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ABSTRACT
We show that the existence of an Ekman boundary layer does not enhance the tidal dissipation in a

close binary star because the tides do not exert a stress on the stellar surface. The synchronization time-
scale is of order where is the (global) viscous damping time and is the tidal deformation(e

T
)~2tadj, tadj e

Tcaused by the companion & Bonazzola(Darwin 1879 ; Zahn 1966 ; Scharlemann 1982 ; Rieutord 1987).
We thus refute the claim made by who thought to have found a very efficient mechanismTassoul (1987),
for the synchronization and circularization of binary systems. We analyze the paper by &Tassoul
Tassoul and prove that the alleged magnitude of their Ekman pumping is due to an improper(1992b)
treatment of the surface boundary conditions. Their mechanism would have dramatic, yet unveriÐed con-
sequences, as illustrated by two examples of tidal interaction : between Io and Jupiter, and in the newly
discovered planetary system 51 Peg.
Subject headings : binaries : close È hydrodynamics È stars : interiors È stars : rotation

1. INTRODUCTION

Both the rotation and the orbital eccentricity of the early-
type binaries are reasonably well explained by invoking the
radiative damping of the dynamical tide (Zahn 1975, 1977).
It is true that in some binaries the synchronization with the
orbital motion seems to proceed faster than predicted

& Venkatakrishnan et al.(Rajamohan 1981 ; Giuricin 1984).
But the synchronization rate drawn from the tidal theory
concerns the star as the whole, whereas the surface layers
are spun down much faster than the deep interior because
they experience a higher torque per unit mass. This was
pointed out by and soon Goldreich &Zahn (1984), after
Nicholson completed the picture by describing how(1989)
the synchronization is achieved gradually from the surface
toward the interior.

Thus there is no need for another mechanism to interpret
the observations, although the theory clearly calls for
further developments. For instance, the calculation of the
surface rotation speed would require an adequate treatment
of all physical processes that transport angular momentum
inside the star (turbulence, waves, meridian circulation,
perhaps even magnetic stresses), an ambitious program
which has not been tackled so far.

But the present article has a di†erent purpose. It is to
convince the reader that the so-called hydrodynamical
mechanism proposed by to resolve theTassoul (1987)
apparent discrepancies mentioned above does not operate
with the announced efficiency and that it plays a negligible
role in the tidal interaction. An earlier attempt by Rieutord

hereafter to refute this claim apparently did(1992, Paper I)
not reach its goal : Tassoul persists in his error, and, regrett-
ably, e†orts are spent here and there to confront his predic-
tions with the observations.

In we discuss again the role of the Ekman layer in a° 2
rotating star and prove that the viscous dissipation which
occurs within this layer is negligible to leading order as a

1 Also C.E.R.F.A.C.S., 42 avenue G. Coriolis, 31057 Toulouse, France.

result of the stress-free boundary conditions. In we point° 3
out the major Ñaws of TassoulÏs analysis. For the reader
who is not much acquainted with hydrodynamics, we take
in a well documented example, namely the tides induced° 4
by Io on Jupiter, to demonstrate that TassoulÏs mechanism
would have dramatic, yet unobserved consequences. We
illustrate this also with 51 Peg and its recently discovered
planet.

2. THE FLUID FLOW IN A TIDALLY DISTORTED STAR

The theory of the tides in a viscous star is hardly a new
subject (see ZahnDarwin 1879 ; 1966 ; Scharlemann 1982),
but only in recent years has the role of the Ekman layer
been examined more closely. Such layers appear near the
boundaries of a rotating Ñuid, and since they are generally
very thin, they enhance the viscous dissipation and can
therefore increase drastically the rate at which the Ñow
evolves from given initial conditions. This is why Tassoul

invoked this mechanism to speed up the tidal evolu-(1987)
tion in close binary stars, but at the same time &Rieutord
Bonazzola showed that the contribution of the(1987)
Ekman layer is negligibly small because the Ñuid star expe-
riences stress-free boundary conditions, unlike what occurs
in laboratory experiments.

To explain how they reached their result, we shall take
the same approach as Rieutord in Paper I, which is some-
what easier to follow for the nonspecialist than the original
demonstration. It will prove convenient to consider a refer-
ence frame rotating with the angular velocity ) of the tidal
potential and to write the governing equations in non-
dimensional form. To achieve this we choose as the length
scale the mean radius R of the star and (2))~1 as the time-
scale. Then the dimensionless equations of the Ñow are

7 L
Lq

u ] e
z

Â u \ [$p ] E*u ,

div u \ 0 ,
(1)
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where E\ l/2)R2 is the Ekman number, with l being the
kinematic viscosity of the Ñuid. The scalar function p con-
tains the pressure and all the potentials acting on the Ñuid.
For simplicity, we have assumed that the star is incompress-
ible (the case considered also by Tassoul), that the velocity u
is small enough to allow the linearization, that the viscosity
is constant, that the orbit is circular, and that the orbital
velocity does not vary in time.

This di†erential system needs to be completed by the
boundary conditions applied on the free surface of the star.
(Strictly speaking, the surface of the star is modiÐed by the
Ñow itself ; however, since we are working at linear approx-
imation, we may neglect this extra deformation and assume
that the surface of the star does not depart from its equi-
librium position.) The boundary conditions on the velocity
are thus

Gu Æ n \ 0 ,
n Â ([p]n) \ 0 ,

(2)

where n is the outer normal to the surface of the star and
[p] is the viscous stress tensor. These boundary conditions
express that the velocity Ðeld is tangent to the surface and
that no tangential stressÈin particular no torqueÈis
applied on the surface of the star.

2.1. T he Solution
To construct the solution of equations and we shall(1) (2)

proceed by steps, and we Ðrst solve the inviscid steady state
problem, the solution of which is the so-called geostrophic
Ñow. This Ñow veriÐes the following system of equations :u07e

z
Â u0\ [$P0 ,

div u0\ 0 ,
u0 Æ n \ 0 on the surface P0\ 0 ,

(3)

which has the analytic solution (Greenspan 1969)

u0\
C L
Lh

P0(h)
D

n
b

Â n
t
. (4)

Here the following notations have been introduced : the
surface of the star is represented by two equations : z\
f (x, y) for the part above the equatorial symmetry plane
and z\ [g(x, y) for the part below. From these equations
one derives the vectors andn

t
\ $[z [ f (x, y)] n

b
\

[$[z] g(x, y)], which are respectively normal to the top
and the bottom surfaces, and h \ f] g, which is the total
height comprised between these two surfaces.

shows that is a two-dimensional Ñow, inEquation (4) u0agreement with the Taylor-Proudman theorem.
Let us stress that this result applies also to a tidally dis-

torted star, the surface of which may be approximated by an
oblate triaxial ellipsoid elongated in the direction of the
companion (the x-axis). Its equation is

P0(x, y, z)\ x2
a2 ] y2

b2 ] z2
c2[ 1 \ 0 , (5)

and thus the normal vectors are given by

n
b
\ [$(z] h) , n

t
\ $(z[ h) ,

where

h \ c
b

Jb2[ x2(1 [ e)2 [ y2 ,

with the elongation e \ (a [ b)/a. Hence, the geostrophic
velocity Ðeld is given by

u0 \ c2
b2

1
h

dP0
dh
K y
[x(1 [ e)2 , (6)

which illustrates how this Ñow departs from uniform rota-
tion.

2.2. T he Boundary L ayer
The geostrophic Ñow is such that but inu0 u0 Æ n \ 0,

general it does not verify the stress-free condition of
Therefore, we must add to it a boundary layerequation (2).

Ñow the components of which lie in the tangential planeb1,and the amplitude of which varies much faster in the direc-
tion normal to the surface than in the tangential direc-(m1)tions and With these prerequisites obeys a rather(m2 m3). b1simple equation, describing the famous Ekman spiral :

L2
Lf2 (n Â b1] ib1) \ i(n Æ e

z
)(n Â b1] ib1) , (7)

where f is the stretched normal coordinate pointing inward :

f\ (1 [ m1)/JE ,

and delineates the surface of the star. The thickness dm1\ 1
of the Ekman layer is thus d/R\O(E1@2).

results from a combination of the projec-Equation (7)
tions of the momentum equations in a plane tangent to the
surface and where only the depth dependence of the solu-
tion has been retained. Its solution is

n Â b1] ib1\ C exp [[(in Æ e
z
)1@2f] , (8)

where C is a complex vector, which will be chosen such that
it cancels the tangential components of the viscous stress :

Gp12(u0) ] p12(b1) \ 0
p13(u0) ] p13(b1) \ 0

at m1\ 1 . (9)

To lowest order, where we can neglect the curvature terms,
these conditions translate into

g
Lu0,3
Lm1

] Lb1,3
Lm1

\ 0

Lb1,2
Lm1

\ 0
at m1\ 1 . (10)

For the tangential stress to vanish, must be O(E1@2),b1which ensures that be of the order ofLb1,3/Lm1 Lu0,3/Lm1.
Let us make this even more explicit ; we combine the two
equations of into a single one so that we haveequation (10)

L
Lm1

(b1,2 ] ib1,3)\ [i
Lu0,3
Lm1

at m1 \ 1 .

Using now we Ðnd the constant C :equation (8),

C3\ [ iJE

Jin Æ e
z

ALu0,3
Lm1

B
m1/1

, C2\ iC3 ,

which again shows that is E1@2 smaller thanb1 u0.This small boundary layer Ñow satisÐes the (steady)b1momentum equation and the boundary conditions, but it
does not conserve mass ; i.e., in general This isdiv b1D 0.
why one has to add to this Ñow yet another one, which we
call since it exists only in the boundary layer. It has justb2



0u

1/2

Z

X

E1/5

b2

b1

Ekman layer
of width E

of width E

Equatorial 
singularity

2/5

762 RIEUTORD & ZAHN Vol. 474

one component, which is normal to the surface :

b2\ B2(m2, m3) exp [[(in Æ e
z
)1@2f]n .

Its amplitude is determined by the continuity equation
taken at the surface

div (b1] b2) 4
Lb2,1
Lm1

] Lb1,2
Lm2

] Lb1,3
Lm3

\ 0 ,

which yields

B2(m2, m3)\ JE
div b1

Jin Æ e
z

,

showing that this new component is O(E1@2) smaller than b1 ;
it is therefore O(E).

Finally, since does not vanish at the surface, oneb2 Æ n
has to add an interior Ñow which veriÐes the inviscidu2,equations and the boundary condition and(u2] b2) Æ n \ 0
has therefore a component normal to the surface. This Ñow

is usually called the Ekman circulation ; we see here that,u2like it is O(E).b2,

2.3. Rigid Boundary Conditions
In classical textbooks, such as one con-Greenspan (1969),

siders usually the case of rigid boundary conditions, which
are the most relevant to laboratory experiments. These
require the vanishing of the velocity, and therefore the
boundary layer Ñow is of the same order as sinceu0

u0] b0\ 0

on the boundary. This Ñow (note the index 0) may beb0calculated in the same way as above ; similarly, it doesb1not in general satisfy and needs to be correcteddiv b0\ 0
by a normal Ñow (the Ekman pumping), which is E1@2
smaller than In turn, that normal boundary Ñow inducesb0.
in the bulk of the Ñuid an Ekman circulation that is nowu1
O(E1@2).

This illustrates the importance of the boundary condi-
tions in determining the magnitude of the di†erent com-
ponents of the Ñow: the Ekman circulation is E1@2 weaker
with stress-free boundary conditions than with rigid ones,
and for this reason it plays a negligible role in the viscous
dissipation, as we shall see.

2.4. T he Equatorial Singularity
The boundary layer analysis outlined above breaks down

close to the equator where the Coriolis force becomes hori-
zontal, i.e., where There is indeed a singularity inn Æ e

z
] 0.

the asymptotic development in powers of E1@2, and it arises
because the scaling of the boundary layer changes in the
region close to the equator. It has been shown &(Roberts
Stewartson Stewartson 1966) that for latitudes less1963 ;
than O(E1@5) the width of the boundary layer is O(E2@5)
instead of O(E1@2). Therefore, the boundary layer in the
equatorial region appears to be ““ inÐnitely ÏÏ thick compared
to the rest of the Ekman layer, although it remains van-
ishingly small when confronted with the size of the star.

gives an illustration of the situation.Figure 1
However, this region of the Ñow does not change the

overall dynamics of a spin-up/down process since the mass
Ñux into the interior is still O(E). Indeed, as the width of the
layer is now O(E2@5), in this region is O(E4@5), but theb2

FIG. 1.ÈSchematic view of Ekman layers and the equatorial singu-
larity ; sizes of boundary layers have been much exaggerated. Note also
that the main component of is parallel to and is not represented.b1 u0

latitudinal extension of the layer is only O(E1@5) ; therefore,
the total Ñux generated in the interior is
O(E1@5 ] E4@5) \O(E). There is thus no reason to expect
that the equatorial bulge of the Ekman layer transfers
angular momentum more efficiently than the rest of the
layer.

The same conclusion may be reached by comparing the
viscous dissipation in the equatorial singularity :
O(E] E1@5] E2@5) \O(E8@5), with that in the Ekman layer :
O(E] E1@2) \O(E3@2), or in the bulk of the star : O(E).

2.5. Evolution T imescales of the Geostrophic Flow
So far we have treated the problem as if it were steady in

time. This was possible because at lowest order in E1@2 the
time derivative can be neglected in the momentum equa-
tion, compared to the other terms. But the quasi-steady
solutions derived above will now serve to determine their
evolution in time. The problem may be formulated as
follows : given some initial Ñow which departs from the
corotation with the tidal potential, i.e., on whichu D 0,
timescale will this motion be damped out through viscous
dissipation?

There are several ways of answering this question. A
detailed demonstration has been given in Paper I but(° 2.3),
since it is a little technical, we choose here the more intuitive
approach, based on the energy argument, which was also
sketched in Paper I (° 2.5).

Let us Ðrst assume that the star is not submitted to a tidal
torque. The equation governing the evolution of the kinetic
energy of the Ñow is

L
Lq
AP

v

1
2

u2 dV
B

\ [E
P
v
D dV , (11)

where D is deÐned by

D\ ;
i,j

s
ij
2(u) with s

ij
(u)\ Lu

i
Lx

j
] Lu

j
Lx

i
;

the components of the shear stress are linear functionss
ijinvolving the Ðrst derivatives of the velocity. The time the
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star needs to reach uniform rotation, which we shall call the
adjustment time, is thus given by

1
qadj

\ E
/
v
D dV

/
v

12u2 dV
.

To estimate this time, it suffices to identify the main con-
tributions to the kinetic energy and the viscous dissipation,
respectively. The case of the kinetic energy is easy to settle
since dominates the Ñow, and thusu0

P
v
12u2 dV \O(1)

with our nondimensionalization. For the dissipation we
need to evaluate Referring back tos

ij
(u0] b1] b2] u2).we have° 2.2,

s
ij
(u0) \O(1) , s

ij
(b1) \O(1) , s

ij
(b2) \O(E1@2) , . . .

and therefore is O(1), implying that the kinetic/
v
D dV

energy decays on the (overall) viscous timescale :

qadjB E~1 or tadjB
R2
l

.

This is also the rate at which a binary component
smooths out its internal rotation. However, the tidal poten-
tial does not allow the Ðnal state to be of uniform rotation
since the Ñow must be tangent to the distorted surface. After
that adjustment phase, the Ñow is thus of the form

u \ (u
s
[ u

o
)e

z
Â r ] eu

T
, (12)

where and (\1) are, respectively, the (mean) angularu
s

u
ovelocity of the star and that of the orbital motion. The

magnitude of the extra term which represents the tide,eu
T
,

is proportional to the lack of synchronism and to the tidal
deformation :

e \ (u
s
[ u

o
)e
T

\ (u
s
[ u

o
)
M@
M
AR

a
B3

,

M@/M being the mass ratio (companion/star), R the radius
of the considered star, and a the semimajor axis of the orbit.

Let us now ask on which timescale the star evolves
toward synchronism, i.e., to At present, the kineticu

s
\u

o
.

energy that is dissipated through viscous friction is drawn
both from the rotation and from the orbital motion ;
neglecting the rotation of the companion, the total mecha-
nical energy of the system is

E\ 12Iu
s
2[ 12ku

o
2a2 ,

where I is the moment of inertia of the star and k is the
reduced mass of the system. Neglecting a possible mass loss,
the system will evolve while conserving its total angular
momentum:

J \ Iu
s
] ku

o
a .

We di†erentiate these two equations

dE\ Iu
s
du

s
[ 13k(GM

T
)2@3u

o
~1@3 du

o
,

dJ \ I du
s
[ 13k(GM

T
)2@3u

o
~4@3 du

o
\ 0 ,

and combine them, to establish the following relation
between the starÏs deceleration (or acceleration) and the

energy decrease of the system:

dE
dq

\ I(u
s
[ u

o
)
du

s
dq

.

It remains to equate this to the viscous dissipation rate.
With the velocity Ðeld given by it is easy toequation (12),
check that

s
ij
(u0) \ es

ij
(uT,0) \O(e) , s

ij
(bT,1) \O(e) , . . . ,

and therefore that

E
P
v
D dV \ EO(e2) \ E(u

s
[ u

o
)2O[(e

T
)2] .

Hence, the synchronization timescale is given by

1
qsync

\ [ 1
(u

s
[ u

o
)
du

s
dq

B E(e
T
)2 ,

or, equivalently, in natural units,

1
tsync

\ [ 1
()

s
[ )

o
)
d)

s
dt

B
l

R2 (e
T
)2 , (13)

which is the classical result also found by & Bona-Rieutord
zzola (1987).2

3. COMMENTS ON TASSOULÏS SO-CALLED

HYDRODYNAMICAL MECHANISM

In an article published the same year, Tassoul (1987)
examines also the role of the Ekman layer, but he claims
that the synchronization time is of order inqsync BE~1@2e

T
~1

nondimensional units, much shorter than the actual time
given above. In a series of papers, his hydrodynamical
mechanism, as he calls it, is described in more detail and is
applied to various cases, including stars possessing a con-
vective envelope & Tassoul(Tassoul 1990, 1992a, 1992b,
Tassoul 1995).3

TassoulÏs error, as the reader may have guessed, lies in his
improper treatment of the Ekman Ñow. In the Ðrst paper, he
does not even mention the stress-free character of the
boundary conditions and states simply that the Ekman cir-
culation is of order o u oB eE1@2 (in our notation), as it would
be with rigid boundaries. One may wonder whether he fully
appreciates then the properties of the Ekman layer : he
describes it as di†using ““ throughout the bulk of the radi-
ative envelope,ÏÏ whereas its thickness depends only on the
viscosity and on the rotation rate.

In a subsequent paper, & Tassoul elabo-Tassoul (1990)
rate on the eigenfunctions of the viscous decay. Following

and & Bonazzola theyRieutord (1987) Rieutord (1987),
expand these functions into spherical harmonics, and for
reasons which will be analyzed below, they overestimate
again the strength of the Ekman pumping, and hence of the
tidal dissipation.

2 For the complete expression, see orScharlemann (1982) Zahn (1989).
3 In a footnote in his latest paper, declares thatTassoul (1995)

““ [RieutordÏs] analysis is severely Ñawed ÏÏ and that ““ the currents deÐned in
his eq. (13) do not satisfy the causality principle ÏÏ since ““ they do not vanish
in the limiting case Apparently he fails to see that some solide

T
] 0.ÏÏ

rotation will then still persist in the reference frame rotating with the
companion, unless the star was initially synchronized.
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It is only in & Tassoul hereafterTassoul (1992b, TT92)
that the Ñow within the Ekman layer gets due attention.
This paper is a reply to RieutordÏs criticism of TassoulÏs
mechanism, and until its equation (16) the results fully agree
with those of Paper I. obtain also the boundary layerTT92
Ñow in their notation) of O(eE1@2), which, as we haveb1 (B1gseen above in induces an Ekman circulation of O(eE).° 2, u2Surprisingly, they state that this Ñow is of ““ paramount ÏÏb1importance, but they do not include it in their expansion
(eq. [17]). Instead, they introduce an interior Ñow alleg-u1,
edly also of O(eE1@2), which they hold responsible for their
fast tidal synchronization.

According to this extra Ñow originates in the equa-TT92,
torial singularity where the vertical component of the
Coriolis force vanishes. In reality, as we have seen above in

with stress-free boundaries this singularity induces a° 2.4,
circulation that is only O(E) of the geostrophic Ñow, hence
O(eE).

The TassoulsÏ interior Ñow is just an artifact of theu1expansion procedure they use to circumvent the singularity,
which they describe in some detail in their Appendix B.
Such expansions in spherical harmonics have indeed been
employed in the theory of rotating Ñuids by Rieutord (1987,

but they must be handled with care.1991),
First, a result expanded in series of spherical harmonics is

valid only if the convergence of the series can be assessed.
The solutions given by TT92 contain at most two terms
(l \ 1, l \ 3 or l\ 2, l \ 4) of the inÐnite series, which is far
from sufficient since in the asymptotic case (E] 0) the
spherical harmonics are coupled by O(1) coefficients and the
convergence of the series is only algebraic.

But there is a more serious reason why TT92 do not
retrieve the correct scaling : some terms are missing in their
expansions of the boundary conditions in spherical harmo-
nics, and they are O(e) ; in particular, the stress is ill-
developed. It is then as if a spurious stress of O(e) were
applied on the Ñow, in which case it is quite natural that a
circulation arises, of O(eE1@2). We give in the Appendixu1the correct form of the boundary conditions projected on
the spherical harmonics and point out the terms missing in
the TassoulsÏ derivation.

Finally, let us comment about TassoulÏs decision to
increase his synchronization time by an arbitrary factor 10,
““ to make allowance for small but Ðnite departure from
synchronism.ÏÏ It is true that the classical treatment of the
spin-up/down problem assumes that the Rossby number
v/2)R is small enough to permit linearization. But the non-
linear e†ects have been analyzed thoroughly by several
authors & Weinbaum(Wedemeyer 1964 ; Greenspan 1965 ;

the latter summarizes theBenton 1973 ; Weidman 1976) ;
results, which apply to the case of rigid boundaries, where
the characteristic timescale (in our notation) depends ontadjthe thickness of the Ekman layer, as it does in TassoulÏs
prescription. His Ðrst conclusion is that must be evalu-tadjated with the initial rotation rate when the Ñuid is spun)

idown, and with the Ðnal rotation rate when it is spun up.)
fIf we transpose these rules to the synchronization of close

binaries, we see that the thickness of the Ekman layer is
determined by the starÏs rotation rate when it is larger)

sthan the orbital rate The second conclusion of these)
o
.

studies is that, except for the extreme case where the bound-
aries are at rest, the spin-down follows closely the predic-
tions of linear theory. Contrary to TassoulÏs assertion, there
is no justiÐcation whatsoever in WeidmanÏs paper (which he

quotes in to lengthen his synchronizationTassoul 1987)
time ; instead, that time should be shortened by a factor

when the star rotates faster than the orbital()
o
/)

s
)1@2

motion, as it occurs most often.

4. TWO ILLUSTRATIVE EXAMPLES : IOÏs TIDES ON

JUPITER AND 51 PEG

Some readers may Ðnd the developments above a triÑe
too technical, and they would rather prefer to be convinced
by a suitable example. An excellent test case is provided by
the tidal interaction of Jupiter and its closest satellite Io.
Except for its innermost core, Jupiter is a Ñuid planet, and
the theory of viscous dissipation applies.

Most parameters of the problem may be found in Allen
JupiterÏs rotation period 2n/) is 9 hr 50.5 minutes,(1973) :

its radius measures R\ 71,300 km, the mass ratio is 26,500,
and the orbit is circular with a radius d of 422,000 km. The
subsurface layers of Jupiter are convective, and their turbu-
lent viscosity l may be inferred from the convective Ñux,
using the mixing length recipe : it is about 2104 m2 s~1
(Guillot 1994).

The tidal deformation of Jupiter is thus

e
T

\ MIo
MJup

AR
d
B3\ 1.855] 10~7 ,

and the Ekman number is given by

E\ l
2)R2 \ 1.11] 10~8 .

The Ekman layer has a thickness of about 7 km, less than a
pressure scale height (B20 km), and to Ðrst approximation
the turbulent viscosity may be considered as constant
within the layer.

According to TassoulÏs prescription, the rotation of
Jupiter would be synchronized with the orbital motion of Io
in a time of the order of

tsync \ 1
2)

E~1@2e
T
~1\ 4.6] 106 yr ,

which is clearly incompatible with the fast rotation we
observe. A tidal interaction of that strength would have
transferred long ago the proper angular momentum of
Jupiter to its satellites, and these would orbit today at much
greater distances from the planet.

The correct expression [13] yields(eq. )

tsync \ 1
2)

E~1e
T
~2\ 2.3] 1017 yr ,

which explains why Jupiter is still a rapid rotator.
We could multiply such examples, which would all show

that TassoulÏs prescription largely overestimates the tidal
damping. Let us consider just another case, which has
received much attention recently : 51 Peg with its planet of
Jovian mass & Queloz The star is a slow(Mayor 1995).
rotator of solar type, with a period of about 30 days, which
proves that it has been spun down by the same mechanism
as the Sun (mass loss plus magnetic activity). But according
to Tassoul, it should be perfectly synchronized with the
orbital motion whose period is 4.23 days, since the tidal
synchronization time he would predict is about 1.6 ] 104
yr, many orders of magnitude shorter than the spin-down
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time (B109 yr at that age). The synchronization time drawn
from the correct expression is 3 ] 1011 yr, which(eq. [13])
again explains much better what is observed. (These Ðgures
have been worked out with l\ 109 m2e

T
\ 7.5] 10~6,

s~1, and thus E\ 5.9] 10~5.)

5. CONCLUSIONS

The purpose of this paper was to show again that the
Ekman pumping occurring in close binary stars does not
enhance the tidal dissipation because no stress is applied by
the tides on the stellar surface. The synchronization time-
scale is of order where is the tidal deformation(e

T
)~2tadj, e

Tcaused by the companion and is the viscoustadj\ R2/l
adjustment time, R being the radius of the considered star
and l the (turbulent) viscosity (Darwin 1879 ; Zahn 1966 ;
Scharlemann & Bonazzola1982 ; Rieutord 1987).

We hope to have convinced the reader that the so-called
““ hydrodynamical mechanism ÏÏ invoked by Tassoul for the
synchronization and circularization of binary stars is based
on an improper treatment of the starÏs boundary condi-
tions, a mechanism which was unfortunately endorsed by
an incorrect expansion in spherical harmonics.

For the beneÐt of the reader who does not feel at ease
with Ñuid dynamics, we have also shown that if TassoulÏs
mechanism were operating, Jupiter would not be the fast
rotator we know, but would have transferred most of its
angular momentum to the satellites (in particular, to Io).
We also quoted 51 Peg, the slow rotation of which demon-
strates again how much the tidal dissipation is overesti-
mated by this mechanism. And in both cases the predictions
of the tidal theory outlined in agree well with the observ-° 2
ations.

APPENDIX

In this appendix we expand the stress-free boundary conditions to be applied onto an ellipsoidal surface to Ðrst order of the
elongation, and we project them on the relevant spherical functions.

Let us write the surface of the ellipsoid as

r \ 1 ] ef (h, r) ;

the function f (h, r) represents the departure from the sphere. This function may be expanded into spherical harmonics
and in the case of tidal deformation the main components areY

l
m(h, /)

f (h, r) \ Y 22] Y 2~2 \
S15

8n
sin2 h cos 2r . (A1)

Now we develop the boundary conditions with respect to the sphere ; we Ðnd

u
r
] e
C

f
ALu

r
Lr
B

] nh uh ] nr ur
D

\ 0

gprh ] e
C

f
ALp

rh
Lr
B

] (phh [ p
rr
)nh] phr nr

D
\ 0 (A2)

p
rr ] e

C
f
ALp

rr
Lr
B

] (prr [ p
rr
)nr] phr nh

D
\ 0

taken at r \ 1 ; and and terms of O(e2) have been dismissed.nh \[Lf/Lh nr\ [(1/sin h)(Lf/Lr),
Then these equations need to be projected on the basis of spherical harmonics. The expression of the viscous stress tensor

[p] has been given in For the sake of clarity we recall thatRieutord (1987).

u \ ;
l/0

`= ;
m/~l

`l
u
m
l R

l
m ] v

m
l S

l
m ] w

m
l T

l
m ,

where

R
l
m \ Y

l
m e

r
, S

l
m \ $Y

l
m , T

l
m \ $ Â R

l
m ,

the are normalized spherical harmonics, and the gradients are taken on the unit sphere. In addition, we writeY
l
m

Ap
rh

p
rr

B
\ s

m
l S

l
m ] t

m
l T

l
m ,

so that now readsequation (A2)

u
L
M] e

ALu
m
l

Lr
F

l,Lm,M] v
m
l G

l,Lm,M] w
m
l H

l,Lm,M
B

\ 0 ,

gl(l ] 1)s
M
L ] e

A
[3

Lu
m
l

Lr
B

l,Lm,M] v
m
l D

l,Lm,M] w
m
l E

l,Lm,M ] Ls
m
l

Lr
P

l,Lm,M] Lt
m
l

Lr
H

l,Lm,M
B

\ 0 , (A3)
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m
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\ 0 .
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We have introduced the following coupling integrals :

B
l,Lm, M\

P
4n

Y
l
m(nhNh,LM ] nrNÕ,LM )d) , (A4)

D
l,Lm,M\

P
4n

[(X
l
mnh] Z

l
mnr)Nh,LM ] (Z

l
mnh [ X

l
mnr)NÕ,LM ]d) , (A5)

E
l,Lm,M\

P
4n

[(Z
l
mnh ] X

l
mnr)Nh,LM [ (X

l
mnh ] Z

l
mnr)NÕ,LM ]d) , (A6)

F
l,Lm,M\

P
4n

f (h, r)Y
l
mY

L
M d) , (A7)

G
l,Lm,M\ B

L,lM,m , (A8)

H
l,Lm,M\

P
4n

(nh Nr,lm [ nrNh,lm )Y
L
M d) , (A9)

P
l,Lm,M\

P
4n

f (h, r)(nh Nh,LM ] nrNÕ,LM )d) , (A10)

with

Nh,lm \ LY
l
m

Lh
and NÕ,lm \ 1

sin h
LY

l
m

Lr
,

X
l
m(h,/)\ 2

L2Y
l
m

Lh2 ] l(l ] 1)Y
l
m ,

Z
l
m(h, /)\ 2

L
Lh
A 1

sin h
LY

l
m

L/

B
.

If we use to deÐne the surface, the coupling integrals are nonzero only ifequation (A1)

l \ L ^ 1 for C, H, E ; (A11)

l \ L ^ 0 ^ 2 for B, D, F, G, P . (A12)

Four of these integrals are irreducible (D, E, F, H), two of which (F, H) are known as Elsasser and Adams integrals.
We may now write down the boundary conditions developed on spherical harmonics up to order l \ 3, as was done

(incorrectly) by & Tassoul in their Appendix B:Tassoul (1992b)

u02] e[L
r
u
B22 , v

B22 , w
B23 ]\ 0 ,

u
B22 ] e[L

r
u02, v02, w01, w03]\ 0 ,

s02] e[L
r
u
B22 , v

B22 , w
B23 , L

r
s
B22 , L

r
t
B23 ]\ 0 ,

s
B22 ] e[L

r
u02, v02, w01, w03, L

r
s02, L

r
t01, L

r
t03]\ 0 ,

t01] e[L
r
u
B22 , v

B22 , w
B23 , L

r
s
B22 , L

r
t
B23 ]\ 0 ,

t03] e[L
r
u
B22 , v

B22 , w
B23 , L

r
s
B22 , L

r
t
B23 ]\ 0 ,

t
B23 ] e[L

r
u02, v02, w01, w03, L

r
s02, L

r
t01, L

r
t03]\ 0 . (A13)

We have listed all the terms that obey the selection rules (eqs. and for shortness sake, numerical constants and[A11] [A12]) ;
coupling integrals have been omitted. Let us now compare these boundary conditions to the one given by TT92. In the Ðrst
place, their number is not the same : TT92 have nine conditions, while here there are 10. Their missing condition is equation

which shows that their expansion is not complete to order l \ 3.(A13),
However, their analysis has another Ñaw that is even worse. The reader may note that all the radial derivatives of the stress

are missing in TT92, i.e., there is no equivalent of the terms . These derivatives arise from the development of theL
r
t01, L

r
s02, . . .

stress around the sphere of radius 1 :

p(1] e)\ p(1)] e
Lp
Lr

]O(e2) ,

and they play an important role in the boundary layer Ñows, where they compete with the other terms. Their omission is
equivalent to applying an O(e) stress on the true surface, which is why TT92 obtain the wrong amplitude for the Ekman
circulation.
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