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Abstract. Nonradial gravity modes of a.5M rotating leading to Zeeman-like multiplets which allow to infer both the
ZAMS star are investigated using the anelastic approximationode degreeéand the mean rotation rafe(see e.g. the study
Formulating the oscillation equations as a generalized eigerfthe white dwarf PG 1159-035 by Winget et al. (1991)).
value problem, we first show that the usual second-order per- In the case of rapidly rotating variable stars, the ob-
turbative theory reaches its limits for rotation periods of aboserved multi-periodic spectra do not show uniform spacings and
three days. Studying the rapid rotatickgime, we develop a second-order (at least) effects of rotation on the splitting need
geometric formalism based on the integration of the charactiy-be taken into account. This was realized for instance with
istics of the governing mixed-type operator. These characterultiperiod 5 Cephei starg (Saio, 1981; Engelbrecht, 1986),
istics propagate in the star interior and the resulting web c8outi stars|(Breger et al., 1999; Pamyatnykh et al., 1999) or
be either ergodic (the web fills the whole domain) or periodi@oradus stars (Aerts & Krisciunas, 1996); the splitting coeffi-
(the web reduces to an attractor along which characteristics étentC!  being calculated from the theoretical works of Saio
cus). We further show the deep relation existing between t{#981) or Dziembowski & Goodé (1992).
orbits of characteristics and the corresponding eigenmdijes:  Another possibility, first proposed by Clement (1981), to
with ergodic orbits are associated regular eigenmodes which deal with rapid rotations is the computation of eigenfrequencies
similar to the usual gravity mode§i) with periodic orbits are with rotation terms directly inserted in the linearized dynamical
associated singular eigenmodes for which the velocity divergeguations. However, because of the spherical harmonics cou-
along the attractor. If diffusivity is taken into account, this sinpling, this leads to a large system of coupled equations which
gularity turns into internal shear layers tracing the attractor. As hardly tractable. In addition, the convergence of eigenfre-
a consequence, the classical organization of eigenvalues alqungncies becomes doubtful for high-order g-modes for which
families with fixed(¢, n) disappears and leaves the place to aotation effects are especially significant (Clement, 1998). Lee
intricate low-frequency spectrum. & Saio (1987), with a similar non-perturbative approach, com-
puted the gravity eigenmodes of a )., main-sequence star
Key words: stars: individualzy Doradus — stars: oscillations —by including the Coriolis term but using only two spherical har-
stars: rotation monics. Their main conclusion is that avoided crossings, similar
tothose caused by evolution effe¢ts (Aizenman et al., [1977), oc-
cur among eigenmodes as the rotation increases. In a following
1. Introduction paper, Lee & Baraffe (1995) examined the pulsational stability
of rotating OB stars by computing the nonadiabatic oscillations
Following the pioneering work of Ledoux (1951), the influencgf a 5 A, and a 10M;, main-sequence stars still using two
of the rotation on nonradial oscillations is generally achieveghherical harmonics. They also found similar avoided crossings
by the means of a perturbative theory, i.e. oscillation frequenghid showed that the second-order effects of rotation are not so

in the co-rotating frame is written as effective at influencing the pulsational stability of the oscilla-
_ (0 CI 0 CII 02 4+ 003 1 tions. . .
Ontm = Opg + CromQ 4 Crpn 2”4+ O(2°) @) In our preceding paper, Dintrans et al. (1999) (hereafter

h ) is th turbated f f de with dreferred to as [l]) have been able to compute the gravito-
wherea,,, 1S the Unperturbated frequency ot a mode With A€z o 51 modes of a stably stratified rotating spherical shell
greel and radial ;)rden, m |}sjthe a2|muthal_n_umber Sl_JC_h tha ith much more spherical harmonics (up to 300). Using the
t<m <40 andC are two splitting coefficients Boussinesq approximation (i.e. the fluid is assumed to be quasi-

nfm ném
depending on the non-rotating solution afds the uniform incompressible), the Bruntaisala frequency is simply propor-

rot{:\tlon rate. For slowly rotating stars such as the Sun Of M&Whal to the radial distance and many mathematical results are
white dwarfs, the second-order effects of rotation are negligi f

own (Friedlander & Siegmann 1982a, b). On this problem, we
Send offprint requests tdintrans@obs-mip.fr discovered a new fascinating feature of rapidly rotating fluids,
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namely the preponderant part played by the underlying chartwo parts{(i) one part corresponds to eigenvalues wit(2
acteristics of the governing mixed-type operator. In fact, werganized along families with fixetY, n, m), associated with
showed that the shape of eigenfunctions are deeply conne@ggbdic orbits, and which may be identified as gravity modes
to the characteristic orbits. When focusing occurs (i.e. chargeerturbed by rotatior{ji) the other part corresponds to a chaotic
teristics can be attracted along a limit cycle), many eigenmodsistribution of eigenvalues with <2(2, associated with attrac-
shape internal discontinuities which have important specttats, and which may be identified as inertial modes perturbed by
consequences since the classical ordering of eigenvalues \eitloyancy. Finally, we conclude in Sect. 4 with some outlooks
fixed (n, £) disappears. of our results.

In this paper, we adopt a more realistic model based on the
anelastic approximation to study the gravito-inertial oscillations
ofa1.5M zero age main-sequence rotating star obtained frofNthe anelastic model
the evolutionary code CESAM of Moreél (1997). The star param-
eters areR = 1.427Rq), log g = 4.304, log(L/ L) = 0.481, As shownin paper [I], the modes which are the most perturbed
logT, = 3.805, X = 0.74 andZ = 0.02; they correspond by rotation are those for which<22 whereo is the mode fre-
to those of a typicaly Doradus star. Rotation first perturbs gduency an@(2 is the Coriolis frequency. The typical rotation
modes (owing to their larger periods) thereforBoradus stars period fory Doradus-type stars is about one day which leads to
are among the best candidates to test the influence of rotaf@éh~ 150 uHz. At such rotation rate, only low-frequency grav-
on stellar oscillations. Since the work of Balona et &l, (1994§y modes are strongly modified by rotation. Since the frequency
they have been identified as a new group of pulsating stars (§é@ gravity mode decreases with increasing ondésee e.qg.
Handler & Krisciunas[{1997) for a representative list and Aerténno et al. [(1989)), rotation first perturbs high-order gravity
et al. [1998) for the latest observations with Hipparcos). Th&jodes.
are located upon or just above the main sequence, near the cooBecause of their low frequency, these modes propagate in
border of they Scuti instability strip (with a mean spectral typefluasi-hydrostatic equilibrium, i.e. with very small pressure fluc-
FOV) and the observed periods of oscillations range from g@ations. This justifies the use of the anelastic approximation
d up to 3 d. Typical rotational velocities are 60 kmis(from Where pressure fluctuations hardly contribute to density fluctu-
18 up to 185 kms!) which corresponds to mean rotation periations; hence, in the adiabatic limit, we have
ods from0.5 up to4 days (e.g. 0.96 d foy Dor, Balona et al.
(1996)). Thus second-order corrections in the developriént S)l): P’ I Epg - N—ng
are not negligible, especially whet)) ~ €. 2 g g

The aim of this paper is first to show the limits of the second-
order perturba‘[ive theory app“ed to a |Ow-frequency graviWhereaS the fllterlng of acoustic waves in the conservation of
mode and then show how to compute non perturbatively tAEss equation leads to
modes of oscillation of a rotating star. In Sect. 2, we present
our anelastic model and the numerical methods we use to sal¢{pv) = 0
the associated generalized eigenvalue problem. We illustrate in
Sect. 3.1 the capability of this non-standard approach by coktere N2 denotes the square of the Bruniigala frequency
puting gravity modes without rotation. In Sect. 3.2, we stasind £, the radial Lagrangian displacement. We note that a
from a high-order g-mode witli = 5 andn = 21 and ap- very similar approximation has been used by De Boeck et al.
ply an increasing rotation rate through the Coriolis force. Th{@992) to study the low-frequency g-modes of non-rotating
large radial order allows us to use asymptotic limits for thestars; this work is in fact based on the so-called subseismic
splitting coefficients”!, andCZ . We then show thatthe dif- approximation used in geophysics (Smylie & Rochester, 1981;
ference between the true eigenfrequency and its second-offéiéedlander, 1985). The only difference with our anelastic
approximation gets so large fotDoradus-like rotationgdgimes model concerns the conservation of mass equation where these
(2Q2/0 ~ 0.1) that modes identification is not possible with apauthors kept the ternv2/gu,. coming from the time deriva-
proximated values. tive 9p’ /0t. In fact, this term can be neglected as we will show

Therefore, letting apart the perturbative approach, we inves-a following paper. Finally, the high radial order allows us
tigate in Sect. 3.3 the case of rapid rotations through the geo-use the Cowling approximation (Cowling, 1941) where the
metrical formalism used in [l], i.e. we integrate the differentigberturbations in the gravitational potential are neglected.
equation for the characteristics of the mixed-type operator gov- Let us now choose the star's radius for the length scale, the
erning the nonradial oscillations. We find both ergodic orbitdynamical time T, = (R®/GM)'/? for the time scale and
where the web of characteristics fills the whole domain, and messume a time-dependence of the fesm(iot). In addition, as
riodic orbits, where the characteristics focus along an attractae shall concentrate on the effects of Coriolis force, we will dis-
Computing the corresponding eigenmodes in Sect. 3.4 revezdsd all centrifugal effects and assume the star spherical. Then,
us once again the deep relation existing between the orbitdrothe adiabatic limit, the non-dimensional linearized equations
characteristics and the shape of the associated eigenfunctifmsgravito-inertial eigenmodes in a co-rotating frame are given
As a consequence, the spectrum appears to be roughly dividgd
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divu =0

d {—1
/\wfn = f{Aé,m |:’I“ r‘:;: + (2 — E)ufnl}

M+ f(e, x u) = —VP' — N%(e, )

41
A =ty +At1,m [TQZ: +(C+ 3)“21} - ZTwan}
where P’ denotes the non-dimensional reduced pressure, Pt dul
pv the non-dimensional momentuy, = p&, andX = iw with ) {TZ “2m 4 4r tm, +(2 - A)ufn] = ANZCme
w = oTay,. The rotation appears through the Coriolis term dr dr

f(e. x u) where the parametgftis related to the ratio between

the dynamical time scale and the rotation period as f{Be {(ﬁ ~wh rdwfn‘l] (5)
o m dr
Tay, R3
=47 =20 —— 3 dwbH
! T Trot GM (3) —Bitim [(f + 2)wf’,f1 + TUC][:]
Inthe solar case, we haye, ~ 10~ whereas atypical value for B2ul du’
. ! ) . . . m | od%u, Upy, ¢
rapidly rotating stars i§ ~ 10~!. For instance, the minimum +i— -+ Ar—" 4 (2 = Auy,
. . . A dr dr
rotation period observed farDoradus stars is of about one day.
As the dynamic time scale of our test star ig,,J ~ 37 mn, it '
leads tof,,.. ~ 0.3 which is the maximuny-value considered AGn, = Uy,
later on. _ _ ‘whereA = ¢(¢+1) and
At the star center, we impose the regularity of the velocity
and hence ofthe Lagrangian displacement. At the surface, things 1 /02— m2 9 o
are more involved since, as suggested by De Boeck etal.(1992)m = pz\/ 42 —1 ° Ben = (67 = 1A, m)  (6)

the classical free surface conditié®® = 0 is not compatible ) . . )
with the anelastic approximation. This approximation indediye also project the boundary conditions on spherical harmonics
requires that the radial component of the Lagrangian displa@@-d obtain

ment is such a§, o w?/N?. As|N?| becomes very large near ( !, = w!, =¢{, =0 at r=0

the surface, it means thgt must vanish which is incompatible

with the conditiont, ~ w?¢;, resulting fromé P = 0 (&, being
finite and non-zero at the surface). Therefore we imgpse 0
and then),, = 0 atr = 1.

¢¢,=0 at r=1
The systenm(([5) may be written formally as

where) are the complex eigenvalues associated with the eigen-
Following Rieutord (1987, 1991), we expand the momentugectors,,, and M 4, Mg denote two differential operators.
and radial displacement perturbations on spherical harmoriigse solutions can be symmetrig{,+ ) or antisymmetric{,,,~ )

2.1. Numerics

as: with respect to the equator as
b
_ ¢ m ¢ m 0 m m(r um T (r
u= ; m; um(r) (4 + Um (T)SE + wm(T)Tﬁ merl(T) C;qr;le(T)
Yt [upt2(r) 00 Yo |l t2(r)
oo +f 2 (r) up3(r)
G=> > GurY(0,9) :
=0 m=—¢

The operatorgV 4 and M g are discretized on a multi-domain

whereY;™ (0, $) denotes the normalized spherical harmonidsauss-Lobato grid associated with Chebyshev polynomials

and

R" =Y/"(0,¢)e,,

The radial equations couplind,, (1), w’, (r) and¢’, (r) are
obtained by projecting the vorticity equation &j* andT";*:

Sy = vy,

leading to matrices of size abolitx N, whereL and N, are
respectively the truncation orders on spherical harmonics and
Chebyshev basis. The equilibrium Brun&igla profile N2 (r)
is also projected on the radial grid by the means of a cubic spline
interpolation [(Dierckx, 1993).

Two computations have been used to solve the generalized
eigenvalue probleni{7):

T} =V x R} (4)
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Fig. 1. Propagation diagram which gives the Brurii%ala frequency

] _ ; .~ Fig. 2. Spectrum of pure gravity modes fér= 5, 20. The structures
profile and the Lamb frequencyy = /(¢ + 1)cs /r profile for vari- o
ous/ in units of (GM/R?)*/2. Note the convective core which occy-Of the three modes labelléd 7 and A at/ = 10 are plotted in Fid.13.

pies about 13% of the star interior and the surface convective zone-.rhe orderr gives the number of nodes in the radial direction of the

associated eigenvectors.

1. adirect computation based on the QZ algorithm which gives
the whole spectrum of eigenvalugs
2. an iterative computation based on the incomplete Arnoldire spectrum of pure gravity modes is bounded\yy,... The
Chebyshev algorithm which gives some palrs v,,,) usual demonstration is achieved via a local analysis of a high-
around a given value of. order mode using a WKB method (see e.g. Unno ef al. (1989)).
We propose in appendiX(A.1) a more general demonstration
based on the study of the mixed-type operator governing the
3. Results global oscillations; this demonstration being later on extended
to the rotating case.
However, it is well known that a second condition of trap-
A classical approach to compute nonradial p or g-modes withquihg exists for gravity modes, namelly| < S,(r) where S,
rotation consists in solving a two-point boundary value problerns.the Lamb frequency. As we use the anelastic approximation,
This is achieved for instance by the means of shooting methahlis second trapping due to acoustic effects is not reproduced.
(Hansen & Kawaler, 1994) or relaxation methods with finiteFherefore, we should define a critidaValue to ensure that the
difference equations (Osaki & Hansen, 1873; Osaki, 1975).ciéndition |w| < S,(r) is also verified. It is achieved by the
is only recently that the formulation of the oscillation equationseans of the propagation diagram given by Eig. 1. We show in
as a generalized eigenvalue problem has been proposed (segtésgdiagram thatV(r) < S,(r) for £ > 5. As gravity modes
Pesnell[(1990) which used the secant method of Cdstor(197 pyppagate in the regidw| < N(r), it means that the condition
For our problem where infinitely many equations are coupled;| < Sy(r) is always satisfied for thedeand then ensures that
the use of shooting or relaxation methods is not convenient; ¥ anelastic approximation is valid as long as the radial order
therefore preferred the generalized eigenvalue problem formuwis high enough.
lation. However, as this method has not often been used in the Fig[2 shows the spectrum of pure gravity modes obtained
past, we find useful to show its capability on the standard casga QZ computation fob < ¢ < 20. As expected, the spec-
of gravity modes of a non-rotating star. trum is bounded by, .. ~ 4.7. To each( corresponds a set
Without rotation, the toroidal componenf, of the velocity of eigenvalues which are characterized by the number of node
alongT'}* decouples and the systelt (5) reduces to the following the radial direction of their associated eigenvectors. This is

3.1. Pure gravity modes and propagation diagram

simple form: illustrated in Figl_B which gives the corresponding eigenvectors
2 dct N2 for the three modes labelled <7 andA in Fig[2 at¢ = 10. The
2 dC;n + 4r% +(@2-A)¢ = _Aﬁgf; (8) dimensionless mode frequencies are respectivgly~ 4.485
T T w

(first mode in the frequency order)y, ~ 2.756 (fourth mode)

with boundary conditiong/, = 0 atr = 0 andr = 1. Fromthis andwa ~ 1.837 (tenth mode). The first mode has no node, the
second-order differential equation ), it is easy to show that fifth mode as four nodes and the tenth mode as nine nodes; we
oscillations are trapped in radiative zones between concenthias recover that the number of nodes increases as the frequency
spheres of radiug such asw| = N(r() and, consequently, thatdecreases.
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Fig. 3.Associated normalized eigenvectors for the three modes labelled f

0,57 andA at¢ = 10 from Fig[d. These modes respectively admi;;ig.4_ Rotational splittings of the eigenvalue:g‘ig as [ in-

0,4 and9 nodes in the radial direction. Note the left shifting of the..a5ses. Eleven new eigenvalues appear accordingnto =
eigenfunctions as the frequency decreases because the change gfthg 1+ | o— J 3+ 14— 15+

turning radius-o given by N (ro) = w.
-2

10

3.2. The limits of the second-order theory

The Eq.[1) rewritten in non-dimensional form reads
win = why + C1f + Cof? + O(F%) 9)

where the rotation is now characterized by the free parameter
f. We calculate in appendix B the splitting coefficieatsand j3
Cs by the means of a WKB theory applied to a low-frequency
mode withn — +oc0 andw — 0; hence we find

m

Cr = 20 1078}

o, - L [ 2A=3 L A3 1 - |
7 L0 208 - 3) A(4A—3) " 8A? et A——E
n

which are, except for a small second-order correction, the coef-
ficients given by Chlebowski (19[13) Fig. 5.Relative error$wa1,5m — wen | /w21,5m as the rotation increases.
As a pedagogical example for testing the robustness Hgrew,, are the first- or second-order approximations given by the de-

the asymptotic developmeritl(9), we have chosen a very |O\/,g_lopmend:c9)whereasz wnem are the computed ones. The numbers

. . denote thém|-values.
frequency eigenvalue, such aéb? ~ 0520 with ¢ = 5 SN gml-values
and a high radial orden = 21. It corresponds to a grav-
ity mode with a period T;,. ~ 031 d (v = 37.3uHz). ) i i . )
Thus, eleven new eigenvalues,,, corresponding to the Perturbative theory. It is achieved in Fig. 5 where the relative
92¢ + 1 possiblem-values should be observed Asncreases, €MOrS|wa1 5m — win| /w21 5m have been plotted gSincreases.

whereas the symmetry/— of each mode is imposed as = We first show that the accuracy benefit induced by the
0-,+1%,+2-, +3+,+4—, +5% because of the parity of theSecond-order correction depends on thealue. For instance
non-rotating eigenvector. at f = 1073, the agreement with the true eigenvalue is about

Fig[d shows the splitting of the non-rotating eigenvali@ thousand times better fom| = 1 when the second-order
wé% asf increases. As expected, we observe eleven new eigFﬂ[re_Ct'on Is taken Into account. on f[he contrary, we just get a
values. Comparing these eigenvalues with the approxima B .t|-mes more precise t.heoret|cal egenvaluesivﬂqr: 5. In
oneswy;, predicted by[(B) allows us to test the second-ord dition, we note that th_|s accuracy d|fference tend; t.o be Iess_
pronounced as the rotation increases since the precision benefit
! Conversely, the asymptotic formula (117) given by Dziembowsk just about one hundred timesfat= 0.1 for || = 1 while the
& Goode [199P) is not compatible with our results. improvement is still by a factds in the casém| = 5. It means
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that among the non-axisymmetric modes, the large-scale onesd in [I] (i.e. theF,, E5, H; and Hy-modes) remains valid
(i.e. with a smalln) are the most sensitive to rotation. In othebecause it only depends on the spectral properties of the gov-
words, taking into account a second-order correction leads toeaning operator and not on the equilibrium profiles (except for
improvement of the eigenvalues with smiail| whereas those the Brunt-\aisala one). Thus, we define the same four types of
with large|m| are not much improved. modes but we add a tilde to emphasize that the shape of the
As long as the difference between the true eigenvalues ass$ociated critical surfaces are different:
the perturbatlvg ones are smaller_than the freque_ncy resolut_lcln the E-modes correspond 1o > f with the two sub-classes
of the observations, the perturbative theory remains useful, i.e.
the identification of the observed frequency with its counterpart  F; :  f < w < Nyas
calculated from the Qevelopme (9) is possible. Forinstance,  F, . max(f, Nyeo) < w < (f2+ N2,
the expected precision on eigenfrequencies measured by the
satellite COROT is abouit 1 xHz (Michel, 1998). For a gravity — the H-modes correspond to < f with the two sub-classes
mode withv = 37.3 uHz, it corresponds to a relative error of
aboutl0~3. Thus, using Fid.]5, itis clear that the first-order per- ~ )
turbative theory becomes rapidly inapplicable since the relative 121 0 <w < min(f, Nnaz ) (12)

errors eq“f‘g(_)_g for f ~ 4 x 107 if |m| = 1,2,3,4 and for In an astrophysical context, it is clear that tHe-modes
f~8x107%if [m| = 5. It corresponds respectively to rotationsannot exist becauge< N, In fact, with the Brunt-\isala
perlods of about eight andfourdays: As atypical rotation pen?,qof”e given by FigZL, it turns out that thE,-modes would
is about one day foy Doradus stars, it means that second-ordgpy exist with f5 which is larger than the keplerian limit
corrections (at least) are necessary to understand the obse?\/e:d2 In the same way, thB,-modes are marginal because of
frequency splittings of these stars. We note that the case0 the narrowness of their’spectral interval (i@ax(f, Nywas) =

is less affected since corrections &¢f?). 2 2 N1
. Nymae and N, /2~ Npae for £<0.3). Therefore,
Unfortunately, it turns out that the second-order perturba- (F% + Ninao) /<03)

tive theory also reaches its limits forDoradus-like rotations onIy_theHg- "’?“dE 1-modes are relevant to stars and have been
in the casen + 0. In fact, for f = 0.1 (i.e. a rotation period of studied in this paper. We note th&}-modes correspond to

about three days), the second-order approximation is in errorqﬁss'Cal gravity modes more or less pe_rturbed by rotat|on..
~ 5 x 10-4, a value very close to COROT's precision. Thus Another new mathematical feature introduced by rotation

in order to increase once again the accuracy of the theoretita) c€"MS the characteristics of the governing operator. With ro-

eigenvalues (this accuracy being already improved of about thl"ﬁt-'Qr;’ thesg characteristics are dzefined by the following differ-
dred times when second-order corrections is taken into accofifif@! equation (see appendiX A.2):
at f = 0.1), a third-order perturbative theory seems necessaqy  N2sz + ['1/2
for such rotations (see Soufi et al. (1998) for a first attempt jj,. = 2,2 _ ny2,2 (13)
this direction). However, as shown by this latter work, develoe\; —

. . . herel is given by
ments of the third-order approximation are quite cumbersome
and therefore make the use of a non-perturbative theory prefer= w?N?s? + (2 — w?)(w?r* — N?2?) (14)
able.

)12 (11)

ﬁliNmaz<w<f

and(s, ¢, z) denote the usual cylindrical coordinates. In [I], we
have shown that many interesting properties of gravito-inertial
3.3. The web of characteristics modes can be deduced from the web of characteristics obtained

er integrating[{13). The characteristics, which reflect both

Restoring the rotation into the dynamics equations dramaticzﬂ%g the boundari d on the critical surf indeed sh
complicates the mathematical side of nonradial oscillations. € boundaries and on the critical surtaces, indeed Shape a
b whose structure gives useful indications on the nature of

instance, we have shown that pure gravity modes propag4t¢ : ) ) "
P g y prop gt e corresponding eigenfunctions. As the critical surfaces have

in a domain confined between concentric spheres of ragdius " licated f h it differ f
such asN(rg) = w. It means that we deal with a governin resently more comphicated forms, these patterns differ from
ose obtained in [I], especially with thié;-modes. However,

operator of mixed type whose turning surfaces, according i h k its rel it will be sh
the spherical symmetry of the gravity force, are spheres. W S geometric approach keeps Its relevance as It wil be shown

rotation, this operator remains of mixed type but the associa . - . ~ ~
P yP Typical webs of characteristics associated withand F; -

critical surfaces are no longer spherical owing to the cylindrical . o .
gersp g y odes are illustrated in Figl 6. We first note that the character-

symmetry of the Coriolis force. The equation ofturningsurfacé@t_ traiectori diff t th iated with
reads now (see appendix .2 for a demonstration): istics trajectories are very different: those associated with an

H,-mode propagate both in the convective and radiative zones
Wr?(N? 4+ f2 —w?) — fAN222 =0 (10) while those associated with @ -mode remain trapped in the

, radiative zone. AsSV2(r) ~ 0 in convective zones, the differ-
In paper [I] whereN(r) « r, these surfaces are either el-

L i ential equation[{I3) becomes
lipsoids forw > f or hyperboloids forw < f. In the present

case, we have a more intricate profigr) and the shape of dz <f2 - w2)1/2

these surfaces is more complicated. However, the classificatjpn ~ w2 (15)
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and the characteristics are straight lines as in the pure ineréal, . p — 6x,| < € whered; is the latitude of the ith-reflection
case[(Rieutord & Valdettaro, 1997). On the other hand, forpmint on the outer critical surface amda given accuracy. In
mode withw ~ f, the differential equatiori_(13) takes the fornpractice, for each pattern, we first compiNg = 1000 reflec-

" " oo tions and iterate until the angular distanée,p — On,| is

— o~ (1 + 7) —_— (16) less than or equal to= 10~°, with a maximum of?,, = 1000

ds N/ §zr? =22 reflections. If the characteristics do not focus along a limit cycle
then the period of the orbit is set equaly, whereas a lower

In the radiative zone and whe¥ > w, this equation reduces . . .
v a period value means that focusing occurs. We note that the period

to . o\
and the length of an attractor are in fact the same. In addition,

dz ~_3 17) we have shown that the characteristics are almost circles in the

ds z radiative zone ifv ~ f. Hence, the periods associated with

which means that characteristics are almost circles as illustraféermodes (i.e0 < w < min(f, Nmao)) are always very long

by Fig[8a. and this is why only periods df;-modes have been computed.
Following the paths of characteristics, we obtain two kinds Fig.ld shows the period diagrams obtained for two values of

of orbits: (i) ergodic orbits which fill the whole hyperbolic do-the rotation ratef, saysf = 0.2 (T,o ~ 1.6 d) andf = 0.3

main (Fig[Bb)(ii) periodic orbits (hereafter referred to as atcTrot =~ 1 d). As in Maas & Lam [(1995), we have chosen

tractors) along which characteristics focus (Elg. 6¢c). In ordé plot —1/P instead of P to make the connection with the

to find all the attractors at a fixed rotation ratewe used the Lyapunov exponents computed in [I]. We obtain respectively

period diagram introduced by Maas & Lam (1995). The pd9 and 28 bands of periodic orbits fér= 0.2 and f = 0.3 for

riod P of an orbit is defined as the smallest integer such thahich P < P,,. Thus increasing the rotation deforms more and
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Fig.8a and b. Meridional sec-
tions of kinetic energy for two
axisymmetricE; - modes fn =
0T,f = 0.3) whom the orbit
of characteristics is either er-
godic a or periodicb; the su-
perimposed white lines showing
the theoretical attractor in this
latest case. To the ergodic or-
bit corresponds a regular eigen-
mode computable with low res-
olutions and without diffusion.
Onthe contrary, a singular mode
is associated with the periodic
orbit and its computation re-
quires the use of thermal dif-
\ fusivity with large resolutions
Mode 0% L=10 Nr=200 f=0.3 »=0.953 Mode 0" L=80 Nr=500 f=0.3 K=5x10"° which leads to internal shear
w= 0.821, 7=-3.834x107° layers following the attractor.

more the critical surfaces and the probability of focusing alsogood example of this association between ergodic orbits and
increases. Itis indeed important to note that no focusing occuegular eigenmodes. We have represented the kinetic energy dis-
in the non-rotating case; that is, all the orbits of pure gravityibution in a meridional plane for an axisymmettig -mode
modes are ergodic with w ~ 0.953 and f = 0.3. At this frequency, we show in

In these bands, all the orbits show the focusing of charact€ig.[8b and Fid-T7 that the underlying characteristics are ergodic.
istics along a limit cycle as illustrated by Hig. 6¢. The largefitmeans that an ergodic orbit leads to a regular eigenmode or, in
band we found is the one centered aroumd~ 0.825 for otherwords, toasmooth velocity field without any discontinuity.
f = 0.3, withwidth~ 10~3. The narrowness of these bands haa/e note that this result could be inferred from the non-rotating
important consequences as will be shown below. In additiazgse since, as mentionned above, we found that a space-filling
Fig.[A shows that attractors concentrate around the frequemab of characteristics is associated with every computed gravity
w ~ f.Itsuggests that only the low-frequency part of the speciode.
trum is concerned by geometric focusing; a result already found However, this correspondence between ergodic orbits and
in [1]. As a consequence, most of the orbits which are not in tlegular eigenmodes fails with thié;-modes. In this case, the
réegimew< f seem to remain ergodic as shown in Elg. 7. hyperbolic domain can be separated in three independent re-

gions (see Fid.l6a):

3.4. Relation with eigenmodes

W(ta).have found.,bvl\nt.h rt]he _characterlsuc pathsd, that two I(;_lndst;)_j a first convective zone near the center. In fact, this region
orbits are possible: the first case corresponds to ergodic orbits ;5 pe seen as a full unstratified sphere where pure inertial

which fill the whole hyperbolic domain whereas the second one modes propagate. Since the work of Bryan (1889), we know
corresponds to periodic orbits tracing attractors. In addition, the that eigenmodes exist in this configuration and are probably
period diagrams have shown that the ergodic orbits are the most, <o, ciated with ergodic orbifs (Rieutord et al., 1999).

numerous. The last step con_3|s_ts in determ!nlng the reIanon_bg-a radiative zone. Gravito-inertial modes propagate in this
tween the orbits of characteristics and the eigenmodes solutlonsstamy stratified shell and the orbits of the almost circular

of the generahzed eigenvalue probldm (7)-, ) characteristics are either ergodic or periodic with very long
_ The easiest case corresponds to ergodic orbits. AS N0 fOCUS-haiqds. Hence, regular modes associated with ergodic or-
ing occurs for the characteristics, the associated elgenfunctlons;bitS may exist

do not have to deal with any geometric constraint, except that of
matching of the critical surfaces. Therefore, as in [l], these er-
godic orbits should be associated with regular eigenmodes, i.e.
with a smooth square-integrable velocity field. [Eig. 8a shows

a second convective region below the surface. As near the
center, inertial modes propagate once again while being
now confined in a spherical shell. This new geometry (a
shell instead of a full sphere) strongly changes the physics

2 We cannot exclude the possibility of strictly periodic orbits for ~Since, apart from a set of purely toroidal modes no iner-
which characteristics exactly fold back upon themselves; however, this tial modes exist in the adiabatic limit for this configuration
kind of orbit has not been observed; either in the rotating or non-rotating (Rieutord et al., 1999) because all orbits focus more or less
case. rapidly along an attractor.
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Thus, itis clear that the surface convective zone sets a problem !
in the case of>,-modes. Starting from a regular eigenfunction 1
associated with an ergodic orbit at the center, itis possible tofind , ; ;0 L
at the same frequency a regular eigenfunction with an ergodic Eo
orbit in the radiative zone. At this stage, we deal with a reso- 1
nant coupling between an inertial mode and a gravity-like mode;
this phenomenon being already observed by Lee & $alo (1983) 0.0100 -
in the case of a 104 main-sequence star. But, as no regus<_ o
lar eigenmode can be found near the surface, a global smodth
eigenfunction existing in the whole domain is not possible. As a 1
consequence, computation of global adiabaficeigenmodes ;
is not possible.

Finally, modes associated with attractors are necessarily sin-
gular with non square-integrable velocity fields. Maas & Lam i
(1999), studying the propagation of pure gravity modes in a 540
two-dimensional parabolic basin, have shown that as the char- 0 1 5 3 4 5
acteristics converge towards an attractor, the spatial scale of the w
associated function (here the streamfunction) tendsto zerowhile =~ )
keeping a constant amplitude. In our case, the equation of ctfd?—' 9. Distribution 'nfhe complex plan@,’ K/Ir]) of th'f:' e'genvalues

.o . with f = 0.3, m» =07 andXC = 5 x 107°. The resolution id, = 22
acteristics[(13) has been also derived from the streamfunct% Nr — 100
operator which means that the spatial scale of the streamfunc- '
tion field also decreases as the limit cycle is approached. As

u oc Vo, it means that the velocity diverges along the attraghear layers which are well reproduced in the kinetic energy
tor and that the computation of the associated eigenmode is fligtribution. Then, as with the ergodic orbits, we obtain a direct

0.0010 g

possible without diffusion. correspondence between the periodic orbits and the associated
Therefore, we have taken into account the radiative damfigenmodes with diffusion.
ing of the eulerian temperature perturbatidriswhich, in the Finally, let us come back to the spectrum of gravito-inertial
anelastic approximation, are related to the eulerian density pgfodes. Using the QZ algorithm, we computed the whole eigen-
turbationsp’ by value spectrum in the axisymmetric case= 0 with f = 0.3
_1 and K = 5 x 10~°. This high K-value has been necessary

o=l . 5= (mnP) <81nP) to compute eigenvalues with reasonable precision (QZ method

T olnT P Olnp ) ; leading to large full matrices). Figl 9 shows the obtained eigen-

value distribution in the complex plarie, KC/|7]).

We first note that the spectrum is bounded (B¥?,,, +

N2 09 Y2 ~ Nypae ~ 4.7; this limit being in fact almost the same
T + = KV?T' 3 B= 5? (18) than those deduced from the spectrum of pure gravity mode
in Fig.[2. In addition, we also find again the same organization

where we have neglected the derivative of the thermal diffusief eigenvalues along branches with fixé¢h the regionw >
ity K = (4ac/3kp)T (x being the opacity). Restoring thermalf; the location of an eigenvalue in a branch still depends on
diffusivity leads to internal shear layers tracing the periodtbe number of nodes in the radial direction of its associated
orbit, that is the growth of the velocity along the attractor isigenvector. Therefore, we show ttliat-modes associated with
hindered by diffusive effects. If we suppose, as obtained in [Brgodic orbits behave like gravity modes; the only differences
that these shear layers scale with'* then the frequency vari- being the new frequency rangg N,,...| instead ofl0, N,,q.]
ations due to the radiative damping woulddeC'/2. As seen and the existence of some singular eigenmodes due to attractors.
in Sect. 3.3, the largest width of periodic orbit bandsi$0~3; We note moreover that the attractors bands are not visible in the
it means that these periodic modes will appear onty#10~°¢.  spectrum (especially the largest aroune- 0.825) because the
Above this critical value, attractors cannot be detected. Astimermal diffusivity is too high. B
stars)C ~ 1072 in the radiative zone, attractors may exist In fact, the main modification of the spectrum concefths
but their computations are presently not feasible because of thedes withw < f. For these frequencies, eigenvalues are not
needed resolution. We thus choose to tiikke 5 x 10~® which  distributed along families which means that the 2D-organization
allows us to both emphasize attractors and use an acceptabta fixed (¢, n) is destroyed. We have shown ttfat-modes are
resolution. B notregularin the surface convective zone and restoring diffusion

Fig[8b shows the obtaindd; axisymmetric eigenmode for leads to internal shear layers. As a consequence, we cannot asso-
f = 0.3 andw ~ 0.821. As given by the period diagram atciate a well defined-value with these eigenstructures and the
f = 0.3 in Fig.[4, the characteristics focus along an attractoprresponding highly-damped eigenvalues are now randomly
at this frequency. With diffusivity, this attractor yields internadlistributed in the low-frequency part of the spectrum.

and7” satisfies the following energy equation
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4. Conclusions fixed (¢,n,m), (ii) those associated with attractors (some in

N [f, Nmaz] @nd those ifi0, f]) are randomly distributed.
We have computed the gravito-inertial modes dfa/; rotat- Finally, the above results have direct astrophysical applica-

N9 Z.AM.S starusing thg anelas'qc approximation. Re§t9r|ng ﬂﬂgns as far as eigenmodes associated with ergodic or periodic
rotation into the dynamic equations through the Coriolis forcgIibits are concerned. For instance. it is clear that regﬁ{ar

we formulate the nonradial oscillation equations as a generg : . .
. . : modes are the best candidates to explain the large scale oscil-
ized eigenvalue problem. Thus we have both studied the l?a =

Mions of rapidly rotating stars. In fadk, -modes with ergodic
rotation €gime with2Q2 < ¢ and the rapid rotation one with picly 9 ot 9

. . orbits behave similarly as the usual gravity modes. Eigenvalues
262 ~ o whereS} denotes the uniform rotation rate andhe  goq, 15 pe easily identifiable since the 2D-organization with
eigenfrequency.

; . . 1(‘ijxed (¢,n) remains valid.
Starting from a low-frequency gravity eigenmode an In th f sinaulaf or fI d iated with at
slowly increasing the rotation, we have first shown that the tn etﬁgse ot singu'aky olr (Qj_ryvqthecis'f?ss'oglati with at-
usual second-order perturbative theory reaches its limits fB?C ors, things are more involved. With diliusivity, these eigen-

rotation periods of about three days. Thus, in order to stull des shape internal shear layers along the attractors leading

more precisely the rapid rotatioegime, we have developed a? a high damping. Hence, these singular modes are promis-

geometric approach based on the integration of the characte g_vectprs Of, apgul_ar mome”t“m or chem_lcal _elements when
e nonlinear&gime is considered. Gravito-inertial waves have

tics of the governing mixed-type operator. To the two types read ted to bl . tant part in th |
modes which are astrophysically relevant correspond two kin cn already suspected fo piay an important part in In€ anguiar

of orbits: (i) ergodic orbits which fill the whole hyperbolic do_momentLtJmI reldg;ztgbuélotn in stlars |_nter|fors E!_ee 8;]Sa|ok,) 1993;I
main, (i) periodic orbits for which characteristics focus alonL<umar etal, ). But regular eigenfunctions have been al-

an attractor. Computing the corresponding eigenmodes, we h s invoked as support of this transport. Because very small

proved the direct relation existing between the orbit type and tﬁ%ales are ggnerated along the attractors, singular modgs W.OUId
shape of the eigenfunctions: e more efficient to transfer angular momentum; an application

in this direction will be developed in a forthcoming paper.

e with ergodic orbits are associated regular eigenmodes, in fnowledgementsiVe first thank Pierre Morel for letting us use his
sense that the velocity field is smooth and square-integralgiiliar structure code CESAM and Lorenzo Valdettaro for his collab-
Itis the case with the ergodi€; -orbits (v > f) but notwith oration in the numerical part of this work. We also thank C. Catala,
the ﬁg-ones L < f). J.-P. Zahn, G. Berthomieu and J. Provost for many fruitful discussions.

e With periodic orbits are associated Singu|ar eigenmodes Wmst of the calculations have been carried out on the Cray C98 and
no square-integrable velocity field. In fact, as the charact&wiitsu VP300 of the Institut du &veloppement et des Ressources en
istics converge towards the attractor, the spatial scale of {Rprmatique Scientifique (IDRIS) which is gratefully acknowledged.
streamfunction field rapidly decreases which means that the
vellocity diyerges along the periodic. orbit. Hence, COMpYyppendix A: properties
tations of eigenmodes associated with attractors require $¥&he mixed-type governing operator
use of a radiative damping to smooth out the singularities of _ _ _
the velocity field. Its leads to internal shear layers tracing tfel. Case without rotation: pure gravity modes

attrac.tor. Decreasing the thermal diffusivity also decr_easlglst_ his appendix, we derive the second-order differential equa-
the width of these shear layers therefore, as the adiabgfif, tor the meridional streamfunction of pure gravity modes
limit is taken, the shear layers are reduced to a simple liggy yecover that oscillations are trapped between concentric

corresponding to the final limit cycle for the characteristicgpheres and the spectrum is bounded\by,,. We start from
Hence, the amplitude of the velocity field tends to infinity, systemi{2) by eliminating the Coriolis term:
and no physical eigenmodes survive; i.e. the point spectrum

ofthe operator may be empty in the subintervals corresponfl-divu = 0
ing to attractors.
iwu = —VP' — N%e,
Concerning the spectrum of gravito-inertial modes, its shage
depends on the presence of diffusivity. In the limit of zero dif W = Uy
fusivity, on!y theF; -eigenmodes a}sspuajed with ergodic Orbltv%’/here we have substitutedvith iw. We consider axisymmetric
may remain because of the vanishing/éf-modes ¢ < f)

andE:-modes corresponding to attractors. With diffusivity, thrﬁT:) %dzfs(";;iiaw (;)Sand introduce the meridional streamfunc-
ergodicE’;-modes are the least-damped ones whereas those as-" "’

sociated with attractors and th&,-modes are highly damped — [

because of the small scales generated by internal shear lajers Rot (5%) + ug(s, 2)eq (A1)
aligned along the attractors. Hence, the spectrum is divided in

two parts:(i) eigenvalues which both are i, V,,.,] and cor- where(s, ¢, z) are the usual cylindrical coordinates. Then, tak-

respond to ergodic orbits are distributed along families withg the¢-component of the curl of the momentum equation, we
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obtain and restrict, as above, our attention to axisymmetric modes.
Hence, the equation verified by the meridional streamfunction
iov? (w%) _ aﬁ (N2, cos 0) — aﬁ (N2¢, 5in 6) ¥ (already defined iTA]1) is given by
S S z
0% 100 2\ 0%y
0 0 952 sos T\l T2) 92 =
= (cos@= —sind— ) (N?¢,) s s Os w? ) 0z
s 0z (A.6)

0 .0 N21 0 . 0
wheref denotes the co-latitude wheregasis related taj by 8 { cosf5- —sinf== | | —5 — | cosf —sinf-- | ¢

¢ = i} ( s Singﬁ) " whereas taking the leading order terms leads to
iw s 0z 52 5%
- . . . w? — N? cos® 0) == + 2N? cos 0 sin 0
Substituting:,., we obtain the following equation for the stream- ds 050z
function alone - ov o (A7)
2 _ 2 _ N2gip20) 27 vy vy _
2 100 0% WS sin”0) 52 +G<8s’az’w> 0
9s2 s ds | 922
0s s Os P 0z P As expected by the cylindrical symmetry of the Coriolis force,
=5 <Cos 60— —sin 9> we note that the only differences with the non-rotating case
9s 0z come from termsx 9%/9z2. Hence, the function® defining
N2 1 . . .
% [2 (COS eﬁ —sin 93) 14 (A2) th_e turning surfaces on which the operator changes type is now
0s 0z given by
As the type of a differential operator only depends on thdir = w’r*(N? + f* — w?) — f2N?2? (A.8)

leading order derivatives (see e.g. Zwillinger (1992)), we rewrite

(B.2) keeping second-order derivative terms only: Itis then clear that the critical surfaces are no longer spheri-

cal as for pure gravity modes owing to the new terff N222.

829 824 Setting to zero this term shows in addition that the spectrum
(@ = N? cos™ ) 55 +2N° cosfsinf with rotation is bounded byN2, . + f2)!/2; this limit being
s 502 (A.3) larger than those obtained in the non-rotating case. In the hyper-

. 924 Y Y bolic domain, a pair of real characteristics propagate following
+(w? — N?sin? 9)@ +F (85’ R ¢> =0 the differential equation
. . 2 1/2
This operator changes type on the critical surfece 0 where dz = % (A.9)
I is defined by ds  wir?— N2z
. ) Finally, we note that introducing an angular dependence of
['=wr (N° —w) (A-4)  the formexp(im¢) leads to the same equations for the critical

) . . surface and characteristics because the second-order terms are
and pure gravity modes only propagate in the hyperbolic domgjAchanged; the new tereit/9¢? = —m? being in fact of zero
defined byl' > 0 (they are evanescent in the elliptic domaigeriyative order.

I' < 0). As a consequence, the oscillations are trapped between
concentric spheres of radiug such asN(ry) = |w| and the

spectrum of pure gravity modes is bounded¥y,,. Appendix B: A second-order perturbative theory
using WKB theory
A.2. Case with rotation: gravito-inertial modes In this appendix, we calculate the second-order splitting coef-

In thi di lculate th f fth . ficients for a low-frequency gravity mode (i.e.— +oc and
n this appendix, we caiculate tne new form of the governing _, 0) and find a small correction to the second-order coeffi-
mixed-type operator when rotation is taken into account a

iven i ((1978). i
show how the critical surfaces and spectrum are modified cora%nt given in Chiebowsk! (1978). We start from the following

) mensional anelastic equations {pe= p¢ and P’
pared to the non-rotating case. We start from the full sydiém ng“ d = pg

with the Coriolis term: 02¢ —io2Qe, x ¢ = VP + N%C.e,,
. (B.1)
iwu + f(e. x u) = =VP' = N%(e, (A.5)  We expand. and P’ on spherical harmonics as

iwCr = uy ¢=al, R} +b,8"+c,T7 ; P =p,Y"

m
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whereR}’, S}* andT'}” are given by[(#). Hence, the projection

of Coriolis forcee, x ¢ reads

1

whereA = ¢(¢ + 1) and the coefficients!, ,,, and B, ,,, are
given by [6). As we deal with low-frequency gravity modes,
we now apply the same hierarchy between the radial functior}s

97

We then show, as in Dziembowski & Goode (1992), that
the couplingg¥, ¢ + 2) only contribute to the fourth order in
since substituting’F2 in Eq. [B2) leads to

Ry : (6B et — (04 1)Bog mehtt — imAbL | A

1 bin o8 l(ﬁ; > bl 5 6@ Z€+2 (b'lrrL’bf;zi>27bfrj4)
S & [Bemci ! + Beermey !t —ima, +b,,)] 7

which means thaﬁfl can be approximated to second order by
T - VA -1 -1 (—171
Pl A [an, = (E—=1)b N 5 b and
l m
m
(é + 1)A€+1,m [ m (E + 2)bz+1] Zxcin cfr‘lf‘l ~ AAlJrl,mbin

,m
Thereforep!, andp!, are related by

1 L,

al bl ¢ andp! asin Berthomieu et al (1978); thatis  0m = omBemd® T
plo<a <bl ~c with
. . . 2
which leads to the following coupled equations S (527 ) (ApmBom + Ars1.mBesim)
[ 1 dpin N .
Ym = 3 NZ g Moreover, we have to leading orderdpidr
i n 1 pl da%m 1 d2p£n
b, — = (Bemci ' + Bey1mel ) = —m — N2 dr?
™ R G ( 0. mCom, by 14+1,mC ) Bom® T dr N2 dr
and the final equation for the pressure alone reads
l .7 [ -1
e~ —i—— 0l —1)Ag b, "+ a2y A 2 _ N2l
m e Pm g P .
‘, = = 0 B.4
" r*  agmbBem 0?12 o (B4
41
(E+2)(+ 1) Ars1,mbiy ] We now apply a WKB approximation for the radial function
! (r); thatis
dalrn ~ A% pm(r)
dr — T r pl(r) = A(r)expiS(r)/6 ; §—0
where where the amplituded(r) and the phasé&(r) are assumed to
20 m be slowly varying functions (see e.g. Bender & Orszag (1978)).
n=— and By,=1- A Thus the WKB approximation of (Bl4) is
2 / 2
Hencec'*! are related te!, andc‘*? by i A A —2i— A’ k A= _ AN
6 a@,mﬁ&m 2
bl = 5 [(€=1)(€ —2)Ar_1,mbly® + AAymbl,]  wherek = dS/dr. The largest term on the left-hand side is
tom k*Ac? /6% and must balance the right-hand side therefore a
distinguished limit isy ~ 0. Hence we have
= i L [AAgprmb g 7
ﬁé m 012 A 1/2 N
OB+ 2) Ay ] P () N and A~ 12
O‘Z,mﬁ[,m

and the couplings in the equation fg; can be formally written

as

o

l,m

bl - n Céilo((

Bfm

or, in the same way,

2
> (bl b@i?)

n

bf,'l|r2 ox (
&

! (+2, 14+4
) (8L ;1)
(+2,m

and the phase functiafi(r) is given by

1/2
:t(aémﬁém) / N

Thus an approximate solution for the radial functigg(r)
is

®2) S

(B.3) pl,(r) ~ [k~ (Cl cos @ + Co sin SS‘T)>
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whereC; and(C, are constants to be determined by boundaBreger M., Pamyatnykh A.A., Pikall H., Garrido R., 1999, A&A 341,

conditions. If we impose!, = 0 atr = 0 andr = 1, we have 151
S( ) S( ) Bryan G., 1889, Phil. Trans. R. Soc. London 180, 187
1 —1/2 _: T : r)_ Castor J.I., 1971, ApJ 166, 109
~ Clk —~  with —=~ =
P (1) ~ ClR| ™ sin = Pa— Chlebowski T., 1978, Acta Astron. 28, 441

Clement M.J., 1981, ApJ 249, 746
Clement M.J., 1998, ApJS 116, 57

1 A 1/2 ,r dt Cowling T.G., 1941, MNRAS 101, 367
() / N? =nm

or, in a similar manner,

+— De Boeck I., Van Hoolst T., Smeyers P., 1992, A&A 259, 167
g Dierckx P., 1993, Curve and surface fitting with splines. Oxford
wheren denotes an integer. If we apply the same WKB for- U“'Veés'té_Pressd M. Vald | 1999, 3. Fluid Mech. 398. 271
malism to a high-order g-mode without rotation, we obtain tHg"'ans B., Rieutord M., Valdettaro L., 1999, J. Fluid Mech. 398,
. L . ziembowski W.A., Goode P.R., 1992, ApJ 394, 670
following well-known quantization rule for the non-rotating fre-

19 Engelbrecht C.A., 1986, MNRAS 223, 189
quencyoy (see e.g. Unno et al. (1989)) Friedlander S., 1985, Geophys. Astrophys. Fluid Dyn. 31, 151

a[,mﬁ@,m

\/K Tt Friedlander S. Siegmann W. L., 1982a, J. Fluid Mech. 114, 123
o9~ — N— Friedlander S. Siegmann W. L., 1982b, Geophys. Astrophys. Fluid
nm t Dyn. 19, 267
which means that Handler G., Krisciunas K., 1997, Delta Scyti N.ewslette.r 11,3
Hansen C.J., Kawaler S.D., 1994, Stellar interiors. Springer-Verlag
R N I e Kumar P., Talon S., Zahn J.-P., 1999, ApJ in press
o0 Ledoux P., 1951, ApJ 114, 373

Calculating the right hand-side by the means of a secort@® Y- Baraffe I, 1995, A&A 301, 419

. " Lee U., Saio H., 1987, MNRAS 224, 513
order development ife/o finally leads to Lee U. Saio H. 1993 MNRAS 261, 415

o m Maas L., Lam F.-P., 1995, J. Fluid Mech. 300, 1
(70 =1+ XUT) Michel E., 1998, In: Kjeldsen H., Bedding T.R. (eds.) The First MONS
Workshop: Science with a Small Space Telescope. Aarhus Univer-

2 sitet
4 {2(2A —3) m2 4(A - 3) + 12] } (Q> Morel P., 1997, A&AS 124, 597
4A -3 A(4A =3)  2A o0 Osaki Y., 1975, PASJ 27, 237

saki Y., Hansen C.J., 1973, ApJ 185, 277
8myatnykh A.,Dziembowski W.A., Handler G., PikallH., 1999, A&A
333,141

We thus recover the splitting coefficients of Chlebowski (197
with, however, an additional second-order correction equal 't

2 2
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