respectively, denote the Eulerian fluctuations of pressure and
density, whereas δP , δρ are their Lagrangian counterparts. Thus,
we have

δP = P ′ + dP

dr
ξr , δρ = ρ ′ + dρ

dr
ξr ,

with a pressure gradient satisfying the hydrostatic equilibrium
dP/dr = −ρg. Also, ρ is the equilibrium density, g = −ger the
gravitational acceleration and γ = (∂ ln P/∂ ln ρ)S the first adia-
batic exponent. Finally, c2 and N 2, respectively, denote the squares
of speed of sound and the Brunt–Väisälä frequency such as

c2 = γ
P

ρ
, N 2 = g

(
1

γ

d ln P

dr
− d ln ρ

dr

)
. (4)

2.1 The subseismic view

As a first exercise we derive the equations verified by the low-
frequency gravity modes.

We therefore assume that the frequency reads as ω = εω1 and that
d/dr scales as ε−1, with ε � 1, since we focus on high radial order
modes. Developing the dependent variables generically as

f = f0 + ε f1 + ε2 f2 + · · · , (5)

and using the classical expansion of the variables on the spherical
harmonics,

ξ(r, θ, φ) =
+∞∑
�=0

+�∑
m=−�

ξ �
m(r )Y m

� (θ, φ)er + χ�
m(r )∇Y m

�

and dropping (�, m) indices, we find that P ′
0 = P ′

1 = 0, ρ ′
0 = 0, ξ0 = 0

and that

d

dr
(rχ0) = − N 2

ω2
1

ξ1,

d

dr

(
r 2ξ1

) = �(� + 1)rχ0. (6)

A system which is slightly different from that obtained when
setting P ′ = 0, which yields the subseismic equations:

d

dr
(rχ ) =

(
1 − N 2

ω2

)
ξ, (7)

d

dr
(r 2ξ ) = �(� + 1)rχ + g

c2
r 2ξ. (8)

However, if we substitute the expansion (5) into (7) and (8), we
recover (6); therefore, equations (7) and (8) contain terms of higher
order than (6).

In fact, our expansion (5) breaks down near the origin r = 0 where
the regularity of the solutions (i.e. that ξ ∝ r �−1) is not ensured. This
comes from the fact that terms such as f/r are no longer negligible
compared with derivatives d f/dr .

This difficulty is avoided by Smeyers (2001) with the use of the
variable

τ =
√

�(� + 1)

ε

∫ r

0

N (r ′)
r ′ dr ′

instead of the radial variable r. τ serves as a fast variable while r,
the slow variable, is assumed to be small compared with the scale of
variation of the Brunt–Väisälä frequency or the background density.

Using this transformation, Smeyers (2001) shows that (8) is verified
by the solution at leading order while (7) is approximately verified.

Near the surface layers, Smeyers (2001) has shown that within
this development, the Eulerian pressure perturbation is no longer
negligible and that the subseismic approximation does not apply.

Thus the subseismic equations govern the oscillations of high ra-
dial order gravity modes in the central parts of the star. No constraint
is imposed on the Brunt–Väisälä frequency and the equations to be
solved are

div ξ = g

c2
ξr , ω2ξ = ∇

(
P ′

ρ

)
+ N 2ξr er .

2.2 The anelastic view

Let us now turn to the anelastic approximation. In this case, it is
more convenient to write the equations of motion for the velocity
field v rather than the displacement ξ, that is,

iωρ ′ + 1

r 2

d

dr
(r 2ρu) − �(� + 1)

ρv

r
= 0,

iωu = − d

dr

(
P ′

ρ

)
+ N 2

iωρg
(iωP ′ − ρgu),

iωrv = − P ′

ρ
,

iω(P ′ − c2ρ ′) = −ρc2 N 2

g
u,

(9)

where we used the following spherical harmonics decomposition
for v (for clarity, we still dropped in the previous system the �, m
indices):

v(r, θ, φ) =
+∞∑
�=0

+�∑
m=−�

u�
m(r )Y m

� (θ, φ)er + v�
m(r )∇Y m

� .

We now assume that the Brunt–Väisälä frequency is vanishingly
small; note that as this quantity often diverges at the surface of the
star models, it is more appropriate to assume that ωN , the frequency
of the lowest-order gravity mode, is vanishingly small. Thus we
write

N (r ) = εn(r ), ω = εω1, P ′ = P ′
0 + εP ′

1 + · · · .
Note that we make no assumption concerning the scale of the per-
turbations, which may be of the order of unity. First orders yield the
equations

P ′
0 = ρ ′

0 = 0, (10)

∇ · ρu0 = 0, (11)

iω1u0 = −d(P ′
1/ρ)

dr
− n2

iω1
u0, (12)

iω1rv0 = −P ′
1/ρ, (13)

iω1

(
P ′

1 − c2ρ ′
1

) = −ρn2c2

g
u0 (14)

from which we write the anelastic system

div(ρξ) = 0, ω2ξ = ∇(P ′/ρ) + N 2ξr er .

As for the subseismic approximation the perturbed equation of state
is eliminated; but from (14), we note that the Eulerian pressure
perturbation is of the same order as c2ρ ′.

The subseismic equations can be obtained by just dropping out
the Eulerian fluctuation P ′ in δP , in the original equations (1)–(3);

C© 2002 RAS, MNRAS 337, 1087–1090



The anelastic and subseismic approximations 1089

Figure 1. Normalized eigenfunctions ξ with � = 2 and k = 5 for the homogeneous polytrope. The solid line shows the exact solution (ω2 � −3.61 × 10−2), while
the dashed and dotted lines correspond to its subseismic and anelastic approximations, respectively (with ω2

subs � −3.26 × 10−2 and ω2
anel � −3.53 × 10−2).

On the right-hand side, the surface layers have been magnified.

from (14), we see that this is not the case in the anelastic approx-
imation. On the other hand, the fluctuation of density in the mass
conservation equation can be neglected.

We therefore see that the anelastic approximation applies when
the Brunt–Väisälä frequency is small compared with the acoustic
frequencies but does not impose any constraint on the scale of the
solutions. Near the surface the anelastic solution differs from the
exact solution because of the different boundary condition: exact
solutions verify δP = 0, a condition which transforms into ξ = 0 or
u = 0 for the approximate solution.

2.3 Comments

The foregoing developments show that the anelastic approximation
applies under rather more general conditions than the subseismic
approximation; indeed, the only requirement is the smallness of
the Brunt–Väisälä frequency or, in other words, a large separation
between the acoustic spectrum and the gravity spectrum. As this
latter condition is often met in stars we can expect that the anelastic
approximation performs better when applied to star models.

Concerning the subseismic approximation, it is clear that it can be
applied in the central region of a star but that surface layers should
be avoided. Smeyers introduces the notion of a boundary layer to
describe the regions where his asymptotic solutions are valid. How-
ever, these boundary layers are somehow special since their thick-
ness can be comparable to the radius of the star (in polytropes for
instance).1

Broadly speaking, it turns out that the subseismic approximation
has a rather local character, while the anelastic approximation has
a global one. As eigenvalue problems are global problems in na-
ture, the anelastic approximation should be better suited for these
problems.

1Classical boundary layers have a thickness that is very small compared
with the size of the domain and which tends to zero as the small parameter
is decreased.

3 E X A M P L E S

As in Paper I we consider two polytropes: one of constant density
and one of index n = 3.

3.1 The homogeneous star model

In this case analytic solutions exist either for the exact or the ap-
proximate equations (see Paper I).

In the asymptotic case of large wavenumbers (k → ∞), one finds
that

ω2 = � −
√

�2 + �(� + 1) = −�(� + 1)

2�
+ O

(
�2(� + 1)2

�3

)
,

with � = γ [k(� + k + 5
2 ) + � + 3

2 ] − 2. Therefore,

ω2 � −2�(� + 1)

γ

1

2k(2k + 2� + 5) + 4� + 6 − 4/γ
.

Now using (22) of Paper I we find that for the anelastic approxi-
mation

ω2
anel = −2�(� + 1)

γ

1

2k(2k + 2� + 5) + 4� + 6
,

while the subseismic expression (21) can be rewritten as

ω2
subs = −2�(� + 1)

γ

1

2k(2k + 3� + 4 + 2/γ ) + 6� + (2� + 4)/γ
.

It is clear from these three expressions that, for high-order modes,
the anelastic approximation is very close to the exact expression.
In fact, one finds that (ω2 − ω2

anel)/ω
2 ∼ k−2 while (ω2 − ω2

subs)/
ω2 ∼ k−1, i.e. the anelastic expression converges quadratically
while the subseismic one converges only linearly.

This better behaviour of the anelastic approximation is confirmed
by the shape of the eigenfunctions as shown in Fig. 1. There, we
clearly see that the subseismic solution is good only in the central
regions (r < 0.2), while the anelastic approximation remains close
to the exact solution almost to the surface.
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Figure 2. Normalized eigenfunctions ξ with � = 2 and k = 10 (left) and k = 20 (right) for the polytrope n = 3. As in Fig. 1, exact solutions are denoted by
solid lines (with ω2

10 � 1.98 × 10−3 and ω2
20 � 5.99 × 10−4), while the dashed and dotted lines correspond to their subseismic and anelastic approximations,

respectively (with ω2
subs � 2.08 × 10−3, ω2

anel � 2.02 × 10−3 for k = 10 and ω2
subs � 6.15 × 10−4, ω2

anel � 6.04 × 10−4 for k = 20).

3.2 The polytrope n= 3

For a polytrope n = 3 a similar behaviour exists, although the differ-
ence between the two approximations is less pronounced. In Paper I
we observed that the eigenfrequencies converged at different rates,
with the anelastic approximation converging faster. Here we plot
two eigenmodes of high order (k = 10 and 20) computed with the
two approximations and with the complete equations (see Fig. 2).
As expected, while both approximations describe the central regions
very accurately, the anelastic one remains closer to the ‘exact’ solu-
tions over a larger volume. For the k = 20 mode, it departs noticeably
from the exact solution close to the surface (r ∼ 0.83).

4 C O N C L U S I O N

In this paper we tried to clarify the differences between the subseis-
mic and anelastic approximations that both aim to describe the low-
frequency spectrum. The subseismic approximation appears when
one concentrates on the low-frequency high-radial order modes in
the central region of a star; no constraint is imposed on the Brunt–
Väisälä frequency.

On the other hand, the anelastic approximation assumes a weak
stratification but imposes no constraint on the degree of the mode.

Hence, while the anelastic approximation makes the Brunt–
Väisälä frequency, and thus the frequency of all gravity modes,
vanishingly small compared with a acoustic frequencies, the sub-
seismic approximation focuses on gravity modes for which the radial

Figure 3. A schematic picture of the modes of a star viewed from the anelastic
viewpoint (above) and the subseismic viewpoint (below). ωN and ωc are,
respectively, the frequency of the lowest-order gravity and acoustic modes.

order is very large and hence have small frequencies compared with
acoustic ones.

In other words, the anelastic approximation removes the elasticity
of the fluid by rejecting acoustic frequencies to infinity and therefore
allows for a description of the full spectrum of gravity modes, while
the subseismic approximation, keeping ωc and ωN in a finite ratio,
concentrates on one part of the spectrum, namely that containing
high radial order modes, which are the least sensitive to the elasticity
of the fluid. This situation is summarized in Fig. 3.

Since in stars the situation is often that ωN � ωc, the use of the
anelastic approximation is recommended as it is probably closer
to the solutions of the complete equations; on the other hand, the
subseismic approximation may be useful when one needs an analytic
expression of gravity modes in the central regions of a star.

Finally, it is worth mentioning the work of Durran (1989) who dis-
cussed these two approximations in the context of the atmospheric
sciences. In this field, where the subseismic approximation is called
the ‘pseudo-incompressible approximation’ and the anelastic ap-
proximation the ‘modified anelastic approximation’, the subseismic
approximation appears to be superior to the anelastic approximation
as it conserves energy, a property that is important for non-linear
problems. This result shows that the best choice for filtering out
acoustic modes is dependent on the problem at hands. Therefore,
our results which favour the anelastic approximation when search-
ing for low-frequency modes of stars, may be specific to eigenvalue
problems.

AC K N OW L E D G M E N T

BD acknowledges support from the European Commission under
Marie-Curie grant no HPMF-CT-1999-00411.

R E F E R E N C E S

Dintrans B., Rieutord M., 2000, A&A, 354, 86
Dintrans B., Rieutord M., 2001, MNRAS, 324, 635 (Paper I)
Durran D., 1989, J. Atmos. Sci., 46, 1453
Smeyers P., 2001, A&A, 372, 566

This paper has been typeset from a TEX/LATEX file prepared by the author.

C© 2002 RAS, MNRAS 337, 1087–1090


