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A note on inertial modes in the core of the Earth
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Abstract

Ž .We analyse the consequences of the singular at zero viscosity nature of inertial modes in a spherical shell for the
dynamics of the Earth’s liquid core on the time scale of a day. We show that the singularities, essentially appearing as
internal shear layers, although increasing the damping rates of the modes, cannot be invoked to rule out the possible role of
the elliptical instability in the geodynamo. We also show that the search for core modes in the spectrum of oscillations of the
Earth should be guided by the Lyapunov exponents associated with the maps built up by characteristics propagating in the
shell. q 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

It is well known that rapidly rotating fluids ex-
hibit a special kind of oscillations, namely inertial
waves, which are driven by the Coriolis force. As
such, the liquid core of the Earth also exhibits these
oscillations.

The role of inertial modes in the Earth’s core has
Žalready been considered in the past Aldridge et al.,

.1989 and references therein; Rieutord, 1995 since
Ž .such modes may be the origin of or contribute to

Ž .the geodynamo Aldridge et al., 1997 or may open a
new window onto the Earth’s core if they are de-

Ž .tected by superconducting gravimeters for instance .

) E-mail: rieutord@obs-mip.fr

This note is intended to follow up our paper of
1995 and present some consequences, concerning the
dynamics of the core, of the new results obtained

Žrecently on inertial modes in a spherical shell Rieu-
tord and Valdettaro, 1997; Rieutord et al., 1999;
Dintrans et al., 1998; Fotheringham and Hollerbach,

.1998 . As in the preceding paper, we shall ignore
magnetic fields in the dynamics of the modes; at a
period of a day the coupling between inertial modes
and magnetic modes is small indeed, as shown by

Ž .Kerswell 1994 , since Alfven waves are much slower´
than inertial waves. In Section 2, we show why the
incompressible fluid is a good model for the Earth’s
core; within this model, we then describe our current
understanding of the asymptotic properties of inertial
modes in a spherical shell at very low viscosities.
We then draw some conclusions about the dynamics
of the core.
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2. On the dynamics of the core for time scales of a
day

Our current understanding of the structure of the
core is that it is adiabatically stratified in its main
part with possibly a stably stratified layer just below

Ž .the core–mantle boundary Lister and Buffett, 1995 .
This layer has, however, a marginal effect on core

Ž .modes see Rieutord, 1995 and we shall ignore it in
the following.

Hence, we assume the core to be roughly isen-
Ž .tropic and characterized by a density profile r r0

where the density changes by 12% between the inner
Ž .core boundary ICB and the core–mantle boundary

Ž .CMB . As we are interested by inertial modes whose
typical period is larger than 12 h, we can filter out
the sound waves and use the so-called subseismic or
anelastic approximation. With such an approxima-
tion, mass conservation implies:

™div r Õs0 1Ž .0

while the momentum equation yields:

™EÕ ™ ™ ™™ ™ ™ ™
r qÕP= Õq2V=Õ sy= Pqr g 2Ž .ž /Et

and, since the fluid is assumed isentropic, we have
™ ™

from thermodynamics = Psr= h, where h is the
specific enthalpy. Finally, the momentum equation
simplifies into

™EÕ ™ ™ ™™ ™ ™qÕP= Õq2V=Õsy=x 3Ž .
Et

where x is the sum of all potentials. Linearizing this
equation and using non-dimensional quantities, we

Ž . Ž .may rewrite Eqs. 1 and 3 as

™™ ™°div usyuP= ln r0~ 4Ž .
™™ ™ ™¢iv uqe =usy=Pz

Ž .y1where the time scale is now 2V , the rotation
axis is parallel to the z-axis and P is the general-
ized pressure. Perturbations have been assumed pro-

Ž .portional to exp iv tq imw , where w is the az-
imuthal angle of the cylindrical coordinates to be
used below and m is an integer.

™
Expressing the velocity field in terms of =P , we

can cast the two preceding equations into a general-
ized Poincare equation which reads:´

1 E2P
D Py 2 2v Ez

r
X

v EP mP z EP0
sy s q y2 2ž /rr Es v Ez1yv 1yv0

5Ž .

where r and s are respectively the radii of spherical
and cylindrical coordinates. The equilibrium density
profile has been assumed spherically symmetric.

This equation shows that terms with second order
derivatives are not modified by the density profile.
Hence the characteristics of this generalized Poincaré

Ž .equation are the same i.e., straight lines as those of
Ž .the original Poincare equation when r sconst. .´ 0

Therefore, the geometrical properties of the inviscid
solutions to be described below, where we discard
density variations, can be transferred easily to the

Ž .more realistic situation described by Eq. 5 .

3. Inertial modes in a spherical shell

We shall now present some recent results ob-
tained for inertial modes of an incompressible fluid
in a rotating spherical shell. The problem with such
modes is that they obey the Poincare equation, which´
is hyperbolic, while they meet some kind of Neuman

Ž .condition in fact an oblique derivatives condition
on the two bounding spheres; namely,

™ ™™ ™ ™ ™2yv nP=Pq nPe e P=PŽ . ž /z z

™™ ™q iv e nn P=Ps0Ž .z

™where n is the unit vector normal to the spheres.
Such a problem is ill-posed mathematically and
therefore of considerable difficulty.

3.1. The inÕiscid solutions

The difficulties come from the fact that solutions
of the inviscid problem are in most cases singular. At



( )M. RieutordrPhysics of the Earth and Planetary Interiors 117 2000 63–70 65

the moment, the only known regular solutions of the
Poincare equation in a sphere or a spherical shell are:´
Ø All inertial modes in the full sphere where pres-

Žsure perturbations are polynomials see
.Greenspan, 1969 .

Ø Some purely toroidal modes in a spherical shell,
non-axisymmetric, with frequencies in the set
�Ž . Ž . 4 Ž2V r m q 1 , m g N see Rieutord and

. Ž .Valdettaro, 1997 ; the first of these modes ms1
Ž .is the Poincare or spin-over mode.´

All other modes of the spherical shell are singular
and we may divide the singularities into three cate-
gories:
Ø Divergence on the axis
Ø Divergence at the critical latitude
Ø Divergence along the limit cycle to which charac-

teristics converge.
The first one, described in Rieutord and Valdet-
Ž .taro 1997 , is a divergence in 1r6s on the axis. This

is a ‘‘mild’’ singularity as it is integrable.
The second one, first studied by Stewartson and

Ž .Rickard 1969 in the case of non-axisymmetric
modes in a thin shell, appears on convex bodies
when a grazing characteristic exists. It may be shown
Ž .Rieutord et al., 1999 that the velocity diverges as
1r6d on the grazing characteristic which is tangent
to the inner sphere at the critical latitude; d is the
distance to this characteristic. Like the first one, this
singularity is integrable.

The third one is the strongest and the most inter-
esting as it implies non-square integrable solutions.
An intuitive idea of the phenomenon may be ob-
tained by considering a purely two-dimensional case,

Ž .such as the one considered by Maas and Lam 1995 ,
which derived from the analysis of internal gravity
waves in a basin. In such a case, the Poincaré
equation reduces to

E2c
s0 6Ž .

Ej Ejq y

Ž .when characteristics coordinates j , j are used.q y
In this case, the stream function c in the domain can
be constructed through a mapping of an arbitrary

Žfunction defined on some fundamental interval see
.Maas and Lam, 1995 or Maas et al., 1997 . When

the characteristics converge towards a limit cycle,
the scale of the mapping tends to zero while the
amplitude of the mapped function remains constant.
It may be shown that gradients diverge as the inverse
distance to the limit cycle which implies that the
velocity is not square integrable. Two examples of
limit cycles are shown in Fig. 1.

Another difficulty with these solutions is that they
may be infinitely degenerate. In the 2D-case men-
tioned above, this is proved by Maas and Lam
Ž .1995 as the solution appears to be defined from an
arbitrary function. This degeneracy might not persist,

Fig. 1. Two periodic orbits of characteristics for a spherical shell similar to the Earth’s liquid core. The ratio of the inner shell radius to the
outer one is hs0.35. In the left-hand plot we have drawn characteristics starting from an arbitrary point on the inner shell to show the rapid
convergence of the path towards the limit cycle. In the right-hand plot, we have drawn the asymptotic periodic orbit only. The viscous
solutions corresponding to these orbits are shown in Fig. 2.
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however, in a spherical shell because of curvature
terms, but this is not yet proved.

Finally, let us note that all these results which
may be described in the meridional plane of the shell
also apply to non-axisymmetric modes. Indeed, the
symmetry of the equations and the container with
respect to the rotation axis makes the w variable
separable from the two others: thus once the solu-
tions are projected on the Fourier basis eimw the
Fourier components m are solutions of independent
equations whose characteristics are independent of m
and therefore identical to those of axisymmetric

modes. An exception, however, is the set of purely
Žtoroidal modes, which is a degenerate case Rieutord

.et al., 1999 .

3.2. Viscous solutions

As may be foreseen, viscosity will regularize the
above solutions by smoothing out all the singularities
and also removing an eventual degeneracy.

As shown by Fig. 2, the amplitude of a mode in
the asymptotic regime is concentrated along the limit
cycle of the characteristics. These ‘‘rays’’ were first

Ž . Ž .Fig. 2. Plots of the viscous dissipation left and kinetic energy right in the meridional plane for two axisymmetric inertial modes
associated with a periodic orbit. Note the amplitude increase near the axis and the appearance, in the mode with vs0.404, of some energy
along the characteristic grazing the inner sphere at the critical latitude. L is the number of spherical harmonics used to compute such
solutions, N is the number of points in the radial grid, and t is the damping rate. Stress-free boundary conditions are used in both cases.r

The tickmarks on the inner shell shows the critical latitude.
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observed in a spherical shell by Hollerbach and
Ž .Kerswell 1995 in the case of the spin-over mode,
Ž .and Tilgner 1999 generalized these computations to

the spheroidal shell; rays are in fact detached shear
layers which are very similar to the stationary Stew-

Ž .artson layers described in Moore and Saffman 1969 .
Previous attempts to describe these layers may be

Ž . Ž .found in Stewartson 1972 , Walton 1975 or more
Ž .recently Kerswell 1995 ; unfortunately, these works

overlook the nested structure of these shear layers
1r3 Ž 2and focus mainly on the E scaling Esyr2V R

is the Ekman number with y as the kinematic viscos-
.ity and R the radius of the CMB . However, as
Ž .noted by Rieutord and Valdettaro 1997 and Din-

Ž .trans et al. 1998 , velocity gradients in these layers
rather scale with E1r4 and therefore imply a damp-
ing rate of the modes scaling as E1r2 whatever the

Ž .boundary conditions no-slip or stress-free . The de-
tailed analysis of these nested layers, which contains
both scalings E1r3 and E1r4, will be presented in a

Ž .forthcoming paper Rieutord et al., 1999 .
Also shown in Fig. 2 is the axial singularity

emphasizing the ray near the axis. The singular
grazing characteristic also shows up in the back-
ground as another, but much less intense, shear
layer.

4. Implications for the dynamics of the core of the
Earth

We shall now discuss two aspects of the dynamics
of the core which may be affected by the special
nature of inertial modes in a spherical shell. These
are the role of the elliptical instability in the geody-
namo and the detection of inertial modes of the core
in the oscillation spectrum of the Earth.

4.1. Elliptical instability

The elliptical instability may be understood as a
parametric instability of a rotating fluid which desta-

Žbilizes some non-axisymmetric inertial modes Lumb
et al., 1993; Kerswell, 1993; Kerswell and Malkus,

.1998 . In the case of the core, the parametric forcing
comes from the deformation of the CMB and ICB by
the tidal potential. The growth rate of the instability
is of the order of ´Vr2, where ´ is the tidal

y8 Želongation of around 5=10 at the CMB Al-
.dridge et al., 1997 . This growth rate must be com-

pared to the damping rate of inertial modes which
comes from both the Ekman layers and the internal
shear layers. As mentioned above, these layers imply
a damping rate scaling with E1r2, which is of order
10y8 when molecular viscosity is taken. This is of
the same order as the growth rate and therefore we
cannot conclude. However, as mentioned by Rieu-

Ž .tord 1995 , the damping rate may be strongly in-
creased if the shear layers develop some turbulence.
To evaluate this possibility, we now compute the
Reynolds number associated with the E1r4-layers.
We have

ResRoEy3r4

where Ro is the Rossby number of the flow. If we
estimate the amplitude of the velocity field from the
amplitude of the tidal deformation at CMB, Vs

Ž . y6´ Rr 6 h , we find V;8=10 mrs and thus Re;

1.5=104, which is large enough to bear some turbu-
lence. However, such turbulence cannot appear since
the time scale of the shear instability T ;
Ž 1r4.RE rV;530 days is much larger than the pe-
riod of forcing.

From this discussion it is clear that the elliptical
instability cannot be dismissed because of the singu-
lar nature of inertial modes. Other mechanisms of
dissipation like Ohmic diffusion also operate, but it

Ž .was shown by Kerswell 1994 that this latter mech-
anism is no more efficient than the viscous one.
Therefore, we still cannot exclude that this instability
may play some part in the geodynamo by, for in-
stance, triggering the inversions.

4.2. Core oscillations

As the detection of core oscillations is a very
good way of getting information on the core, it is
important to consider the first implications of the
peculiar nature of inertial modes. The foregoing
discussion has shown that the damping rate is a
priori not much changed by the presence of shear
layers: it is likely enhanced, but the scaling is still
the one given by Ekman layers.

The new point raised by the shape of the modes
concerns their excitability. At time scales of the
order of a day, the exciting mechanisms are basically
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Fig. 3. Lyapunov exponents as a function of the frequency for trajectories of characteristics in shell with aspect ratio hs0.35. The
right-hand plot is a zoom on the frequencies close to the period of a day. On such diagrams the spikes of the curves in fact go to minus
infinity: they correspond to orbits which touch the inner sphere near the critical latitude.

the tidal potential or the precession of the core, both
of which are large scale forcing. Because of the
shape of inertial modes, featuring thin shear layers,
the response is likely to be weak.

The best candidates are all the modes with the
same symmetries as the exciting sources and with
close frequencies so as to resonate. At first sight,
these are the purely toroidal modes, which are large-
scale modes. The first of them, the Poincare mode´
Ž .ms1 , is indeed already detected as the Free Core

Ž .Nutation. The second one ms2 would have been
a good candidate, since it has the same w-depen-

Ž .dence as the tidal potential and a period 36 h close
to a multiple of the tidal forcing; but it has the wrong
equatorial symmetry, since the tidal force is a poloidal
field.

To search for other candidates, one may look in
the ‘‘windows’’ defined by the Lyapunov exponent
associated with the limit cycle of the frequency as
shown in Fig. 3. Indeed, at each frequency one may
compute the trajectory of characteristics which
generically converge towards a limit cycle as illus-
trated by Fig. 1a. The rate of convergence is mea-
sured by the Lyapunov exponent, which is defined
by

N1 dunq1
Ls ln with N™`Ý

N dunns1

where u is the colatitude of the nth reflection pointn

along the characteristic path. In other words, L is

Žjust the mean taken along the path of character-
.istics of the logarithm of the contraction or dilation

of the application which maps the nth reflection
Ž .point into the nq1 th. The convergence of charac-

teristics towards a limit cycle implies that L is
negative. 1 In the asymptotic regime of small Ekman
numbers, least damped modes will be found in re-
gions where the map is not converging too rapidly
and therefore in regions of the spectrum where the
Lyapunov exponent is close to zero. Indeed, it turns

Ž .out from Rieutord and Valdettaro 1997 and Din-
Ž .trans et al. 1998 , that shear layers appears only if

the Ekman number is below some critical value
depending on the length of the limit cycle; short-
period orbits show first their shear layers and corre-
spond to more strongly damped modes; longer ones

Ž .corresponding to low absolute value of the Lya-
punov exponent seem to be associated with least-
damped modes. Such a window with small Lya-
punov exponent exists around the frequency of a day
as shown by Fig. 3b. One may thus find some ms2
modes excited by the tides but their detection will be
difficult because of the oceanic and atmospheric

Žtides. Another window around vs62V period
.around 17 h may be more favourable as it is outside

1 It may be zero for some exceptional values of the frequency
for which the map is either neutral or algebraically converging.
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the tidal bands, but as a consequence the excitation
mechanism of such modes is much less clear.

One may wonder how small perturbations like the
flattening of the CMB or ICB, or a difference be-
tween the true value of h and 0.35 may influence the
shape of the Lyapunov exponent curve. Long-period
orbits are indeed sensitive to slight changes in the
boundaries shape but they transform in most cases
into other long-period orbits which still have a small
Ž .in modulus Lyapunov exponent. On the other hand,

Žshort period orbits which are responsible for the
.spikes in the diagram are not much affected by such

slight changes. The main reason is that their position
in the spectrum is controlled by the value of the
critical latitude q ; i.e., the latitude at which charac-
teristics graze the inner boundary. This angle changes
only slightly with the flattening ´ according to the
law

qsq y´ sin 2q0 0

when ´<1. Changing the aspect ratio h by 1%
implies no perceptible difference in Fig. 3. There-
fore, we may say that the Lyapunov curve as shown
by Fig. 3 is structurally stable.

5. Conclusions

To briefly conclude this note, we may stress the
fact that order of magnitude arguments, taking into
account the special shape of inertial modes in a
spherical shell, cannot rule out the possibility that the
elliptical instability might play some role in the
geodynamo. More detailed calculations are needed to
give a reliable answer to this interesting question.
The same conclusion also applies for the observa-
tions of core modes: here too more detailed mod-
elling including the forcing mechanisms, is needed to
guide the search for such modes.
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