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ABSTRACT
Recently, eigenmodes of rotating Ñuids, namely, inertial modes, have received much attention in rela-

tion to their destabilization when coupled to gravitational radiation within neutron stars. However, these
modes have been known for a long time in Ñuid dynamics. We give a short account of their history and
review our present understanding of their properties. Considering the case of a spherical container, we
then give the exact solution of the boundary (Ekman) layer Ñow associated with inertial r-modes and
show that previous estimations all underestimated the dissipation by these layers. We also show that the
presence of an inner core has little inÑuence on this dissipation. As a conclusion, we compute the
window of instability in the temperature/rotation plane for a crusted neutron star when it is modeled by
an incompressible Ñuid.
Subject headings : hydrodynamics È stars : neutron È stars : rotation
On-line material : color Ðgure

1. INTRODUCTION

Recently, much work has been devoted to the study of the
rotational instability of neutron stars resulting from a coup-
ling between gravitational radiation and the so-called
r-modes of a rotating star (Andersson 1998 ; Friedman &
Morsink 1998 ; Lindblom, Owen, & Morsink 1998 ; Kok-
kotas & Stergioulas 1999). Such an instability indeed may
play a key role in the distribution of rotation periods of
neutron stars as well as be an important source of gravita-
tional radiation.

In this paper we will Ðrst clarify a point of history con-
cerning ““ r-modes ÏÏ which in fact are a special class of iner-
tial modes ; we will then review their singular properties
which have been clariÐed only very recently in Rieutord &
Valdettaro (1997) and Rieutord, Georgeot, & Valdettar
(2000, (2001). Section 4 will present the analytical derivation
of the damping rate of inertial r-modes in a neutron star
with a crust and/or a core through the boundary layer
analysis within the framework of Newtonian theory. We
conclude with the stability of crusted neutron stars when
modeled by an incompressible viscous Ñuid in a rotating
sphere.

2. A SHORT POINT OF HISTORY

The very Ðrst work on rotating Ñuid oscillations which
are presently known as inertial modes dates back to
Thomson (1880),1 who analyzed the case of a Ñuid con-
tained in a cylinder. However, another impetus to the study
of these oscillations was given soon after by the work of

(1885) on the stability of rotating self-gravitatingPoincare�
masses, a work applied to MacLaurin spheroids by Bryan
(1889)2 and later continued by Cartan (1922), who chris-
tened the equation of inertial modes as the equa-““ Poincare�
tion.ÏÏ In these studies, however, the e†ect of rotation is
combined with the e†ect of gravity through (for an incom-
pressible Ñuid) surface gravity waves. In fact, except for the
work of Thomson, investigations of the oscillations speciÐc

1 Later Lord Kelvin.
2 But see the recent rederivation by Lindblom & Ipser (1999).

to rotating Ñuids seem to have started with the work of
Bjerknes et al. (1933), where they are called ““ elastoid-
inertial oscillations ÏÏ since conservation of angular momen-
tum makes axis-centered rings of Ñuid behave elastically ;
see Fultz (1959) or Aldridge (1967) for an account on this
part of history. In the 1960s much work was devoted to
these oscillations, mainly by Greenspan, who introduced
the terminology of ““ inertial oscillations.ÏÏ The presently
used denomination ““ inertial modes ÏÏ was ““ officially ÏÏ given
by GreenspanÏs book (Greenspan 1969).

However, inertial modes are somewhat too general for
applications in some speciÐc domains like atmospheric sci-
ences. In this Ðeld, indeed, motions are essentially two-
dimensional, and inertial modes may be simpliÐed into the
well-known Rossby (or planetary) waves.

The introduction of r-modes by Papaloizou & Pringle
(1978) was quite unfortunate since they associated eigen-
modes of rotating Ñuids with a very special class of inertial
modes, namely, purely toroidal inertial modes. This led fol-
lowing authors to introduce weird names such as ““ hybrid
modes ÏÏ or ““ generalized r-modes ÏÏ (Lockitch & Friedman
1999) to describe the general class of inertial modes. We
therefore encourage authors to use, as in Ñuid dynamics,
inertial modes unless they discuss the very speciÐc r-modes.

3. THE PRESENT THEORY OF INERTIAL MODES

Inertial modes are a class of modes of oscillation of rotat-
ing Ñuids which owe their existence to the Coriolis force.
This force of inertia indeed has a restoring action on pertur-
bations of rotating Ñuids since it insures the global conser-
vation of angular momentum. These modes have many
properties similar to those of gravity modes of stably strati-
Ðed Ñuids (Rieutord & Noui 1999).

The dynamics of inertial modes may be appreciated when
all other e†ects are suppressed : no compressibility, no mag-
netic Ðelds, no gravity, etc., only an incompressible inviscid
rotating (like a solid body) Ñuid. In this case, perturbations
of velocity and pressure dP obeyd¿

Ld¿
Lt

] 2x Â d¿ \ [$dP , $ Æ d¿\ 0 , (1)
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FIG. 1.ÈKinetic energy distribution in a meridional plane of an inertial
mode in a spherical shell associated with an equatorial attractor. A
coexisting polar attractor is also slightly excited. The mode is axisymmetric
with equatorial symmetry. Stress-free boundary conditions have been used
on both shells ; this solution was computed with an Ekman number of
2 ] 10~9 and required 1300 spherical harmonics and 450 radial grid
points (Gauss-Lobatto). The ratio of the inner radius to the outer radius is
g \ 0.35. u\ 0.2429 and the damping rate q\ [6.26] 10~4 are given in
dimensionless units as in eq. (2). [See the electronic edition of the Journal
for a color version of this Ðgure.]

where x is the angular velocity of the Ñuid. Concentrating
on time-periodic oscillations and choosing (2))~1 as the
timescale, equation (1) can be written as

iuu ] e
z

Â u \ [$p , $ Æ u \ 0 , (2)

with nondimensional variables ; u is the nondimensional
(real) frequency. When the velocity u is eliminated in favor
of the pressure perturbation p, one is left with

*p [ 1
u2

L2p
Lz2 \ 0 , (3)

which has been known as the equation sincePoincare�
Cartan (1922). This equation is remarkable for the fact that
it is hyperbolic spatially since ou o¹ 1 (Greenspan 1969).
Since the solution of equation (3) must meet boundary con-
ditions, namely, u Æ n \ 0, we see that inertial modes are
solutions of an ill-posed boundary value problem.3 This
property means that, in general, inertial modes are singular ;
in other words, they cannot exist physically if the Ñuid is
strictly inviscid. These properties are detailed in Rieutord
(1997) and Rieutord et al. (2001) ; to make a long story short,
one may summarize the situation as follows : Let us Ðrst
recall that in hyperbolic systems, energy propagates along
the characteristics of the equation. For the equa-Poincare�
tion, these are straight lines in a meridional plane. One way

3 Such boundary conditions eliminate any distortion of the surface due
to the Ñuid motion ; for a free surface, these distortion are surface gravity
waves (see Rieutord & Valdettaro 1997), but their inclusion (in order to be
more realistic) would not modify the ill-posed nature of the problem.

to approach the solutions of this difficult problem is to
examine the propagation of characteristics as they reÑect on
the boundaries. They deÐne trajectories which depend
strongly on the container. Let us therefore concentrate on
the case of a spherical shell as a container ; this conÐgu-
ration is relevant for neutron stars with a central core due
to some phase transition of the nuclear matter (see Haensel
1997). In this case, it may be shown that characteristic tra-
jectories generically converge toward attractors which are
periodic orbits. It may be shown (Rieutord et al. 2001) that
in this case, the associated solutions are singular, namely,
the velocity Ðeld is not square integrable. However, inertial
r-modes are still solutions to the problem since they meet
the boundary conditions in fact, they are the only(u

r
\ 0) ;

regular (square-integrable) solutions of the equa-Poincare�
tion in a spherical shell. In a more mathematical way, we
may say that the spectrum of eigenvalues of the Poincare�
equation in a spherical shell is empty except for the inertial
r-modes. In this sense, these modes are quite exceptional.
This situation occurs because there exists no system of coor-
dinate in which the dependent variables of the Poincare�
equation can be separated. This is a consequence of the
conÑict between the symmetry of the Coriolis force
(cylindrical) and the geometry of the boundaries. Thus,
when this constraint is relaxed, like in the case of a cylin-
drical container, regular solutions exist, and a dense spec-
trum of eigenvalues appears in the allowed frequency range,
namely, [0, 2)]. In the case that the container is a full
sphere, attractors also disappear and eigenmodes exist ; they
are also related to a dense spectrum of eigenfrequencies. In
this case, the equation is exactly solvablePoincare�
(Greenspan 1969).

However, real Ñuids have viscosity (l), and equation (2)
should be transformed into

ju ] e
z
Â u \ [$p ] E*u , $ Æ u \ 0 , (4)

where j is the complex eigenvalue and E\ l/2)R2 is the
Ekman number (R is the outer radius of the shell).

Using no-slip (u \ 0) or stress-free boundary conditions,
equation (4) yields a well-posed problem. Yet, the singu-
larities of the associated inviscid solutions show up through
the existence of shear layers. As shown by Figure 1, the
shape of inertial modes is deeply inÑuenced by the under-
lying singularity of the inviscid solution. We have shown
(Rieutord et al. 2000) that these shear layers in fact are
nested layers with di†erent scales since their inner part
scales as E1@3, and their outer part seems to scale as E1@4.
Because of these internal shear layers, these modes are
strongly damped.

We therefore see that according to whether a neutron star
has a central core or not, the damping of inertial modes will
be extremely di†erent. If there is a central core, the only
regular modes are the inertial r-modes which will be by far
the least damped ; if there is not any core, then a dense
spectrum exists (Greenspan 1969 ; Lockitch & Friedman
1999), but inertial r-modes remain the most unstable
because of their simple structure.

4. DAMPING OF TOROIDAL INERTIAL MODES IN A

SPHERE OR SHELL

We will now give the expression of the viscous damping
of inertial r-modes when one of the boundaries is solid,
therefore, when the dissipation is due to Ekman boundary
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layers ; thus we will complete the works of Bildsten & Usho-
mirsky (2000) and Andersson et al. (2000) by giving the
rigorous estimate of the damping rate ; the method which
we use here has been outlined in Greenspan (1969).

The damping rate is given by

c\ R(j)\ [E
/ ($ :u)2dV

/ u2dV
, (5)

where ($ :u)2 stands for the squared rate-of-strain tensor
(see below). The velocity Ðeld of r-modes is

uh \ Arm(sin h)m~1 sin (m/] u
m

t) ,

ur \ Arm(sin h)m~1 cos h cos (m/] u
m

t) .

The kinetic energy integral may be evaluated explicitly :

P
u2dV \ nA2(1[ g2m`3) 2m`1(m] 1) !

m(2m] 3) ! !
(6)

where g is the ratio of the radius of the inner boundary to
the outer boundary.

The dissipation integral needs more work if one of the
boundaries is no-slip. In this case, dissipation is essentially
coming from the Ekman layers, and thus we need to derive
the Ñow in these layers. The method has been given by
Greenspan, from whom we know that the boundary layer
correction, is related to the interior solution byu8 , u

u8 h ] iu8 r\ [(uh] iur)r/rb
e~f(i cos hBiu)1@2 , (7)

where f is the radial scaled variable with as(r[ r
b
)/JE, r

bthe radius of the boundary (1 or g). The complete solution is
then setting b \ ut ] mr, we haveu \ u8 ] u ;

uh ] iur\ Arm(sin h)m~1
2i

][(1[ cos h)eib[ (1] cos h)e~ib] ,

from which it follows that

u8 h ] iu8 r\ Ar
b
m(sin h)m~1

2i

] [(1] cos h)e~ib~f(i cos h~iu)1@2]
[[(1[ cos h)eib~f(i cos h`iu)1@2] .

Now we need the expression of the square of the rate-of-
strain tensor in spherical coordinates, viz.s

ij
\ L

i
v
j
] L

j
v
i

($ :u)2\ s
rr
2 ] shh2 ] sÕÕ2 ] 2(s

rh2 ] s
rÕ2 ] shÕ2 ) .

Since the radial derivatives dominate, this expression
reduces to the contribution of the tangential stresses. Using
the scaled coordinate, we havef\ o r[ r

b
o /JE,

($ :u)2\ 2
E
CALuh

Lf
B2]

ALur
Lf
B2D

r/rb
.

We now set p \ cos h [ u and q \ cos h ] u. We thus
get

($ :u)2\ A2r
b
2m(sin h)2m~2

2E
A
(1] cos h)2 o p o e~f(2 @ p @)1@2

] (1[ cos h)2 o q o e~f(2 @ q @ )1@2

[ 2sin2 hJpq RMe2ib~f*(iq)1@2`(~ip)1@2+N
B

.

TABLE 1

EXPRESSION OF THE P(g) FUNCTION ACCORDING TO

BOUNDARY CONDITIONS

Outer BC

No-Slip Stress-Free

Inner BC:
No-slip . . . . . . . . . 1 ] g2m`2 g2m`2
Stress-free . . . . . . 1 No Ekman layer

Integrating over the r-variable yields

P
0

2n
($ :u)2dr\ nA2r

b
2m(sin h)2m~2

E
[(1] cos h)2 o p o

] e~f(2 @ p @ )1@2 ] (1[ cos h)2 o q o e~fS2 @ q @] . (8)

We now integrate over the radial variable :

P
g

1P
0

2n
($ :u)2dr r2dr \ nA2(sin h)2m~2

E
P
g

1
r2m`2f (f)dr ,

with f (f) \ (1 ] cos h)2 o p o e~f(2 @ p @ )1@2 ] (1 [ cos h)2 o q o

since or according toe~fS2 @ q @ ; r \ g ] JEf r \ 1 [ JEf
which side of the integral is chosen, it turns out that

P
g

1P
0

2n
($ :u)2dr r2dr

\ K
P
0

=
[(1 ] cos h)2 o p o e~f(2 @ p @ )1@2]

][(1[ cos h)2 o q o e~f(2 @ q @ )1@2]df

\ K

J2
[(1] cos h)2J o cos h [ u o ]

][(1[ cos h)2J o cos h ] u o ] ,

with where P(g) is a functionK \nA2(sin h)2m~2P(g)/JE,
depending on the boundary conditions (see Table 1).
Finally, integrating over h, we Ðnd that

P
($ :u)2dV \ 2nA2P(g)

J2E
I

m
(9)

with

I
m

\
P
0

n
(1] cos h)2J o cos h [ u o sin2m~1 hdh . (10)

Finally, grouping equations (6) and (9), we Ðnd the
damping rate

c\ [ m(2m] 3) ! !
2m`3@2(m] 1) !

Q(g)I
m

JE , (11)

where Q(g) \ P(g)/(1 [ g2m`3). For the cases m\ 1 and
m\ 2, we evaluated the expression of viz.I

m
,

I1\ J2
35

(35@2 ] 19) ,

I2\ 4
A2
3
B11@2 3401 ] 2176J2

5 ] 7 ] 9 ] 11
.

Other values are computed numerically and given in
Table 2.

The values given by equation (11) may be compared to
other derivations, in particular that of Greenspan (1969) for
m\ 1, who Ðnds Forc/JE\ [2.62/J2 \ [1.8526 !
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TABLE 2

VALUES OF THE FIRST INTEGRALS AND THE CORRESPONDINGI
mVALUES OF THE SCALED DAMPING RATES

Parameter m\ 1 m\ 2 m\ 3 m\ 4

I
m

. . . . . . . . . 1.3976 0.80411 0.58075 0.46155
c/JE . . . . . . [1.8526 [2.4876 [3.0318 [3.5339

NOTE.ÈThe latter value equals that of Greenspan 1969 when multi-
plied by because of our choice of the timescale.J2

m\ 2, a direct numerical calculation, similar to that of
Rieutord & Valdettaro (1997), gives at[2.482JE
E\ 10~8, which is in good agreement with the analytical
formula.

5. APPLICATION TO NEUTRON STARS AND CONCLUSIONS

Let us now apply these results to the case of rapidly
rotating neutron stars. We take the viscosity from Bildsten
& Ushomirsky (2000), m2 s~1, where f is al\ 1.8f/T 82dimensionless parameter taking into account the di†erent
transport mechanisms in the Ñuid (superÑuid phases for
instance), and is the temperature in 108 K units. Using aT8radius of 12.53 km and an angular frequency of 2n ] 1 kHz,
we Ðnd an Ekman number D10~12 which indeed is very
small, and thus boundary layer theory applies. We may now
estimate the characteristic timescale for the damping of the
m\ 2 mode. We Ðnd that

T
d
\ 26.7 s

T8
Jf

A R
10 km

BA1 kHz
l
s

B1@2
, (12)

which is a somewhat smaller value than the previous esti-
mate of Bildsten & Ushomirsky (2000) and Andersson et al.
(2000), who Ðnd characteristic times of 100 and 200 s,
respectively. Our disagreement with these authors comes
from their approximate evaluation of the boundary layer
dissipation and from the resulting functional dependence
with respect to mass and density. Let us Ðrst evaluate the
damping rate according to Landau & Lifchitz (1989) ; it
turns out that

2c\ [
AuE

2
B1@2 (/4n u2 sin hdhdr)(r \ 1)

/(V) u2dV
, (13)

where we used our nondimensional units. Since the radial
dependence of the modes is in rm and u\ 1/(m] 1), we
easily Ðnd that

c\ [ 2m] 3

2J2m] 2
JE .

When this expression is applied to the m\ 2 mode, we Ðnd
that which is a factor 1.74 weaker than thec\ [1.429JE,
correct result.

If we use, as previous authors, a step function for describ-
ing the density di†erence between that of the crust and the
mean density, we Ðnd that the damping rate reads

cEk\ [2.4876JE
o
b

o
2)\ [0.0346

o
b

o
Jf )

*
T8

s~1 ,

(14)

where is the density of the Ñuid just below the crust ando
b Our calculation therefore shows that the)

*
\ )/(nGo)1@2.

window of instability in the (), T ) plane is smaller than
previously estimated for crusted neutron stars.

FIG. 2.ÈCurves of critical angular velocity, normalized by )
K

\
for di†erent models. The solid line shows the result of the23(nGo)1@2,

present work, the dash-dotted line is that of Andersson et al. (2000), and
the dashed line is for Bildsten & Ushomirsky (2000). The dotted line is the
critical curve for a noncrusted star. No core has been included (g \ 0).

Considering a 1.4 neutron star with a radius of 12.53M
_km as a test case, the growth rate of the mode due to gravi-

tational radiation is (we use the expres-cgw\ 0.658 s~1)
*
6

sion given in Lindblom et al. 1998) ; although, it is not
relevant for an incompressible Ñuid, we take into account
the damping rate due to bulk viscosity in order to ease
comparison with previous work ; from Lindblom, Mendell,
& Owen (1999), we Ðnd s~1cbulk\ [2.2] 10~12 T 96)

*
2 .

From equation (14), we have s~1cEk \ [1.53] 10~3
where we took kg m~3 ; solving the)

*
1@2/T9, o

b
\ 1.5 ] 1017

equation

cgw ] cEk ] cbulk\ 0

for di†erent values of the temperature yields the curves dis-
played in Figure 2. As expected, we see that the window of
instability narrows compared to Andersson et al. (2000).
For a given temperature, the critical angular velocity raises
by D10% typically.

Another interesting conclusion of this work is that the
presence of a solid inner core does not change the damping
rates very much unless its radius is close to unity. The
reason for that is to be found in the shape of the inertial
r-modes whose amplitudes are concentrated near the outer
boundary. Therefore, the rotating instability of rapidly
rotating stars is quite insensitive to the presence of a solid
core and more generally to any phase transition which does
not occur close to the surface.
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discussions. I am also very grateful to Ian Jones for his note
about the density proÐle used in models of neutron stars in
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out on the Nec SX5 of IDRIS at Orsay and on the CalMip
machine of CICT in Toulouse which are gratefully acknow-
ledged.
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