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We use three-dimensional simulations to study compressible convection in a rotat-
ing frame with magnetic fields and overshoot into surrounding stable layers. The,
initially weak, magnetic field is amplified and maintained by dynamo action and
becomes organized into flux tubes that are wrapped around vortex tubes. We also
observe vortex buoyancy which causes upward flows in the cores of extended down-
draughts. An analysis of the angles between various vector fields shows that there
is a tendency for the magnetic field to be parallel or antiparallel to the vorticity
vector, especially when the magnetic field is strong. The magnetic energy spec-
trum has a short inertial range with a slope compatible with k*!/? during the early
growth phase of the dynamo. During the saturated state the slope is compatible
with k='. A simple analysis based on various characteristic timescales and energy
transfer rates highlights important qualitative ideas regarding the energy budget of
hydromagnetic dynamos.

1. Introduction

The dynamo action of magnetohydrodynamic turbulence is of major importance in
virtually all astrophysical bodies. In stars, accretion discs and galaxies the turbulence
is compressible and affected by rotation and stratification. Here we focus on solar-type
stars, where low Prandtl number turbulence is driven by convection which penetrates
into the lower radiative interior.

Previous investigations of convective dynamos have concentrated on the magnetic
field evolution either on large scales using spherical geometry (e.g. Gilman 1983:
Glatzmaier 1985; Valdettaro & Meneguzzi 1991), or on small scales using Carte-
sian geometry (Meneguzzi & Pouquet 1989). In a recent paper (Nordlund et al.
1992, hereafter referred to as Paper I) we included, for the first time, the com-
bined effects of compressibility, rotation, stratification, overshoot, and low Prandtl
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FIGURE 1. A Cartesian box in the convection zone at a southern latitude, with z parallel to g and
the rotation axis in the (x,z)-plane. The structure of the box and the interfaces at z;...z4 are shown
on the right-hand side. CZ denotes convection zone.

number in a Cartesian geometry. These simulations provide new insights into convec-
tive magnetohydrodynamic turbulence, which laboratory experiments could not pro-
vide.

The goal of this paper is to present new results obtained in such high-resolution
numerical experiments and to investigate the magnetic structures associated with
the dynamo process and their correlation with other fluid properties. The mag-
netic structures in many respects resemble the vorticity tubes found in hydrody-
namical turbulence, of which a detailed investigation has recently been carried
out by Vincent & Meneguzzi (1991, 1994). A corresponding investigation for the
magnetic counterpart does not exist. Our simulations therefore provide a unique
opportunity to carry out such studies and to test ideas such as the similarity
‘between the dynamics of vorticity and magnetic fields, as proposed by Batche-
lor (1950).

The paper is organized as follows. After describing the simulation characteristics
(e.g. equations of the flow, initial and boundary conditions, numerical method, etc.)
we present some results about swirling convective downdraughts (§3) which drive
the dynamo that amplifies a seed magnetic field. Three different aspects of the
simulation data are then presented: the magnetic field structures (§4), the statistics
(§5) and the spectra (§6) of different physical quantities. A final discussion concludes
the paper.

2. The simulation
2.1. Equations

We employ Cartesian coordinates, where the x-direction points along the meridian
from south to north, the y-direction points in the azimuthal direction of rotation,
and z points downward in the direction of gravity g, with g = gZ (figure 1). The
rotation vector £ is inclined to g at an angle 0, ie. § - 2 = cos 6. Throughout this
work we take 0 = /3 which means that the latitude of the domain is 30° south of
the equator. The computational domain (figure 1) has an unstable layer of depth
d between heights z; < z < z3, with stable overshoot layers z; < z < z, above the
convective layer and z3 < z < z; below the convective layer (as in Hurlburt, Toomre
& Massaguer 1986). The horizontal extent is 2d in each direction (except in Run B,
where it is 3d).
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We solve the equations for conservation of mass, momentum, energy, and the
induction equation for constant magnetic diffusivity #:

Dlnp

5 =V 2.1)
Du 1 1
— =—(y—1)(eVinp+Ve)+9g—22 xu+-J x B+ -V-r, (22)
D1 p p ,
1
D7 = —0—DeV-ut -V(#Ve)+ 2087 + 102 1 g, (2.3)
p p
OB
S = VXX B)+ nVv°B, . (2.4)

respectively, where D /Dt = 0/0t + u+V is the total derivative, #" the radiative con-
ductivity divided by c,, J = V x B/, the electric current, yo the vacuum permeability,
and the stress tensor t = 2vpS, where

S,‘j = %(6]-14,- + aiuj - %5,‘]'51(”[(). (25)

We take the kinematic viscosity v as constant throughout the convection zone. A
constant pv with a strong density stratification would have made the upper layers
significantly more dissipative than the lower layers, which is unrealistic because the
dissipation should be as small as possible for a given resolution. (For a monatomic
gas such as ionized hydrogen or helium the bulk viscosity is zero.)

We assume a perfect gas law

p=( —1)pe, (2.6)

with constant specific heats, ¢, and ¢,, and with y = ¢y/c, = 5/3. In all the runs
where z; <0, we adopt a cooling function Q of the form

Q = —aof(z)(e — ewp), (2.7)

where ¢ is the cooling rate and f(z) is a profile function that vanishes everywhere
except close to the surface (z; < z < z;) where f(z) = 1.

2.2. Initial and boundary conditions

On the upper and lower boundaries of our computational domain we impose con-
ditions which are mathematically convenient, yet physically plausible. By including
overshoot layers the hope is that the actual conditions imposed at the top and bottom
have little influence on the flow in the convection zone (CZ).

At the top we impose a constant temperature and at the bottom a constant energy
flux; that is

e=e, at z =z, (2.8)

de/dz = (de/dz)y,, at z = z,. (2.9)

We assume the upper and lower boundaries to be impenetrable stress-free perfect
conductors which implies

O:uy = 0;uy =u, =0

0.B,=0.B,=B.=0 } at z=2,2. (2.10)

In addition we require all quantities to be periodic in the two horizontal directions.
With the above boundary conditions, a manipulation of the induction and continuity




328 A. Brandenburg and others

equations reveals that each component of the magnetic flux vector and the total mass
in the domain are conserved.

In the initial state we set u = B = /0t = 0 in (2.4)~(2.1) and obtain equations for
the hydrostatic and radiative equilibrium which depend upon m(z):

de/dz = myg/[m(z) + 1], (2.11)

dlnp/dz =m(z)dIne/dz. (2.12)
We specify the normalized pressure scale height & at the top of the domain, where
o= H[‘,"”’)/d, H{"") = (y — ety /g, and e, is expressed in terms of & by

€op = éOmadgds (213)

where m,y = 1/(y — 1) = 3/2 is the polytropic index for an adiabatic stratification.
Small values of &, correspond to strong stratification. The actual stratification after
a statistically stationary state is obtained is measured by the number of scale heights
over either the full box, Aln(p), or within the unstable layer, Aln{p)¢,.

Convective instability occurs in the interior of a star when %" (p, e) is smaller than
a critical value. The dependence .# = % (p,e) in stars is highly nonlinear with large
variations over many orders of magnitude. Here, for simplicity we prescribe a vertical
profile #(z) such that the middle layer is convectively unstable and the other two are
stable to convection (Hurlburt et al. 1986). In each layer #" is a different constant,
Hi(i=1,2,3) and these different values are joined smoothly in thin transition layers
of thickness 0.1d using third-order polynomials, so that .#°(z) is continuous and
differentiable. The value of #°, in the unstable layer is determined by the values we
prescribe for the Rayleigh and Prandtl numbers (see §2.3). Since .# is a function
of z so is the polytropic index m. In stellar convection theory V,,q = 1/(m + 1) is
sometimes used instead of m. A relation between m and # in each layer is obtained
by requiring the total flux of the initial state, #";de/dz = F,,, to remain constant.
Using (2.11)

mi+1=H"myg/Fy, i=1273. (2.14)

In all cases studied below we adopted m; = m; = 1 and m; = 3, so the system is

convectively unstable in the upper and middle parts of the box and stably stratified

in the lower part. In those cases where z; < 0 we included cooling with ¢ = 10, which
tends to make the upper part isothermal and thus convectively stable.

This equilibrium is perturbed by the addition of a small-amplitude random velocity

field. When the convection has reached a statistically stationary state a seed magnetic

field is added to the convectively unstable region. In most cases we used B — (By,0,0)
where

By = Byeeq sin[2n(z — z,) /(2 — z,)] for z,<z<z,
=0 elsewhere (2.15)

with z, = 0.3d and z, = 0.7d. With this seed field J Bd*x = 0 for all time. In some
cases a random initial magnetic field was used.

2.3. Dimensionless quantities
After setting
d=g=p=py=c,=1, (2.16)

we measure length in units of d, time in units of (d/g)!/> (which is V2 times the free-
fall time of the unstable layer), density in units of p = [pd’x/ [ d°x, and magnetic
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field in units of (uypgd)'/>. We define the Rayleigh number as
4
Ra= 3% (9) , (2.17)
vie, \dz /,
where 7 = #',/yp is an average radiative diffusivity, and (ds/dz), is the entropy
gradient in the middle of the initial stratification. It can be shown that

d (dS> _2mad—m2 1 (218)

e \dz )y T ma+1 1428m + 1)

where

Mg =My _ X8y Ya (219

Maq + 1 VFlol Vrad )
Rotation is measured by the Taylor number Tua, which is chosen so that the inverse
Rossby number, Ro~! = 2Qd/u,,, is of order unity, as in the Sun. Two Prandtl
numbers also need to be defined:

Pr=v/7, Pry=v/n. (2.20)

The whole system is described by 11 dimensionless numbers: y, Pr, Pry, Ra, Ta, 0,
¢o» G0, My, My, m3, plus those which describe the domain’s geometry.

2.4. Characteristic time and length scales
Important timescales are the diffusion and dissipation times. The e—fqlding tin_le
for the decay of the magnetic field in the absence of induction effects is thq ratio
between the magnetic energy and the Joule dissipation, 7, = EM /Qy, which is also
the magnetic diffusion timescale based on the magnetic Taylor microscale

I = (5(B*) [ {ugd*)"2, (2.21)
that is 1y = (1/20)(B?) /(nuod*) = +73,/n, which is typically much shorter than the

global magnetic diffusion timescale d*/5n. (The factor 5 in (2.21) 'is includ;d to .give
agreement with the standard definition of the Taylor microscale in one dimension.)

Timescales for the decay of kinetic energy and vorticity are tx = %ii /v, and
T, = 1542 /v, where
Ik = (5) /(@) Ay = (5(@)/(IV x o))"/, (2.22)

the kinetic Taylor microscale and vorticity microscale, respectively (Pouquet & 2Pat-
terson 1978; Lesieur 1990). The total viscous dissipation is actually € = v[(w?) +
2((divu)?)], but in the runs considered in this paper ((divu)?) < 0.01(w?).

2.5. The numerical method

Equations (2.1)—(2.4) together with the appropriate boundary conditions are solved
numerically using a modified version of the code by Nordlund & Stein (1990).
Advances in time are achieved either by a second-order Adams—Bashforth .schgme
(Run A) or by a third-order Hyman (1979) scheme (all other runs). Spatial derivatives
are calculated from cubic splines. Timesteps are usually 25% of the Cour_antf
Friedrich-Levy timestep, which in our model is defined as éx/ucp;, with dx a single
mesh interval and ucr, = max(c, vy, |u|,qv/dx,q%/5x), where ¢ is the sound speed, v4
the Alfvén speed, and ¢ is an empirical factor (around 0.1). It is usually the sound
speed which limits the timestep, and only in runs with high resolution and small values
of Ra and Pr does the diffusive restriction become important (Run O). A number of
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Run (0] A B C D
Mesh 126 x 105 63 x 63 952 x 63 126° x 105 1262 x 105
zy —0.15 0.0 —0.15 —0.15 —0.15
Z4 1.5 2.0 1.85 1.5 1.5
o 0.1 0.2 0.2 0.1 0.1
) 10 0 10 10 10
Ra 10° 106 3 x 10° 3 x 107 3 x 107
Pr 0.1 0.2 0.2 0.1 0.1
Pry 1.0 4.0 0.5 1.0 0.5
Re 140 310 540 1100 1200
Rey, 140 1240 270 1100 600
Re; 35 63 89 121 123
Ro™! 7.1 32 32 5.0 4.6
Ak 0.25 0.20 0.17 0.10 0.11
Am 0.06 0.08 0.07 0.03 0.03
™ 1.8 10.9 2.5 6.1 2.7
Aln{p) 6.0 3.9 46 6.4 6.4
Aln(p)cz 3.8 2.6 26 4.1 4.1

TABLE 1. Summary of data from numerical simulations. The averages are taken over the whole box.

runs are summarized in table 1, of which only Runs A and D are investigated below.
The other runs are included to facilitate comparison of various Reynolds numbers,
time and length scales, and vertical stratification. In Run O the magnetic field is
decaying and in Run B a horizontal magnetic field is applied, i.e. these runs are not
dynamos. Runs A, C, and D show dynamo action and the quantities in table 1 refer
to a state where the dynamo is saturated.

3. Swirling downdraughts

Video animations suggest that the magnetic field evolution is primarily controlled
by swirling downdraughts. We therefore begin by inspecting these downdraughts
in more detail. The turbulent motions are conveniently visualized using images of
the magnitude of the vorticity, |w|, and of the normalized helicity density H =
@ * U/(DpsUpms ), Where @,,,s and u,,,; are the root-mean-square values of the vorticity
and velocity, respectively. The vertical cross-section (figure 2) reveals the complex
nature of the downdraughts which appear to be reminiscent of the turbulent plumes
that are believed to exist in the solar CZ (Rieutord & Zahn 1995). Figure 2(b)
shows that the helicity is large and of either sign within such descending turbulent
plumes.

These downdraughts are important for the dynamo, because they are able to wind
up magnetic flux tubes into a spiral, which could lead to an amplification of magnetic
flux analogous to the shear-twist—fold dynamo of Vainshtein & Zeldovich (1972).
The degree of twisting is measured by the helicity. However, figure 2 shows that the
helicity associated with the downdraughts can have either sign. Taken over the whole
box the relative helicity is small (—0.03) due to cancellations.

The dynamics of the downdraughts is made significantly more complicated by
anomalous density reversals in their cores. Fluid in the centre of a downdraught is
usually heavier than its surroundings. However, under the influence of the Coriolis
force, a downdraught generates vorticity which leads to an evacuation of mass at the
very core of the vortex, as in a cyclone (figure 3a). The buoyancy associated with this
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light fluid decelerates the downward flow and can even cause it to reverse (figure 3b).
We refer to this effect as vortex buoyancy. (Comparison with a snapshot taken at an
earlier time with a weaker magnetic field shows similar behaviour, indicating that the
magnetic field has little influence on this effect.)

We explain this reduction in density as follows: rotation imparts vorticity to the
downdraught resulting in large local horizontal velocities. Horizontal force balance
requires a central pressure reduction of the order of the dynamical pressure in the
horizontal motions. The lengthscale on which temperature varies is much larger than
the scale of the downdraught because the Prandtl number is small. Thus according
to p o p/e, the density reduction is primarily due to the reduction in pressure in the
downdraughts. For a larger value of the Prandtl number (not shown) we did not find
such a density reversal, indicating that this is indeed a combined effect of low Prandtl
number and rapid rotation. It is mainly the dynamical pressure due to the horizontal
motions which leads to the evacuation.

The effect of vortex buoyancy reverses the ‘buoyancy braking” mechanism. In com-
pressible convection without rotation there are positive pressure fluctuations above
both upwellings and downdraughts. This gives positive density fluctuations which
brake the upwellings and accelerate the downdraughts, and hence enhance the well
known up/down asymmetry in compressible convection of high-speed descent in
thin downdraughts and a low-speed rise in broad upwellings (Toomre et al. 1976;
Hurlburt, Toomre & Massaguer 1984). Here though, with rotation, this asymmetry
is less pronounced because there is less enhancement of the density fluctuation due
to the reduction of pressure in downdraughts via the mechanism described above. A
similar connection between low-pressure regions and vortex tubes has recently been
discussed by Douady, Couder & Brachet (1991).

An investigation of the formation of those buoyant vortices is beyond the scope of
the present paper and will be addressed in a separate paper.

4. The dynamo

For large values of Re) the non-magnetic state is unstable and magnetic field
perturbations grow until saturated by nonlinear effects. In Paper I we described the
amplification of such a seed field in the kinematic regime where the Lorentz force
is negligible as well as in the dynamic regime where the magnetic field affects the
flow. Apart from a brief resumé of the dynamo process we concentrate here upon the
magnetic field structure, and the statistics of the hydromagnetic flow.

4.1. Amplification of a seed magnetic field

In figure 4 we show the growth of magnetic energy versus time for two runs with
different initial seed field energies in which Pr = 0.2 and Pry = 4. The seed
field was either a solenoidal random field, curve (i), or B, was computed from
(2.15), curve (ii). In these runs the magnetic energy increases by 3 and 5 orders of
magnitude, respectively.

During the growth phase of the dynamo the magnetic Taylor microscale increases
continuously and levels off at approximately 0.07 as the dynamo saturates. This
increase is associated with the magnetic flux tubes becoming stronger and more
robust as the dynamo settles. We also found that A, is fairly constant throughout
the convection zone, but becomes larger both close to the surface and in the lower
overshoot layer where convective motions are rather weak. Larger magnetic diffusivity
(smaller values of Pry,) yields only slightly larger values of A;.
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FIGURE 2. (a) The logarithm of the magnitude of the vorticity in a vertical cross-section (v = 1.88).
Note the turbulent structure of the downdraughts compared to the more laminar upwellings. (b) The
normalized helicity density H in the same plane as above. Note that large helicities occur in the
downdraughts. Run D.
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FIGURE 3. (a) Horizontal image of the relative density fluctuation p’/p. Light, lovy-d;nsity regions
are pink. (b) Vertical velocity normalized by the sound speed, u./c. The arrows indicate a strong
swirling downdraught where vortex buoyancy leads to an upward motion in the core of the vortex.

Run D.
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FIGURE 4. (a) Exponential growth of magnetic energy Ej over 3 and 5 orders of magnitude and
subsequent saturation. Note that the saturation amplitude is independent of the seed field’s strength
and that the growth is on the convective turnover timescale t.om. As time increases there is a slight
decrease in the total kinetic energy Ex. Run A. (b) Time series of the magnetic Taylor microscale
Zum. The solid line refers to Run A, and the dotted and dashed lines to similar runs, but with
different values of Pry;.
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FIGURE 5. Growth rate gy of the dynamo for different values of the magnetic Reynolds number
based on the Taylor microscale.

The values of 4y (cf. table 1) are just a few times the mesh size and one might be
worried that the numerical resolution is therefore insufficient. However, magnetic flux
tubes are typically 64, wide. In § 6.3 we compute the spatial autocorrelation function
and find that the lengthscale at which this function has the first transition through
zero is approximately 0.1 (or about 6 mesh sizes for Run D), which we consider as
evidence of sufficient resolution.

Cattaneo, Hughes & Weiss (1991) raised the question of how long one has to run
a simulation before one can claim to have a dynamo. They proposed a minimum
time Ty foafery, Where four, = (L/1)? is a safety factor, which is the square of the ratio
of the scale of the box to a small scale. Assuming [ = g (see §§2.4 and 2.5), the
minimum time would be around 10 x (1/0.2)> = 250. Note that the integration time
in figure 4 exceeds this value.

We have computed the growth rate ) = %(d/dt) In E); of the dynamo for different
values of Pr. In figure 5 we plot o), for different values of the magnetic Reynolds
number based on the Taylor microscale, that is, Re,{jﬂ"" = u,Ax /5. For the run with
Pr =1 we have only two values. Nevertheless, the graph suggests that the critical
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Ey =5- [ BV WL=/u-(J><B)dV

Ex = %/pude W, =/pV-udV
Epz—/pg-de th/pg-udV

Er = /pedV Ly, = /(%de/dz)bmdxdy Lip = /(fde/dz),opdxdy

0, = ﬂ#o/szV

Qy = 2v/p82dV

TaBLE 2. Definition of the different terms in the energy equations (4.1)—(4.4).

value for dynamo action is approximately 30-40, and seems to be independent of (or
only weakly dependent on) Pr. It is interesting to note that the onset of dynamo
action in the model of Meneguzzi & Pouquet (1989) is characterized by a similar
value of the magnetic Reynolds number based on the Taylor microscale of around
30-40. The Reynolds number based on the integral scale, however, is rather different
in their and our models. This result suggests that, while the onset of dynamo action
can depend on a number of different parameters, the critical magnetic Reynolds
number based on the Taylor microscale seems to be a useful quantity to quantify the
onset under various circumstances.

4.2. Energy budget

Energy equations may be derived from the basic equations (2.1)—-(2.4) and the bound-
ary conditions (2.8)—(2.10). We obtain a set of four equations:

dEy,
2 =W, -0y, 4.1
i L—Qy (4.1)
E .

dd—tK =W.+ W,+ W, -0y, (4.2)

dEp
— = _w, 43
i b (4.3)

dE

L = _Wc + Lho! - Ltop + QV + QJ7 (44)

dt
for the magnetic, Ey,, kinetic, Eg, gravitational potential, Ep, and thermal, E, energy;
W., Wy, Wy, are the work done by compression, buoyancy and by the Lorentz force;
Qy, Qy are Joule and viscous heating; and L, and L, are the luminosities at top
and bottom. The total energy satisfies

d
&(EM + Ex + Ep + E7) = Lpoy — Lygp. (4.5)

The definition of various terms is given in table 2.

The work done by buoyancy describes the change of the density stratification.
During the start-up phase when the system changes from a hydrostatic stratification
to a convective state, W), is important. Even during the statistically steady convective
state W, is in general non-vanishing due to the presence of acoustic oscillations, but
this term averages to zero on timescales long compared with the sound travel time. A
sketch of the interaction between the different energy reservoirs as given in equations
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FIGURE 6. Sketch of the energy budget and coupling between the different reservoirs. Gain and
loss of total energy of the system is determined by the luminosity difference between the bottom
and top. The magnetic energy generated by the dynamo is supplied via the kinetic energy reservoir,
which in turn is fed by thermal energy due to compression and expansion. Buoyancy work mediates
an interplay between the kinetic and potential energy reservoirs.

Ey~13x107% W, ~2x10* Q,~2x10* T~ Am ~ 0.08
Ex ~ 1072 W.~7x10* Oy ~5x10* x ~ 20 Ak ~ 0.20
Ep ~—13 szi1074
Er =10 Lpo =5 x 1073 Liop 5% 107% 17 ~2 x 103
TABLE 3. Estimates for the various energies and energy fluxes for the standard case with Pry = 4;
Run A.

(4.1)~(4.4) is shown in figure 6. Below we give rough estimates for the different terms
and discuss the interactions between the different forms of energy.

Owing to dynamo action the magnetic energy increases and the kinetic energy
decreases slightly until saturation occurs with Ey; ~ 0.1Ex. We investigate the details
of the energy flow by considering simple model equations which are analogous to the
original energy equations.

We neglect the potential energy and the buoyancy work terms because when
taken over sufficiently long time intervals, the average value of W, is zero. The
contents of the three remaining energy reservoirs, their decay timescales 1), = Ey/Q,,
%k = Ex/Qk, tr = Er/Lyy (Kelvin-Helmholtz timescale), and the various work
terms are measured. The approximate results of such measurements are given in
table 3. All quantities are non-dimensional, for example time is in units of (d/g)"/?;
see §2.3.

The evolution of the magnetic energy (figure 4) shows a maximum with a sub-
sequent small decrease. The timescale for this decay is shorter than the magnetic
diffusion timescale d*/(nn?) ~ 2000. Similar behaviour was noted by Kida, Yanase &
Mizushima (1991). If this decay persisted then the magnetic energy would decay by
many orders of magnitude within one magnetic diffusion time. In order to investigate
this worrying possibility we now consider simple master equations which describe the
energy balance and the energy transfer between the various reservoirs.

The construction of such equations is best understood by considering the magnetic
energy equation (4.1). As the dynamo saturates, the rate of working changes much
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FIGURE 7. (a) Evolution of the different energy forms obtained by integrating the model equations
(4.7)—(4.9). An enlarged picture of the evolution of the thermal energy is shown in (b), but over a
longer timescale. i

less than the dissipation rates. From figure 4(b) we see that A, varies only slightly
with time. Therefore the ratio 1y, = Ey/Qy = %/1%4/71 does not vary much, and we
may approximate the Joule dissipation in our set of equations by E,;/ty. It is the very
small difference between W, and Q, that is important here, rather than their actual
values. During the growth phase of the dynamo the work done against the Lorentz
force, —W,, is slightly larger than the work done by dissipation. However, once the
dynamo saturates (see figure 6 in Paper I) these work terms are approximately equal.
This behaviour may be approximated by a nonlinear ‘quenching’ term which becomes
important once the magnetic energy equals a significant fraction of the kinetic energy.
For weak magnetic energies we require —W,; = Ry Ey;/ty, which is a factor Ry,
larger than Q;. Here, Ry plays the role of a bifurcation parameter that must be
larger than unity if there is to be a dynamo (see below). For large values of E) we
require that —W; =~ Q,. The simplest ansatz is

E
—WL=RME—M (1_Eﬂ JS) (4.6)

™ Tm /7 TK

This quenching expression vanishes if Ey/Ex = t)/tx. The same term must enter
with opposite sign in the momentum equation. For the compression work term we
assume a similar form. The complete set of nonlinear equations may then be written
as

dEy - B\ -
—— =RyE 1—== )| —Ey, 4.7
i M M( EK) M (4.7)
dEK ~ EK ~ EM) T
—— =RxEx (1 —== ) —RyEy|1— == ) — Ek, 4.8
Ex _ Ry K( ET> y M< =) - B (438)
dE N E N N N
B —Rk Eg (1 — ~—K> + Lyyy — Er + Ex + Ey, (4.9)
dt Er

where a tilde denotes division by the appropriate timescale, i.e. Ey = Ey /Tm, etc.
Here, Rk is another bifurcation parameter governing the onset of convection.

The steady-state solutions of these equations are E; = t7Lyy, Ex = Tk Ly [1 —
R'(2 — RyM), and Ey = (ta/7x)Ex (1 — R;;'). We have integrated these equations
using the relaxation timescales found in our simulation; see table 3. The two
bifurcation parameters have been adjusted such that the three energies of the steady
state correspond to those of our simulation, i.e. Ry, = [1 —(Eytk)/(Exta)] ™! = 1.591
and Rg = (2— Ry')[1 — (Ext7)/(Ertk)]™" = 1.524. The results are shown in figure 7,
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where we used the appropriate steady solution of the non-magnetic state as the initial
condition.

Once the magnetic field becomes significant the kinetic energy decreases slightly.
At the same time there is a small increase in the thermal energy followed by a slow
relaxation to the same energy as before the onset of dynamo action. However, the
thermal energy is extremely small, and such a change would be difficult to confirm
in an actual dynamo simulation where there are large fluctuations. Although this
simple model was only designed to describe the qualitative behaviour of a convective
dynamo, it quantitatively reproduces various features, such as the dynamo’s growth
rate.

4.3. Magnetic flux tubes

A remarkable result that emerged from our simulations is the formation of large-scale,
coherent, magnetic flux tube structures. These tubes are similar to vorticity tubes
found in homogeneous turbulence (e.g. Kerr 1985; She, Jackson & Orszag 1990;
Vincent & Meneguzzi 1991). In the literature several mechanisms for the formation
of magnetic flux tubes have been discussed: expulsion of flux from convection cells
(Galloway, Proctor & Weiss 1977), instabilities (Parker 1979), and fragmentation of
buoyant flux (Schiissler 1977; 1984).

Snapshots of the magnetic field at two different times during this amplification
show that in the saturated state the magnetic tubes are longer and more clearly
defined than in the growth phase (figure 8). This may be quantified by the increase
of Ay during the growth phase of the dynamo; see figure 4(b). Thus there is a
noticeable change in the flow structure as the field is amplified prior to saturation.
This indicates that the formation of extended tubes is a dynamical process where the
feedback between the magnetic field and the motion is important.

In order to illuminate the mechanism of flux tube formation further, we computed
the kinematic evolution of the magnetic field with a steady velocity field taken from
t = tp; see figure 4. A snapshot of the magnetic field in such a simulation is given
in figure 9. It shows that the growing magnetic field has the topology of flux tubes
which is a consequence of the stretching and compression of the convective velocity
field. The dynamical feedback of the Lorentz force seems to cause a reduction of the
tubes’ curvature (compare figures 8b and 9).

4.4. Magnetic buoyancy

Magnetic buoyancy of flux tubes is widely believed to be responsible for transporting
magnetic flux from the bulk of the convection zone up to the solar surface on a
timescale much shorter than the period of the solar cycle. In our simulations this
process does not seem to be very important, and instead we find downward transport
of magnetic fields due to advection.

Figure 10 shows horizontal cross-sections of several variables across part of a
strong magnetic flux tube. A vertical vortex tube is also present. Velocity is directed
clockwise around the vortex tube. In a video animation we see a long magnetic flux
tube being wound around this vortex tube.

The simulations show that flux tubes are a direct consequence of the flow field, and
that downward motions around the tube are important. We do not see tubes rising
under the influence of magnetic buoyancy. This could be a selection effect: owing to
stratification, rising tubes expand and therefore become weaker and thus lose their
identity. We see flux tubes mainly at stages where their identity is maintained by
stretching and compression due to the flow.
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FIGURE 8. (a) Magnetic field during amplification at ¢ = 514.7. Only vectors above a certain
threshold are plotted (B > 0.005). The interface between stably and unstably stratified layers is
marked by a dotted line. (b) Distribution of magnetic field at a later time close to saturation at
t = 653.8. Threshold B > 0.045. Run A.
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FIGURE 9. A snapshot for the frozen-in kinematic case at t = 856.9. Only vectors above a certain
threshold are plotted (B > 4 x 107%). Run A.
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We next consider the forces acting on the tube. By examining the cross-sections of
density, and gas and magnetic pressures we find that the influence of the magnetic
field on the density, which results in magnetic buoyancy, is weaker than the drag
force of the velocity field. The tube’s magnetic curvature force, in this case, is in the
horizontal direction and is therefore irrelevant in determining its vertical acceleration.

The relative density reduction Ap/p in the strongest horizontal tubes is about 3%
(see figure 10), approximately equal to the ratio of magnetic to gas pressure, ie.
Ap/p ~ B?/(2uop). The acceleration a of the tube is expected to be approximately
gAp/p = 0.03. Figure 10(h) shows the profile of the vertical velocity along the line
marked in the contour plots. Surrounding the tube there is a downflow whose speed
is about 0.1 velocity units. However, within the tube this downflow is reduced to 0.02
due to the buoyancy of the magnetic flux tube. The velocity of the tube relative to the
surrounding medium is therefore Au = 0.08. The duration of this acceleration relative
to the surroundings is At = Au/a ~ 3, which is comparable with the typical lifetime of
these tubes. The displacement associated with this acceleration is Az = laAt* ~ 0.1,
showing that the tubes are not advected far during their lifetime. The lifetime of such
strong tubes is typically twice as long as the duration of their advection, but this
includes the time for its generation and disappearance. The tubes disappear by ohmic
diffusion, i.e. on a diffusion timescale based on the magnetic Taylor microscale, ;.

In a video animation one occasionally sees rapid downward motions of flux tubes
surrounding intense downdraughts, but these tubes are more vertically oriented than
the tube considered in figure 10. An example of such a tube may be seen in figure 8(b).
Vertically oriented flux tubes are often found in the upper part of the convection
zone, whilst close to the interface, tubes are usually oriented horizontally.

In our simulations magnetic buoyancy is counterbalanced by drag forces. It is an
open question, however, how far these conclusions carry over to the solar case, where
the Mach numbers at the bottom of the convection zone are expected to be much
smaller (~ 107%) than in our simulations (< 0.1), and where much stronger toroidal
magnetic fields can be generated by differential rotation.

4.5. Magnetic field stratification

In a two-dimensional simulation in the (x,z)-plane with an imposed magnetic flux
in the y-direction Jennings et al. (1992) found that in the relaxed state the quantity
(B)/{p) is almost uniformly stratified throughout the convection zone, and that
(B)/{p) goes rapidly to zero in the overshoot layer. In their simulation the total
magnetic flux is conserved and non-vanishing, whereas in the present case the total
flux vanishes. We therefore investigated the variation of B,,, = (B*)!/> which increases
towards the upper layers (figure 11).

For comparison, we have also shown both the depth dependence of B,,, and the
(non-dimensional) average Alfvén speed v = (B?/p)'/?. In the bulk of the convection
zone the r.m.s. value of the magnetic field increases downwards and has a maximum at
the interface. However, the average Alfven speed varies little through the convection
zone.

5. Statistics

In the previous section we characterized the onset and the energy budget of
turbulent convective dynamos. The magnetic field is always in the form of magnetic
flux tubes. In this section we focus on the question of how these tubes are oriented
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FiGURE 10. Horizontal cross-section (z = 0.68) through a strong magnetic flux tube. Plots (¢) and
(d) show the density fluctuation and the vertical vorticity component (dotted line means negative
values). The magnetic flux tube is shown as vectors superimposed on (d). Note that the flux tube
is wrapped around the vortex tube. Plots (a) and (b) show profiles of the density and the vertical
velocity component through the vertical line indicated in (¢) and (d). Positive values of u. mean
downward velocity. Note that u. is small, but positive in the core of the magnetic flux tube, i.e.
buoyancy counteracts the downward motion, but is not sufficient to lift the tube. Run A.
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FIGURE 11. (a) Vertical dependence of Bys/{p), where Byns = (B?)!/2. Note that this quantity
increases slightly towards the upper layers (z = 0). (b) Vertical dependence of B,y on z. In the
convection zone this quantity increases with depth. Note the peak of By, near the interface (z = 1).
(¢) Depth dependence of the average Alfvén speed vy = (B*/p)'/?. Run D.
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FIGURE 12. The probability density functions of the three components of u, @, B, and J. Note
the strong asymmetry of the u. field showing an extended range of strong downdraught motions
(u, > 0). There is also a slight asymmetry in the distribution of the vertical vorticity with a
somewhat enhanced probability of @, > 0 associated with the vorticity generated in downdraughts.
There are no marked asymmetries in the distributions of B and J. Run D.

relative to other relevant fields in the simulation. For this purpose we employ
statistical tools such as probability density functions.

5.1. Probability density functions

In figure 12 we present probability density functions (PDFs) of u, , B, and J. The
PDFs have extended exponential tails. Note that the distribution of B is more peaked
than that of u. This shows that B is more intermittent than w. Similarly peaked
distribution functions for the magnetic field have been obtained by Dittrich et al.
(1988).

The exponential tails of the PDFs of transverse velocity gradients are associated
with intermittency in hydrodynamic turbulence (Kraichnan 1990), and have also
been found in other numerical simulations (e.g. Vincent & Meneguzzi 1991). Such
exponential tails typically occur with highly turbulent convection (e.g. Castaing et al.
1989), although they can also occur in non-turbulent flows (Pumir, Shraiman & Siggia
1991).

The degree of intermittency of a function f is characterized by its kurtosis kurt(f) =
(f*)/(f*). For Run D, we found kurtosis values around 4-5 for the horizontal velocity
components and 8 for the vertical component. The kurtosis of the other fields is much
larger (around 20 for the vorticity and the magnetic field and around 30 for the electric
current J). These values are large compared with the Gaussian distribution’s value
of 3, which indicates a high degree of intermittency.
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5.2. Filling factor

An interesting quantity that can be derived from the PDF of |B| is the smallest
percentage of the volume Vs, occupied by a certain percentage Bo, of the total field.
The relation Vo, (Be,) may be expressed in terms of p(B) by

Vi, = / “p(B)|B| and By, = (|B))" / \BIp(IB))d|B], (5.1)
B* B*

see figure 13. We see, for example, that magnetic fields which exceed their r.m.s. value
make up 80% of the field (figure 13b) and are contained in only 40% of the volume
(figure 13¢). Further, the field vectors with |B| > iBmax contribute 25% to the total
field and occupy only 5% of the volume.

The relation Be, versus Vo, is not significantly resolution dependent. This is because
the PDF of |B| is nearly exponential. If it was exactly exponential, the relation would
be

By, = (1 —InVy,)Vy, (52)
which is shown in figure 13 for comparison.

5.3. Correlations

It has often been emphasized that the equations for vorticity and magnetic field
are very similar (e.g. Batchelor 1950). It is therefore interesting to compare these
two vector fields. How certain vectors are aligned with each other cannot easily be
determined by looking at cross-sections. Only a statistical analysis yields quantitative
trends.

In figure 14 we present histograms of the cosines of the angles between the different
vector fields. There is indeed a high probability for @ and B to be either parallel
or antiparallel, especially when the magnetic field is strong. In a video animation
we observed however that strong vortex tubes and strong magnetic fields avoid each
other. Yet, when |B| is strong the two vectors are aligned. This suggests that strong
magnetic fields enslave weaker vorticity.

The cosines of the angles between all other fields appear to be random. However, it
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FIGURE 14. Probability density functions of the cosines of the angles between different vector fields.
Solid lines refer to points where |B| = 3By, and dotted lines are for all points. Note the strong
alignment between w and B. Run D.

is evident that J and B are predominantly perpendicular when the field is weak, and
that this changes markedly when the field is strong. This must be due to the saturation
of the dynamo: as the field becomes strong, J and B are no longer perpendicular, the
work done against the Lorentz force, —(u - (J x B)), is lowered and the conversion of
kinetic to magnetic energy is reduced.

A similar selective analysis, but for the hydrodynamic case, has been presented
by Pelz et al. (1985) and Kerr (1987), who used the local dissipation as a selection
criterion. They found large helicity densities in regions of low dissipation, and more
uniform distributions in regions of high dissipation.

5.4. Eigenvectors of the rate of strain tensor

The flow structure may be analysed using the eigenvectors of the rate of strain tensor
Sij = %(u,—,j + uj,;). This symmetric 3 x 3 matrix is computed at each mesh point. The
eigenvectors ey, e,, e are ordered such that the corresponding (real) eigenvalues satisfy
J1 < 42 < 3. The sum of the eigenvalues would be exactly zero for an incompressible
fluid, and here the sum is small compared to max(4;). This is consistent with the fact
that ((divu)?) < (@?), indicating that compressibility effects are weak on average.
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FiGURE 15. Correlations between the three eigenvectors of the rate of strain tensor and vorticity
(upper row) and magnetic field (lower row). Run D.

The three eigenvectors are orthogonal, with e; giving the direction of compression
and e3 the direction of stretching. If A, = 0 the flow is two-dimensional. In practice,
4> is usually small compared with A; and 4.

In figure 15 we show the probability density functions of the cosines of the angles
between the three eigenvectors of the rate of strain tensor and both the vorticity and
the magnetic field. Note that there is an enhanced correlation between e, and both
the vorticity and the magnetic fields. There is also some tendency for @ and B to
be perpendicular to e; and es, the eigenvectors corresponding to the directions of
compression and stretching, respectively. We have seen before that the probability for
vorticity and magnetic field to be aligned is indeed larger than the probability for them
to be perpendicular. Similar relations between vorticity ‘and the three eigenvectors
have been observed in the simulations of homogeneous turbulence by Kerr (1985), and
Vincent & Meneguzzi (1991). These authors explain the correlation between vorticity
and the intermediate eigenvector as an indication of the quasi-two-dimensionality of
the flow surrounding vortex tubes.

It may seem somewhat surprising that there is no alignment of @ or B with e; (the
eigenvector corresponding to the direction of stretching), because vortex stretching
and magnetic field line stretching are known to be important properties of turbulence
and dynamos, respectively. Stretching does, however, contribute to the dynamics of
vorticity and magnetic fields in that it causes the tubes to have non-circular cross-
sections. This can be seen in figure 16 where we compare the directions of the
eigenvectors e; and e; with the position of a strong magnetic flux tube in a vertical
slice through the plane x = 1.4. This flux tube is the same as that in the horizontal
slice of figure 10. In vertical section the velocity is mainly downwards, but in the
immediate vicinity of the tube, u. is very small; see §4.4. The eigenvectors e; and
e3 show that the tube is compressed in the vertical direction, but stretched in the
horizontal y-direction. As a consequence the tube is flat.

The statistical investigations presented in this section have shown that the magnetic
field vector has a high probability to be aligned both with the vorticity and the
intermediate eigenvector of the rate of strain matrix. This supports the anticipated
similarity between the magnetic field and the vorticity.
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FIGURE 16. Vertical cross-section through the plane x = 1.4 perpendicular to a strong magnetic flux
tube. Projections of the eigenvectors fields e; and e are shown together with contours of B, and
vectors (uy,u.). Solid (dotted) contours represent negative (positive) values of B,. Note the close
proximity of positive and negative contours, which suggests that reconnection is imminent. In the
surroundings of the magnetic flux tube the direction of compression, ey, is vertical, whereas the
direction of stretching, es, is horizontal. This explains the flat shape of the tube. Run A.

6. Spectral properties

In §5 we demonstrated that the statistical properties of magnetic and velocity
structures found in our dynamo simulation are similar to those of simulations of
homogeneous turbulence. We now focus attention on the spectral properties of

velocity and magnetic fields.

6.1. Energy and helicity spectra
We consider the spectra of kinetic and magnetic energies in a horizontal plane at the
interface (z = 1) as a function of the horizontal wave vector ky|, where k3; = k2 +k;
and write k = |kg| for the length of the horizontal wave vector. We do not include
the dependence on the vertical wavenumber k. because of the strong inhomogeneity
in that direction. The spectral kinetic energy is defined as

2n
Ex(k) = 1{p) /) ki, 2, 0 kd gy, (6.1)

where ¢y = arctan(k, /k,) and the hat denotes the Fourier transformation of the three
components of u. Likewise, the spectral magnetic energy is defined as

2n
Enm(k) =} A \B(ky, z, 1)) kd . (6.2)

In order to investigate the spectral properties of the effective ‘forcing term’ we also
compute the spectrum of the temperature fluctuations @ = e — (e)

2n
Eolk) = /0 1Ok, 2.0 kb (6.3)

We compare the spectra of the growth and saturation phases of the dynamo; see
figure 17. In both cases the kinetic energy spectrum shows a short inertial range with
a slope compatible with Ex(k) ~ k—5/3 followed by an extended dissipation range.
Obviously, the inertial range in our simulation is too short to accurately determine
the slope. Thus, our data are equally compatible with a k=2 spectrum.

During the growth phase of the dynamo the magnetic energy spectrum is different
from that of the saturated state. In the growth phase at t =1, there is an inertial
range with a slope compatible with k+173. This was predicted by Moffatt (1961)
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;Js_mg tl}l,e e}nalo_gy between vorticity and magnetic field. During the saturated state at
- t> the 1n§rF1al range of the magnetic energy spectrum has a slope compatible with
k= (Ruzmaikin & Shukurov 1982), but a k¥ spectrum (Kraichnan 1965) is also
compatible with the data. In figure 18 we give the spectra for a higher resolution case
(Run D) for the saturated phase and we see that here too the kinetic and magneti
energy spectra have an intermediate range close to k= and k™', respectively e
PrAt —sr;lail s}gales, the magnetic energy exceeds the kinetic energy in Run A, where
b M —h .kp un D, where PrM = 0.5, the magnetic energy saturates at smaller values
an the kinetic energy. This demonstrates that the saturation value of the magnetic
field }::annot simply bp estimated using global equipartition arguments. Similarly
&Z esti C()leliirg;tzft&? tLnbthle presence1 of shear, magnetic energies in excess of the
rbulenc i i
simglation o Beandenburs et S[?(rtla;; ;2)?oss1ble, as was recently demonstrated in a
Oflg(risegtl\c/}lﬁg%%)bo?talned a k‘zokinetic energy spectrum from their simulations
o 4 turbulence and a k" (flat) magnetic energy spectrum in the inertial
nge. us, .t}.xelr magnetic energy spectrum has the same slope as the enstroph
(squared vorticity) spectrum, k*Eg (k). This supports the analogy between vortigitz
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and magnetic field. In our simulations the magnetic and enstrophy spectra are similar
during the growth phase of the dynamo (¢ = ¢;), but-not in the saturated phase
(t = t»). This is in contrast to the similarity in the alignment of the two fields found
in § 5, that was valid both for weak and strong (dynamo saturated) magnetic fields.

Using second-order closure calculations, Pouquet, Frisch & Léorat (1976) found
that the magnetic helicity exhibits an inverse cascade which causes a growth of the
magnetic field at large scales. By comparing the two panels of figure 17 we see that
magnetic energy initially builds up in the small scales, but is then transferred to larger
scales. This supports the idea of an inverse cascade. The model of Pouquet et al.
predicts a k> spectrum for the magnetic helicity, (4 + B). Our data are in rough
agreement with this, see figure 18, where kinetic and magnetic helicity spectra are
also plotted.

The kinetic helicity spectrum (figure 18) displays rather large fluctuations, which
makes it difficult to decide whether it is closer to k=3, as found by André &
Lesieur (1977) in EDQNM simulation of decaying isotropic turbulence, or to k=2/3,
as suggested by dimensional analysis. The latter corresponds to a pure helicity cascade
towards large wavenumbers (Lesieur 1990 and references therein).

6.2. Wave excitation

In a video animation we saw strong isolated downdraughts oscillate such that the
upper part of the downdraught remained nearly fixed in space, but the lower part
shook to and fro. This is suggestive of gravity wave excitation in the lower overshoot
layer. Similar behaviour was observed in two-dimensional simulations with overshoot;
see Hurlburt et al. (1986).

The dispersion relation in a weakly subadiabatic isothermal layer is, for small
wavenumbers, w = yH,Nk, where H, is the pressure scale height, N = (—g - Vs/c,)"/?
the Brunt-Viisdld frequency, and ® the wave frequency (not to be confused with
vorticity). Gravity waves are evanescent in the unstable region, but their amplitude
is still significant at the interface. Since the fluid in our simulation is not isothermal
the Brunt-Viisdld frequency has to be replaced by some ‘effective’ value (this is
an eigenvalue problem). In the present situation where there is a relatively strong
magnetic field we may also expect the generation of Alfvén waves whose dispersion
relation would be @ = v4k if the coupling to other waves is ignored.

In order to study wave phenomena in our simulation we Fourier analysed the
velocity with respect to k and w. In figure 19 we show the k and w dependence of
li(k, )|*. We note that the wavenumber dependence of the kinetic energy does not
vary with frequency (figure 19a). This is in contrast to the frequency dependence
which shows quite different behaviour at different wavenumbers (figure 19b). Thus,
one would not expect the Taylor hypothesis, i.e. an equivalence of k and w spectra,
to be valid in our case.

In figure 19(c) we present a contour plot of |i(k,w)| in the (k,w)-plane. In this
diagram the change of structure along @ =~ (0.1 — 0.2)k is most likely due to gravity
waves. The expected slope for Alfvén waves would be w/k = v ~ 0.02 (see figure 11)
which is much smaller than the slope observed. A more thorough investigation of wave
excitation would certainly be worthwhile, but goes beyond the scope of this paper.

6.3. The autocorrelation function

Before closing the section on spectral properties we investigate the autocorrelation
functions C, and Cg, i.e. the Fourier transform of the corresponding power spectra;
see figure 20. Zeldovich et al. (1987) discussed the autocorrelation function for the
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FIGURE 19. Different representations of the kinetic energy spectrum |u(k,w)[*. (a) Spectrum as a
function of k for six different values of w. (b) Spectrum as a function of w for seven different
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® ~ 0.1k. This structure may be related to gravity waves excited in the stably stratified region. All
spectra are computed at the interface (z = 1). Run A.
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FIGURE 20. Autocorrelation functions for the velocity and magnetic field in the plane z = 1, where
r is a lengthscale in the (x, y)-plane. Run D.

magnetic field and proposed interpretations for two lengthscales that occur in the
stretch—twist—fold dynamo: the thickness of the tube, and their curvature radius; see
also Zeldovich, Ruzmaikin & Sokoloff (1990). They proposed that the width of the
peak of Cp is related to the thickness of tubes, and that the interval where Cy is
negative reflects the range of curvature radii.

For Run D the widths of the peaks of C, and Cp are 0.2 and 0.05, respectively,
which is about twice the corresponding Taylor microscale. Cp is negative in the range
0.1 <r < 0.4, consistent with the visual estimates of curvature radii from plots such
as figure 8. We note that independent statistical estimates in terms of the coherence
in the direction of the magnetic field (Brandenburg, Procaccia & Segel 1995b) give
similar lengthscales for the tube width and the curvature radius.

7. Discussion

In this paper we have carried out a detailed investigation of the properties of the
magnetic field generated by dynamo action in hydromagnetic convection. A number
of physical effects that are thought to be important for the solar dynamo have been
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taken into account, such as rotation and convective overshoot into the stably stratified
radiative interior. Yet, we are still far from real solar conditions since we cannot
use realistic values of # and v, as the resulting small scales cannot be handled in
a simulation such as this. This is basically a matter of spatial resolution, which
also limits the maximum stratification attainable. Further limitations of our model
include the relatively large values of the radiative flux and the large value of the
Mach number resulting from the low sound speed. This may affect our conclusions
concerning the minor role of magnetic buoyancy in our simulations. Additionally the
assumption of a perfectly conducting upper boundary is not very realistic, although
our model was not intended to reproduce surface conditions. Since no magnetic
flux can escape from the computed domain, Petrovay (1991) has argued that such a
boundary condition does not tell us whether or not magnetic buoyancy affects the
dynamo. However, Parker (1984) argues that very little magnetic flux actually passes
through the solar surface and thus a perfectly conducting upper boundary condition
might not be too bad after all.

Despite the above limitations the model has provided us with many useful insights.
Of primary importance is the fact that the flow is capable of amplifying a seed
magnetic field. In other words this is an example of a self-consistent dynamo.

Another important idea to come from this work is the association of strong vorticity
in areas of descending flow. As is now well known in compressible convection, there
is an up/down asymmetry in which fluid descends rapidly in narrow plumes and
rises more slowly in broad upwellings. Here, however, with the inclusion of rotation,
descending flow acquires vorticity and swirls downwards rather than simply falling
straight down. This leads to a density inversion in the core of downdraughts. Magnetic
flux tubes, which come into the vicinity of these vortex tubes, seem to be amplified as
they are wound round the vortex tubes. The possibility of convective overshoot allows
the accumulation and storage of magnetic field in the overshoot layer. It has been
argued that this is an important ingredient of the solar dynamo. Nevertheless, we
should emphasize that although the dynamo actually works in the entire convection
zone, owing to effective downward transport, the magnetic field is strongest at the
interface between the convection zone and the radiative interior.

We find partial evidence for a similarity between vorticity and magnetic field in
that vortex tubes and magnetic flux tubes are typically parallel to the intermediate
eigenvector of the local rate of strain tensor, meaning that they are perpendicular
to the plane in which the flow is locally two-dimensional. Such behaviour has
previously been documented for vortex tubes in ordinary hydrodynamic turbulence.
Furthermore, vorticity and magnetic field are parallel or antiparallel, especially in
those regions where the magnetic field is strong.

During the growth phase of the dynamo the power spectra of enstrophy and
magnetic field behave similarly in that they are compatible with a k*'/3 power law
in the inertial range. As the dynamo saturates, the magnetic energy in the larger
scales increases and the spectrum is subsequently compatible with a k~! slope. Thus,
there is a similarity between the spectra of enstrophy and magnetic field during the
kinematic regime. Yet once the dynamo has saturated these spectra are different.

Recent simulations of turbulent dynamos in the presence of differential rotation
(Brandenburg et al. 1995a) have shown that shear can lead to strong toroidal magnetic
fields that are large scale and which reverse direction on a long timescale in a cyclic
manner. There the turbulence is driven by a magnetic shear flow instability, which we
believe to be important in accretion discs. In future work we plan to combine shear
and convection, hoping that this will provide a useful model for the solar dynamo.
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