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Abstract. We analyse the two algorithms which have been used
in the past few years to determine the horizontal flow fields
at the Sun’s surface, namely the Local Correlation Tracking
(LCT) of L. November and the Feature Tracking of L. Strous.
Analysing the systematic errors introduced by LCT, we show
that these errors come from the averaging processes. More pre-
cisely, they arise from the interpolating step of the algorithm:
granules’ motions determine the flow on an irregular grid which
is then interpolated to derive quantities such as horizontal di-
vergence or vertical vorticity. Interpolation is therefore a cru-
cial step since mesoscale structures have mainly been studied
through divergences and vorticities. We conclude that a reliable
algorithm should be based on the tracking of coherent struc-
tures, like granules, since they are representative of the fluid
motion, and should contain an interpolator which keeps track
of the errors introduced either by location of the data (the shape
of the irregular grid) or by the noise in the data.
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1. Introduction

The dynamical properties of the photosphere and the turbulent-
convection scale hierarchy may be determined or constrained by
measuring velocity fields at the sun’s surface. The abundant ob-
servational evidence of mass motions inside the sun (i.e., solar
flows) indicates a large variety of types and scales of these flows.
The associated velocity fields may be determined by two meth-
ods: (i) the measurement of the classical Doppler effect, which
yields the velocity component along the line of sight; and (ii ) the
measurement of some tracers’ displacements, which yields the
horizontal flow. The combination of two such methods could
in principle give access to the three components of the surface
velocity field.

The Doppler measurements allow direct access to the mass
motions in the photosphere but it is quite difficult to get a long
time serie with high spatial resolution to follow the solar surface
evolution, since spectroscopic or spectroimagery techniques are
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quite involved: they require recording line profiles in a two-
dimensional field of view. In contrast, horizontal flows in the
solar photosphere can be measured from solar granulation track-
ing by using the usual imagery (large bandwidth) techniques.
Individual granules then act as tracers.

From the best mountain-top sites with good seeing, high
resolution time series lasting several hours have been obtained
(Muller et al. 1992, Simon et al. 1994). The use of tracers to de-
termine solar horizontal flows implies making the assumption
that we observe the horizontal motion of the plasma through the
granules’ motions. Indeed, the displacement of a bright feature
may be due to other effects: heat diffusion, travelling waves, etc.
The granule displacement is a combination of these effects with
the proper motion of the plasma, but it is generally assumed that
this latter effect is dominant and noised by the other processes.
On this basis, we can consider the tracers’ motions as a reason-
able tool to study flow patterns such as mesogranulation and
supergranulation which are presently associated with the main
convective scales in the solar photosphere and chromosphere.

The determination of granule motion is, however, not a sim-
ple matter and today only two techniques have been developed
by different groups: Local Correlation Tracking (LCT) by Shine
and November (November 1986, November and Simon 1988,
November 1989) and Feature Tracking (FT) by Strous (1994,
1995a).

However, the comparison of the results of these two tech-
niques applied to the same set of data (Simon et al. 1995, Strous
1995b), shows discrepancies in the resulting velocity, diver-
gence and vorticity fields. The disparity of the results is far
from satisfactory and claims for more robust algorithms in or-
der to discriminate real physical processes at the solar surface
from effects due to data processing. For instance, it is not clear
at all that the mesogranulation scale is a distinctive scale of con-
vection (Straus and Bonaccini 1997) and not an artefact of data
processing.

The aim of the present paper is to further investigate and
improve the two techniques, and then compare their results when
they are applied to the high resolution data collected at Pic du
Midi, the idea being to get the highest spatial and temporal
resolution for the horizontal velocity field. We can then use these
data to get a detailed picture of the dynamics of convection in
the photosphere.
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The paper has been organized as follows: In Sect. 2 we test
the LCT algorithm on artificial data and show the systematic
errors introduced. Sect. 3 is devoted to a presentation of our
algorithm, christened CST for “Coherent Structures Tracking”,
and which is an improved version of Strous’ Feature Tracking.
We then discuss (Sect. 4) one of the main problems of these
measurements, namely interpolation. In Sect. 5, using Pic du
Midi data, we illustrate the application of the CST algorithm
and present other tests on the LCT which we apply to binarized
data. Conclusions are drawn in Sect. 6.

2. Local correlation technique

2.1. Principle

The LCT algorithm is based on the fact that if an “intensity
pattern” is moved by the solar flow field, we may measure this
flow field by maximizing the local correlation of two succes-
sive sub-images which are shifted with respect to each other.
The shift which maximizes the correlation is taken as the true
displacement of the pattern.

As shown by Darvann (1991), the LCT algorithm has been
used by several authors to derive the horizontal velocity fields
in different types of solar applications (e.g. Brandt et al. 1988,
Title et al. 1989, Molowny Horas 1994, Wang et al. 1995, Kitai
et al. 1997, Roudier et al. 1998, Ueno and Kitai 1998).

2.2. The precision of the LCT

The results of this algorithm, in terms of precision, were first
tested by November and Simon (1988) through noise analy-
sis. Using an 80 mn image sequence, these authors estimated
that mean velocities could be evaluated with a precision as high
as 20 m/s. These first results were seemingly very optimistic;
indeed, the advent of a new method, namely Feature Track-
ing, promoted by Strous (1994, 1995a), prompted Simon et al.
(1995) and Strous (1995b) to make a comparison between the
two algorithms and the results have been particularly worrying,
shedding doubts on all previous measurements based on LCT.
The disagreement between the two methods especially affects
the flow fields of moderate or low intensities and, above all, the
velocity gradients such as divergences or vorticities.

Considering the complexity of the data processing it is not
too surprising that discrepancies appear between different algo-
rithms. It is more surprising, however, that an algorithm such as
LCT was never tested (to our knowledge) on artificial data and
its ability at restoring a given velocity field never shown. This is
the reason why we generated an artificial data set where granules
are replaced by intensity patterns in the form of ellipses or rect-
angles as shown in Fig. 1. These patterns move as solid bodies
in a pure translational motion; no distortion is introduced.

We thus make two plates and apply the LCT algorithm to
restitute the initial velocity field. From the result displayed in
Fig. 2, it is clear that, if one recognizes the original flow, some
noise or systematic errors (with 25% rms amplitude) are intro-
duced by the processing, while the Coherent Structures Tracking
algorithm gives back the original data.

Fig. 1. The artificial image used for testing LCT.

3. Coherent structures tracking

3.1. Principle

Feature Tracking (FT) is another algorithm first applied to solar
data by Strous (1994,1995a). The idea is to assume granules
are objects advected by an underlying flow which we wish to
measure. Of course, these tracers are not like aluminium flakes
in fluid mechanics experiments: they are not passive scalars but
rather (thermally) coherent structures of turbulent convection;
their contour is not precisely defined and their lifetime is short.
Despite these inconveniences, and provided we can define the
granule in a unique way, this method is certainly more reliable
at evaluating a horizontal velocity than the previously described
LCT.

The reason to assert such a statement relies on the physical
nature of granules. Their horizontal scale indeed represents the
smallest scale whose motion is almost entirely due to advec-
tion. It is a thermally coherent structure which naturally defines
the scale below which it is useless to measure a velocity from
isophot motion. From this point of view, it is clear that LCT does
not measure the motion of coherent structures as, for instance,
when the gaussian window comprises an intergranule lane and
parts of adjacent granules. It is therefore tempting, with this
technique, to over-resolve the data and generate meaningless
results.

The Coherent Structure Tracking (CST) algorithm, to be de-
scribed below, is an improved version of the one already used
by Strous (1995a). Our improvements may be summarized as
follows: before determining the zero-curvature contour which
defines the granule we first filter the image with a gaussian win-
dow which has the effect of removing some noise; once the
contour (and therefore the granule) is defined, we make the seg-
mentation; through opening operations, we further break narrow
isthmuses and remove thin protusions; finally, we eliminate all
granules which deform too much. The motion of granules is
pinpointed by that of the barycenter of the surface enclosed by
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Fig. 2. The original flow is simplyVx = K(x − 208) andVy = −K(y − 170). In the left-hand plot we show the sampling given by the
randomly distributed patterns of Fig. 1. The right-hand plot shows its restoration by the LCT algorithm using a 10 pixel gaussian window. The
flow is qualitatively restored, but large errors appear here and there. The application of the CST to the original flow gives back the data on the
left-hand plot. Axis units are in pixels (left) and tens of pixel (right).

the contour, while Strous (1994) tracks the intensity maximum
enclosed by the contour. We think that, in this way, tracking is
more robust, as it is not sensitive to intensity fluctuations inside
granules and represents more faithfully the mean displacement
of these coherent structures.

3.2. Cleaning the data: destretching and filtering

Before starting the CST algorithm, it is necessary to clean up
the images in order to remove, as much as possible, the “mo-
tions” due either to atmospheric seeing, instrumental distortion
or acoustic solar waves. This is done through three operations,
which are rigid alignment, destretching, and subfundamental
k − ω filtering.

The most critical point of this processing chain is the de-
stretching, which has the delicate task of removing effects of
atmospheric seeing and instrumental distortions. We shall there-
fore discuss somewhat the error which is generated by this op-
eration. For this purpose we use a set of seven images taken
every 50 ms with an exposure time of 2 ms1. For this sequence
the solar signal is identical and variations are only due to seeing
effects.

These seven images are rigidly aligned and destretched. The
segmentation (see Sect. 3.3 for a description) is then applied and
a ‘virtual’ displacement is measured. This gives an estimation
of the noise left by these two operations. An example of two
different images of this short sequence, after destretching and
segmentation, is shown in Fig. 3.

Over 409 total granules detected in an image, only 15 to 20
(∼5%) appear segmented in a different way. However, during
the whole burst, we could track∼95% of the granules because,
in general, the failing of segmentation occurs on the same gran-

1 These images are from the same film as those described in Sect. 5,
except that the pixel size is slightly smaller (75 km instead of 101 km).

Fig. 3.Two (magnified) images from the burst of seven images taken at
Pic du Midi on 20 September 1988; the pixel size is 75 km. Differences
between these two images (and between their segmented counterpart)
are only due to the atmospheric seeing.

ules. Hence, a consequence of distortions, is that some tracers
are lost during the processing of a long time-sequence.

From the seven destretched frames, the displacement of each
granule was measured; the result is drawn in Fig. 4. The distri-
bution is peaked around 15 km which corresponds in this case to
0.2 pixel (1 pixel = 75 km). This is much below the spatial res-
olution of the images, which is 2.4 pixels. This shows that even
if the frontiers of granules are blurred by the spatial resolution
of the instrument, the positions of the barycenters of granules
can be measured precisely, as is well known in astrometry.

If we consider that the seeing introduces a virtual displace-
ment of 0.2 pixel in the position of the barycenter of the granules,
the velocity of a granule lasting 160 s will be spoilt by an er-
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Fig. 4. A histogram of granules’ motions due to seeing effects.

Fig. 5. Percentage of variation of the area of granules produced by
seeing effects.

ror of 130 m/s (the pixel’s size now being 101 km). This is of
course an order of magnitude which corresponds to a rather high
resolution in time.

For all the granules, we also measured the variations of their
area. This is represented in Fig. 5 where we displayed the per-
centage of variation as a function of the area. The mean variation
is around 11%, which is consistent with the positioning error on
the center of gravity.

We therefore see that some seeing effects are left after the
destreching and alignment operations. However, this error is
acceptable since most of the granules are showing velocities in
the range 350 m/s–1 km/s (see below).

3.3. Segmentation

The next step is the segmentation;i.e., the transformation of the
intensity map into a binary map. This transformation is crucial
as it defines the objects whose motions are then measured. The
difficulty here is to find a criterion which defines the object.
A simple one is to use a threshold in intensity above which a
granule is said to exist. However, such a criterion does not work
properly if the intensity shows variations at scales larger than
the objects. After different tests, it appears that the criterion of
Strous gives the best results.

Fig. 6. An illustration of the effects of the convolution and opening
operations on the segmentation. The upper-left plot is the original im-
age. The lower-left is the segmentation of the image. The lower-right
shows the result of segmentation after a convolution of the image by
a 1′′ gaussian window. The upper-right plot is the result obtained after
opening operations on the lower-right picture. Note that this is the same
field as that of Fig. 3.

This criterion uses the intensity of three adjacent pixels,
I1, I2, I3 say, to define a local curvature of the intensity fielda
as

a = I1 − 2I2 + I3

This quantity is computed in four directions (x, y and diagonal
axis) to get a result invariant under rotations. When the second
spatial derivatives have the same sign in the four directions, for
example negative, the pixel belongs to a bright object, in the
opposite case it belongs to the dark intergranule.

However, before doing this segmentation we convolve each
frame with a gaussian window whose size depends on the pixel’s
size in arcsec; in general, we used a window size between 3 and 7
pixels. This smoothing reduces the noise and therefore improves
the computation ofa. In addition, we improve the segmentation
of the different objects present in the field of view by applying
a classical opening operation which breaks narrow isthmuses
and eliminates thin protrusions. This procedure is illustrated in
Fig. 6.

This segmentation method, which depends only on the lo-
cation of the “zero-curvature” intensity field, is local and inde-
pendent of the intensity amplitude (Strous, 1995a).

3.4. Labeling (2D)

Once segmentation is performed, objects are born and need to
be labelled in order that we can follow their evolution.

The labeling of each bright object in an image is performed
by using an automatic algorithm which follows the perimeter of
the detected object. Then all the points which are located inside
the external perimeter and which are also detected as bright
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elements are labeled with the same object number. Our labeling
method differs from the one of Strous in that we do not consider
as members of the same object those pixels which only share a
common vertex.

Once the objects are defined and labelled, we need to define
a point whose motion will best represent their motion. Since
our objects are in fact polygons with no features inside, the ap-
propriate point is simply the barycenter of the (constant surface
density) polygon. Its position can be computed from the points
defining its boundary; for a n-points polygon, it is

Xg =
1
3

∑n
i=1(x

2
i + xixi+1 + x2

i+1)(yi+1 − yi)∑n
i=1(xiyi+1 − xi+1yi)

Yg =
1
3

∑n
i=1(y

2
i + yiyi+1 + y2

i+1)(xi − xi+1)∑n
i=1(xiyi+1 − xi+1yi)

The derivations of these formulae are given in the appendix.
The horizontal flow velocities are determined from the dis-

placements of the barycenter of the objects, which keep the same
label during time evolution (see below). Let us note that here
too our method differs from the one of Strous, who follows the
maxima of intensity. We believe that our method is more reliable
since it is not sensitive to intensity variations inside a granule.

3.5. Time identification (3D)

The next step consists in identifying the trajectories of barycen-
ters for the whole time sequence. This step is complicated by
the fact that granules are not passive tracers of a horizontal flow.
Their shape changes during their lifetime and it is well known
that it is quite difficult to define the life history of a typical gran-
ule. Hence, splitting into multiple objects, merging of objects,
and disappearances or appearances between two successive im-
ages have all to be taken into account.

To circumvent this difficulty, we chose to track only the
most coherent objects (i.e., granules) whose deformation re-
mains below a given level. For this purpose, we use the ratio
f = P 2/A, whereP is the perimeter andA the area of the
object. This ratio measures the shape of the object and has ac-
tually been used to determine the fractal dimension of granules
(Roudier and Muller 1986). We use this ratio to fix a threshold
of the deformation rate. When an object experiences a change
of shape greater than this threshold, it is considered as a new
object which is tracked independently of the previous one. In
this way we filter out motions of barycenters which are due to
deformations of granules.

Finally, another criterion is also necessary to determine the
trajectories of barycenters. From one frame to the next we do
not allow the displacement to be larger than one pixel. This
is, however, specific to our data, for the spatial resolution is
0.14′′/pixel and two successive frames are separated by 20 s;
a one-pixel displacement is equivalent to a velocity of 5 km/s,
which is quite large.

When these two criteria are met, objects are labeled from
one frame to the next with the same number; otherwise, the
number is changed to a new one.

Hence, we construct a bunch of trajectories which non-
uniformly sample the field of view.

3.6. Time-averaging

The determination of velocities requires, however, that we de-
fine a time interval after which we measure the displacement.
This time interval should be as short as possible for the best time
resolution, but long enough so that the displacement exceeds
the spatial resolution. Hence, the smallest measurable velocity
is given by the spatial resolution divided by the time interval.
Sacrificing time resolution, we may detect very low velocities,
but we should not be too demanding about the precision of those
velocities; as we shall see below, some systematic errors are in-
troduced by the velocity field reconstruction (the interpolation
for short). If we wish to detect true motions among the noise of
errors, the velocities should be high enough. The shortest time
interval is therefore given by

T =
δx

δv
(1)

whereδx is the precision on the location of a coherent structure
andδv is the noise level introduced by the algorithm. Time win-
dows larger thanT may detect lower velocities but uncertainties
may be larger than the signal.

At this point it is worth underlining the danger of using
a sliding window. One may be tempted to use a rather large
temporal window, for getting a greater precision on the velocity,
but to shift this window by a time step smaller than the width of
the window. Such an operation gives a higher sampling of the
signal but the information is not independent; in fact, one is just
computing the convolution of the true signal with the window.
A consequence of this procedure when combined with a spatial
window, is to give the illusion that a phenomenon is continuous
in time while it is not; for instance, it may generate long-lived
structures from random appearances of short-lived structures.

Finally, let us discuss the question of the use of a given
time sampling. The ideal one would be, for a ground based
observation, series of bursts of images such as the one described
in Sect. 3.2. Each burst should contain many images so as to
evaluate seeing effects and should be separated from the next
burst by a time interval optimized for keeping track of the most
rapidly evolving granules. Each of these time intervals would
give one value of the velocity per granule.

4. Field reconstruction

Now comes what is certainly the most delicate point of the data
processing: namely, the recontruction of the velocity field as
a continuous function of space (and eventually time), and the
evaluation of its derivatives (i.e., the horizontal divergence and
vertical vorticity).

This reconstruction is a well-known and difficult problem of
data processing: using a random sampling of a continuous func-
tion (the data), how can we reconstruct the function introducing
a minimum of new information? Then, once the function is re-
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Fig. 7. Velocity field determined by CST with a temporal window of
10 mn.

constructed, how can we estimate the local uncertainty of the re-
sults introduced either by the method or by the noise of the data?
These are the basic questions that need to be answered. Tech-
niques already exist in the field of signal processing (Torrence
and Compo 1998), but they have been developed essentially for
one-dimensional data. Their generalization to two-dimensional
data sets, although not straightforward, is possible and will be
presented in a forthcoming paper.

4.1. Using the CST data

CST data have the peculiarity of being a sampling of the velocity
field on an irregular grid. However, each measure of the velocity
components can be completed by the size of the structure used to
make the measurement. Thus, for each point where the velocity
is measured, we also know its smallest scale. This information
can be used to reconstruct the field; however, in this paper, we
will content ourselves with a more expedient method: dividing
the field into boxes 1.4′′ wide, we simply take the average of the
values of the horizontal velocity which fall in the box and thus
reconstruct a coarse-grid velocity field. The coarseness of the
grid increases with the lack of data. If the grid is too fine with
respect to the data, some points are devoid of data as in Fig. 7.

Once the velocity field is known, we derive the divergence
using simple differences between neighbouring points.

4.2. Using LCTbin data

Another way of obtaining a gridded velocity field is to use the
Local Correlation Tracking in spite of the inconveniences men-
tioned above (Sect. 2.2).

LCT indeed gives a uniformly sampled velocity field and
immediately produces “interpolated data”. However, the prob-
lem is to know what is represented by these data;i.e., how far
can we trust the velocity field obtained. We do not have the
answer to this question, unfortunately, but we noticed that the
results can be improved if LCT is applied to binarized data after

segmentation; we shall refer to this version of LCT as LCTbin.
In this way, the internal intensity fluctuations, which may be
residues of seeing or of 5 min-oscillations, are removed and
one of the known problems of LCT, namely sensitivity to large
gradients, is eliminated. Some noise, classically attributed to
granular motion and which appears when the window is large
(2–3′′) (Darvann 1991), is also reduced.

LCTbin, however, needs an extraparameter which is the
size of the gaussian window. Its size should be chosen accord-
ing to Shannon’s criterion; since granules are constraining the
sampling of data, the window size should be half of the gran-
ules’ mean size, which is around 1.4′′ according to Roudier and
Muller (1986). We therefore choose a window size of 0.7′′ (5
pixels).

Using this spatial sampling, it turns out that we can use a
temporal window as short as five minutes which is useful to
follow the time evolution of the velocity field in parallel with
the evolution of the granules.

5. Application to the Pic du Midi data set

5.1. The data set

As a test we now apply the foregoing algorithm to a data set com-
posed of 540 images obtained at Pic du Midi on 20 September
1988, covering an area of 58′′× 48′′ (42000× 35000 km2); the
time interval between two successive frames is 20 s and the
whole sequence lasts three hours. The spatial resolution of the
instrument is 0.25′′ and the pixel size is 0.14′′.

These images were rigidly aligned and destretched to re-
move atmospheric distortions. The subfundamental filter was
then applied to remove brightness variations due to the 5 minute
p-mode oscillations. Images were segmented and objects la-
beled. However, before determining the granules displacements,
we need to specify the threshold of the deformation rate which
we use to select “good” granules.

For this purpose, we use the statistical relation between the
perimeter and the area of a granule,P ∝ AD/2 whereD is
the fractal dimension, first measured by Roudier and Muller
(1986), the value of which isD ≈ 1.25 for granules smaller
than 1000 km. Hence, the shape parameterf = P 2/A should
behave asA0.25.

According to this statistical relation, we may now evalu-
ate the mean deformation of a granule between two successive
plates (i.e., after 20 s of evolution). As a typical velocity of ex-
pansion is 2 km/s (Brandt et al. 1991), after 20 s of evolution the
size of a granule has increased by 80 km typically. The shape
parameter of a granule of diameterL has therefore increased
by a factor(1 + 80/L)0.5 if L is expressed in km. The smallest
(visible) granules have a typical diameter of 200 km and there-
fore experience a typical deformation of 18.3% while for larger
ones, with a horizontal size of 1000 km,f varies only by 4%.

This estimation gives a good range where the shape changes
can be selected in order to keep track of coherent objects whose
proper motions are less perturbed by shape variations. In prac-
tice, a careful check on a large sample of granules shows that
the value 18% is convenient to keep a lot of granules in the se-
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Fig. 8. Histogram of granules’ mean velocities.

Fig. 9. Lifetime of tracked granules derived from the Pic du Midi data
set. The mean lifetime is around 140 s.

Fig. 10. Distribution of mean velocities of granules as a function of
their lifetime.

quence and at the same time to avoid the merging and splitting
cases. By using such a threshold, some large granule evolutions
are lost because of large deformation rates, but our experience
shows that the number of such granules is acceptable.

During this 3h sequence, 12509 “granules” (our coherent
structures), with a minimum lifetime of 160 sec, and a rate of
deformation less than 18%, have been found. This is a small frac-
tion (12%) of all the granules detected; hence, the improvement
of the quality of the measure is paid for by a high rejection rate
of granules. However, an improvement of the spatial resolution
would remove part of this constraint: short-lived granules could
be included and would sample the field of view more densely.

5.2. Some statistical by-products

During the processing of data some by-products can be ob-
tained, especially statistical distributions. These are essentially
histograms of granule lifetime or granule mean velocities.

The granule velocity histogram, shown in Fig. 8, is peaked
around 0.6 km/s with a distribution reaching up to 3 km/s; the
cutoff at 0.3 km/s is due to the spatial resolution. The majority
of velocities are located below 1.5 km/s.

The granule lifetime histogram (Fig. 9), derived from our
measurements, reveals an exponentially decreasing distribution
from 160 s (our fixed minimum) up to 1000 s. The fit of the
exponential reveals a mean lifetime of∼140 s which is some-
what smaller than 150 s-300 s which was found in Title et al.
(1989) using SOUP data or the 5.9-8.3 min found by Mehltret-
ter (1978). We think that our shorter lifetime is due both to the
higher resolution of our data (we include a larger number of
small granules) and to the introduction of a threshold of defor-
mation in the tracking of granules. Following this latter argu-
ment, we may say that this time (140 s) is a coherence time scale
rather than a lifetime.

In Fig. 10 we combine data from the two preceding his-
tograms into a single one which shows the tendency of fast
moving granules to be short-lived while long-lived ones tend to
move slowly.

5.3. Averaging

In order to illustrate the difficulties posed by flow field recon-
struction and averaging processes, we shall use in various ways
the results produced by the LCTbin algorithm.

We first concentrate on spatial averaging. As we argued in
Sect. 4.2, we use a spatial sampling of 0.7′′ to derive the first
view of the flow during the first 15 mn (Fig. 11 top). We then
average this flow on square boxes of width 2.8′′ (Fig. 11 bottom)
and compared it with the one derived directly from LCTbin using
a gaussian window of 2.8′′ (Fig. 11 middle). These three figures
clearly illustrate the effects of averaging. More quantitatively,
taking the difference between the two averaged fields (with 2.8′′

windows) gives an order of magnitude for the effects. In this
example, we find a residual velocity field randomly distributed
with a rms amplitude of 130 m/s (local discrepancies may reach
400 m/s, however).

This example shows that spatial averaging at a resolu-
tion of 2.8′′ introduces systematic errors with an amplitude of
130 m/s. In principle, the time window of 15 mn yields a pre-
cision of 20km/900s = 22 m/s which is much below the above
mentioned error. The temporal window should be reduced to
(20 km)/(130 m/s) = 160 s. However, we found it safer, in order
not to accumulate errors, to choose a time window somewhat
larger than this; we take 300 s (5 mn).

We may now compare the mean of three velocity fields mea-
sured with the 5 mn temporal windows (Fig. 12) and the velocity
field obtained using a 15 mn temporal window (Fig. 11 top). The
results are quite different: the differences between the two fields
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Fig. 11.Top:Velocity field determined by LCTbin using a 0.7′′ gaussian
window with a temporal window of 15 mn.Middle: Same as top but
with a 2.8′′ gaussian window.Bottom:Mean velocity field obtained by
averaging the flow in (top) over a square box of size 2.8′′. Note the
difference between this latter flow field and the one yielded by the use
of a 2.8′′ gaussian window.

show an rms error of 240 m/s; this also corresponds to a linear
correlation between the two fields of 0.75 (see below).

Fig. 12.The time interval (15 mn) used to compute Fig. 11 (top) is now
divided in three windows of 5 mn which are used to determine three
new velocity fields. The average of these three velocity fields is now
plotted and should be similar to the one in Fig. 11 (top).

These two examples clearly show how important the aver-
aging process is in the resulting velocity fields.

5.4. Comparison of flow maps derived by various techniques

To further appreciate the problems of the different algorithms,
it is useful to compare their results for a subset of the data.
We therefore compare the results of LCT and CST algorithms
as well as one variation on each of them. Indeed, we modified
the CST algorithm so as to make it similar as Strous’one as
described in Strous (1995a); hence, we evaluate the influence
of his “simple strategy” where no selection of granules and no
opening operations are done. We shall refer to this algorithm
as FTS . We also consider the variant of LCT, namely LCTbin,
described above. Hence, four algorithms are compared.

A first indication of the similarity of the results may be
obtained by computing their linear correlation (here written for
Vx)

Cx =
∑N

i=1

(
V i

x(1) − 〈Vx(1)〉) (
V i

x(2) − 〈Vx(2)〉)√(∑N
i=1(V i

x(1))2
) (∑N

i=1(V i
x(2))2

)

wherei is the index of pixels. Note that before computing this
quantity each algorithm must be tuned so as to produce the same
spatial resolution. Using the first 30mn of the time sequence, we
obtain the velocity field shown in Fig. 13 and the corresponding
divergence. Table 1 shows the correlation using a spatial window
of 2.8′′.

The correlation between the different methods is around
0.75 which is almost the same as the one found when comparing
different ways of averaging. These correlation coefficient again
show the systematic errors introduced by the algorithms.

The rather high value of the correlation means that the main
features of the velocity field persist from one method to the
other. A visual inspection of the different results shows that,
indeed, velocity fields are quite similar qualitatively. Moreover,
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Fig. 13.Velocity field (left) and divergence field (right) obtained using the CST algorithm (top) or LCT algorithm (bottom). Data are time-averaged
over 30 mn. One question raised by such plots is, how confident can we be in the reality of the structures shown in these figures?

Table 1. Correlation of the velocity fields computed by the different
algorithms for the first 30 mn. Note that the correlations of LCTbin

with CST or FTS is always higher than LCT’s, thus showing the slight
improvement gained with LCTbin.

LCT LCTbin CST FTS

LCT 1 0.98 0.74 0.76
LCTbin 1 0.76 0.80
CST 1 0.87
FTS 1

our comparisons seem to give a better similarity between the
different outputs than the comparison shown in Fig. 1 of Simon
et al. (1995). We suspect that part of the disagreement they found
is due to the slight difference in the window sizes which have
been used.

Another point, already noticed in previous comparisons (Si-
mon et al. 1995 or Roudier et al. 1998), is the tendency of LCT
to smooth the velocity fields. This tendency also appears in our
results as shown by the values of the extrema of the fields (see
Table 2).

Table 2.Minima (m) and maxima(M) of the velocities (in km/s) and
divergence (in s−1) calculated from various methods for the first 30
min window of the 3-hour sequence all over the field of view. Note the
reduced amplitude of the LCT results.

V m
x V M

x V m
y V M

y Divm DivM

GT -1.49 1.10 -1.2 0.93 -4.6×10−4 5.8×10−4

GTS -1.50 1.01 -1.14 1.28 -4.8×10−4 5.6×10−4

LCT -0.68 0.53 -0.71 0.64 -3.2×10−4 3.3×10−4

6. Conclusion

In this paper we have tested, compared, and tried to improve
(somewhat) the existing algorithms for measurements of hori-
zontal flows at the sun’s surface. We have shown how delicate
the processing of these data is and how much care is needed in
the averaging process in order to avoid systematic errors.

Our conclusion is that tracking coherent structures using
segmentation with the criterion of Strous is certainly the most
reliable measure of displacement, since the barycenter of bina-
rized structures is measured precisely (0.028′′). However, the
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Fig. 14.Same as Fig. 13 but averaging the results over the total length of the sequence (three hours). Note the reduction of the scale structures
when the algorithm changes from LCT to CST.

measurement of the displacement is only the first step towards
the modelling of the surface flow of the sun and the identifi-
cation of the important scales. The other important step is the
reconstruction of the continuous velocity field which can then be
used for further manipulations like spatial filtering, averaging,
differentiation, etc. For these operations to give sensible results,
we need to keep track of the local error introduced either by the
method or the noise of the data. Therefore, it appears that it is
necessary to devise a good interpolation of the data (i.e., gran-
ules’ displacements) which non-uniformly sample the field of
view. At the moment, such an interpolator, which also yields
the uncertainties on the results, does not exist. But a promising
way lies in the use of wavelet analysis; such a tool is now under
development and will be presented in a forthcoming paper.

Lacking this last and important part of the algorithm, we
replaced it by an expedient which is either LCT or an average
on a coarse grid. The comparison of the two results offers an
estimate of the errors introduced by the two methods. However,
we did not use LCT in a standard way: we applied this algo-
rithm to the binarized data, respecting Shannon’s criterion as
far as possible. Actually, this enabled us to increase the time

sampling to a five-minute step, which is a rather high tempo-
ral resolution compared to previous works which used at least
a twenty-minute step. Such a time sampling is useful to follow
the simultaneous evolution of the velocity field and the intensity
patterns (granules).

From our results, it is clear that LCT gives good qualita-
tive results and that salient features remain, regardless of the
way data are manipulated. However, it is also clear that on the
quantitative side, LCT introduces uncontrolled systematic er-
rors which we estimate, using Pic du Midi data for example,
around 200 m/s rms.

Finally, we note that the CST algorithm rejects a lot of gran-
ules: those which either deform too much or do not live long
enough. Therefore, data points are not very dense in the field
and the velocity field is not strongly constrained. This draw-
back may disappear partially when high resolution (less than
0.1′′) data are available. In such a case, short-lived granules
may also be used and they are much more numerous. At the
moment, with the present resolution, we should concentrate on
long time-series of large fields which may be used to constrain
the large-scale dynamics (like the supergranular scale).
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The preceding critical review of the presently available al-
gorithms for horizontal flow determination makes us fear that
mesogranulation, which was described during the last ten years
as another scale of solar convection, could be a by-product of
systematic errors introduced by the wild application of LCT to
solar images. Indeed, much of the detection of mesogranules is
based on divergence measurements (e.g., November and Simon
1988, Muller et al. 1992, Roudier et al. 1998) which are quite
sensitive to the way the velocity field is reconstructed. We shall
come back to this question and that of supergranulation in a
companion paper.
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Appendix

These formulae are obtained from the definition of the barycen-
ter of a surface of constant density

Xg =

∫ ∫
(S)xdxdy

S
and Yg =

∫ ∫
(S)ydxdy

S

S =
∫
(S)dxdy is the area of the polygon. If we note that

2π
∫
(S)xdxdy is in fact the volume of the torus generated by

rotatingS around they-axis, and if we denote this volume by
Vy then

Xg =
Vy

2πS
and Yg =

Vx

2πS

a result which is known as Guldin’s theorem (Pérez 1997).
To compute the volume of a torus with a polygonal cross-

section we first compute the volume of a thick disk whose edge
is defined by the segmentAnAn+1 of two consecutive points of
the polygon. Denoting(xn, yn) the coordinates of the nth-point,
the volume of the disk is simply

Vn =
π

3
(
x2

n + xnxn+1 + x2
n+1

)
(yn+1 − yn)

We note that the volume is positive (or negative) ifyn+1 > yn

(or yn+1 < yn); points of the polygon are numbered in the
trigonometric sense.

The volume of the torus is just the algebraic sum of theVn’s;
hence

Vy =
π

3

N∑
n=1

(
x2

n + xnxn+1 + x2
n+1

)
(yn+1 − yn)

for a N-point polygon (one assumesAN+1 = A1).
Noting that the surface of the polygon is given by

S =
1
2

N∑
n=1

(xnyn+1 − xn+1yn)

the result follows.
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