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Abstract. We investigate in some details the modeling of turbu-
lent plumes which have been proposed by Rieutord and Zahn to
represent the downflows in a stellar convective zone. We show
in particular the limits of Taylor’s hypothesis about turbulent
entrainment and emphasize its connection with the flow’s self-
similarity. The role of the dissipation is shown to be important
in the choice of the final asymptotic regime. This is illustrated
by a paradox which is solved when dissipation is correctly taken
into account. It is concluded that in stellar conditions, the lack
of self-similarity implies the replacement of Taylor’s hypothe-
sis by a proper closure of the mean-field equations in order to
obtain a reliable prediction on the large-scale dynamics.
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1. Introduction: astrophysical motivations and theoretical
background

In a recent paper (hereafter referred to as RZ95) Rieutord and
Zahn (1995) proposed that cold diving turbulent plumes may
play an important role in the dynamics and energy transport
of stellar convection zones. Their proposition has been moti-
vated by the results of direct numerical simulations of turbulent
compressible convection showing the important role played by
strong downwards flows which exhibit laminar plume-like be-
haviour (Cattaneo et al. 1991; Stein and Nordlund 1989; Nord-
lund et al. 1994).

In RZ95, the dynamics of these turbulent plumes has been
modeled using Taylor hypothesis for turbulent entrainment. We
recall that this hypothesis assumes that the entrainment of fluid
outside the plume is proportionnal to the mean vertical velocity
on the axis of the plume. However, it was mentioned in that
paper the fact that this hypothesis could be justified only for
self-similar flows. It is this last point and some others on the
internal dynamics of a turbulent plume that we wish to clarify
in the present paper.
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In Sect. 2 we derive, two equivalent forms of the local av-
eraged energy equation: the first form was used in RZ95 and
utilizes the flux of enthalpy; the second form is the one clas-
sically used in the literature on turbulent plumes (see Turner
1986) and rather uses the flux of buoyancy (fp v). As it is al-
ways the case in deriving the horizontally averaged equations of
a turbulent plume, viscous and thermal diffusion terms are dis-
carded. The two forms of the energy equations are then perfectly
equivalent. Quite suprisingly, these two equations, horizontally
averaged and used with Taylor hypothesis, do not give the same
self-similar solutions for diving plumes in an isentropic atmo-
sphere.

To understand this paradox, we turn back (Sect. 3) to the
boundary layer equations of free shear flows. We look for self-
similar solutions and show in passing that self-similarity implies
Taylor hypothesis. We then solve the paradox by analysing the
role of viscous dissipation: it turns out that in an isentropic
atmosphere, if the plume develops on a scale small compared
to that of the atmosphere, dissipation may be neglected and
the two forms of the energy equations yield the same solution.
However, if the plume develops on the whole scale height of the
atmosphere, viscous dissipation becomes important and another
régime takes place. This régime is fortunately correctly captured
by the enthalpy form of the energy equation and therefore results
of RZ95 are confirmed. Howeyver, it is now shown that turbulent
dissipation plays a major part in the internal dynamics of a
cold turbulent plume and more generally in stellar turbulent
convection.

In Sect. 4, we discuss a little more Taylor hypothesis and
in particular we stress the point that when it is applied without
self-similarity, it is no more than a crude closure of turbulence
equations and that only orders of magnitude can be expected.

2. The energy flow

We first reconsider the derivation of the plume’s equations in the
adiabatic atmosphere and more particularly the energy equation
((7) in RZ95).
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2.1. Local mean flow equations

Let us recall the three basic conservation equations

— mass
Op+V-(pv) =0 (D
— momentum
p(Ov+v-Vv)=pg—-VP+V.[o] )
— energy

pey(OT +v-VT)=—PV-v+ V-(xXVT) +[c]:[VVv] (3)

where x is the thermal (microscopic) diffusivity, [o] and [Vv]
respectively the viscous stress and the velocity gradient tensors.
The symbol : denotes double contraction between two tensors.
Now we must recall that

— the plume is axisymmetric

— we are dealing with a perfect gas and the medium surround-
ing the plume is adiabatically stratified, the hydrostatic equi-
librium being given by

0. Py = pog or 0, Ty=g/cp “4)

The z-axis is oriented towards the center of the star.

— the flow being turbulent, we use the Reynolds decomposition
of a physical quantity X into respectively a time-averaged
and a fluctuating part X = X + X’

— the density contrast between the plume and the medium is
small and is mainly due to temperature fluctuations, thus
pressure gradients in the plume are neglected and
b T (5)
Po To

where the subscript 0 denotes the unperturbed medium quanti-
ties.

‘We now express the energy equation (3) in terms of the buoy-
ancy 6p. We will show in the next subsection that the obtained
expression yields a paradox if dissipation is neglected. Let us
first develop Eq. (3) and neglecting second order terms in §p
and 6T we get

8t6T+v-VT0+i—‘DV~VT0+v-V6T=
0

1
(V-XVD) +[o] : [VV])

PoCy

—-(")’ — 1)T()V V4

where « is the adiabatic exponent. Developing the right hand
side by using Eq. (1) and remembering that because of adia-
baticity

T

v VT =(y-1)2v-Vp (6)
Po

we get

8t6T+@v‘VTO+V-V6T=

Po

(v — 1)% (V-(6pv) + 8:6p)

1
+—— (V-OVI) + o] : [VV])

Po
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Using expression (5) the former equation becomes for the
instantaneous buoyancy transfer

§
~T0:6p — Tyv - Vép + ,—oBTOV -Vpo =
0

1
(v — DI[V-(6pv) + 0,6p] + . (V-(xVT) +[o] : [VV])
The left hand side can be transformed into
é
~Tol8:8p + V-(8pv)] + ‘[fToV'(PoV) ©

but according to Eq. (1) the last term is of second order in §p so
neglecting this term and time-averaging we finally get

S 1
V-(6pv) = —C—TE(V'(XWST) +[o]: [Vv]) (®)
D

which is known as the buoyancy equation. We took into account
the fact that in the static atmosphere

V-(xVIp) =0 ®

Because of the high Péclet and Reynolds numbers of the
flow, we now neglect the microscopic heat diffusion and the
viscous dissipation due to the mean flow. However, we keep the
dissipation due to turbulence, that is

D=[0"T:[VV] (10)
The buoyancy equation now reads
S D
V-(6pv) = —— 11
(6pv) T an

Now let’s show that the buoyancy equation is equivalent to
the enthalpy conservation equation given in RZ95.
Starting from (11) and using (5) again we have

V-(p8Tv) — %6Tv VT = (12)

$ | O

For the kinetic energy equation we have, multiplying (2) by
v and averaging

2

V(5 ) =58 v+ V-V o) - D (13)

The second term on the right hand side will be neglected, ow-
ing to the high Reynolds numbers of the fluctuations, because it
expresses energy transfer due to viscous forces, which is unim-
portant (but see Monin & Yaglom 1975 for details). However,
the dissipation term is kept. Multiplying (12) by ¢, and adding
it to (13) we get, with the use of (4),

_
V[(6h + %)pv] =0 (14)

which is another form of the energy equation, precisely that
used in RZ95 (see their Eq. (6) ).
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The buoyancy equation (11) can also be understood as an
entropy equation expressing the fact that the entropy default
induced by the presence of the cold plume in the atmosphere is
reduced by dissipation. Actually, using (5), one can put it under
the form

V-(podsv) = (15)

Sl

2.2. The energy paradox

We have now at our disposal three different forms of the energy
equation; these are (11), (14) and (15). In RZ95 (14) was used
and using Taylor’s hypothesis with gaussian profiles for the ve-
locity and the excess of density 0p (assumed small compared to
p), the following equations were derived:

.
ac [¢18%u] = 2a¢?Blul
d q22,2] _ r 2 ~q 1
Eg[Cﬂu]— ¢ —1)

l _ +1 92 __1_ 2,3 _
2(n D¢ B u 3F<"ﬂ =F

(16)

where we recall that ¢ is the dimensionless depth, 8 the di-
mensionless radius of the plume, u the vertical velocity, o the
entrainment constant and 7 the ratio of the density inside the
plume to the density of the background. I' and F' are constants
(but see RZ95 for all scalings). The system (16) admits self-
similar solutions of the form

n—1=Ro¢™

Let us now use (11) without taking into account the dissi-
pation term. After integration over 7 and use of dimensionless
quantities, it reads

f*n—u=C

where C' is another constant. Replacing the third equation of
(16) by (18), we can also look for self-similar solutions which
are

B=phoC, u=ul™F, n—1=Ry(T (19)

These solutions are clearly different from the preceding
ones: the velocity now decreases as ¢ —5/6 instead of { ~7/6 when
q=3/2 as for the monatomic gas.

Therefore, even if the local equations (11) and (14) are
strictly equivalent, the use of Taylor’s hypothesis leads to dif-
ferent solutions !

The origin of this paradox is of course to be found in the
rough treatment of the original equations (11) and (14). The
enthalpy equation (14) is true no matter whether dissipation
is neglected or not. However, self-similar asymptotic solutions
might not be the same with and without significant dissipation.
Actually, we shall see in next section that this is indeed the case.
The question arises then as to which asymptotic regime should

q¥2

b= bOC’ u = UOC— * (17)

(18)
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be considered as relevant under given conditions. In other terms,
under which conditions does dissipation become relevant ? We
shall deal with this question in the next section by resorting to -
the boundary layer theory. However, it should be emphasized
by now that the use of the entrainment equations without con-
trol cannot account for the existence of different asymptotic
regimes. In order to shed some more light on Taylor’s entrain-
ment hypothesis, we now focus on the local equations and their
resolution in the framework of the boundary layer theory and
self-similarity. For this purpose, we use the buoyancy equation
without dissipation and discuss later the use of the enthalpy
equation.

3. Entrainment and self-similarity
3.1. Boundary layer equations

Turbulent plumes as well as turbulent jets belong to the wide
class of free shear flows. Because of their low spreading plumes
and jets are usually treated using the boundary layer theory as
originally proposed by Prandtl. Hence it is assumed that all the
quantities of the system (1), (2), (11) can be evaluated in terms
of a small parameter € = b/ L, where b is the lateral length scale
of the plume (ie its width) and L the longitudinal length scale
of the flow in its main direction. Prandtl’s idea relies on the fact
that, due to shear, gradients are much stronger in the lateral than
in the main direction. Besides, turbulent quantities such as the
Reynolds stress are linked to the influence of shear. Thus the
order of magnitudes of the terms appearing in (1), (2) and (11)
are

T =0(1), T = O(e), w'v' = O(e),
Sp=0(), 6pv' =), bp'u =),
9, =0(1),  8,=0(]/e)

where u is the vertical and v the horizontal component of ve-
locity, z the vertical coordinate, r the radius, 0, and 3, the
derivatives with respect to the corresponding coordinates.

Retaining only the O(1) terms, system (1), (2), (11) simpli-
fies into

%ar(r‘ﬁ) +0.(p) = 0 (20)
1 _

—0r(rpow) + 9.(pou*) = 6pg @1
L0, (rEpm) + 0,65 = 0 22)

which we may solve with additional assumptions. It should be
quoted that the turbulent fluxes of momentum v/ and v'2 are also
neglected compared to those due to the mean flow in the main
direction. This is an additional empirical assumption rather than
a boundary layer evaluation, although it is sometimes presented
as such (see for example Schlichting 1961). It means that the
kinetic energy of the mean flow is much larger than the turbulent
kinetic energy due to one component of the turbulent velocity
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field. It turns out to be true within the precision of the boundary
layer approximations but it should be kept in mind that the total
turbulent kinetic energy, once summed over all the components
of the fluctuating velocity field, is no longer negligible in all
the plume flows available from laboratory experiments (see for
example Shabbir and George 1994).

3.2. The self-similar solutions without dissipation

We now search the behaviour of the axial velocity and density
contrast from the set (20), (21), (22). We assume that there is
an asymptotic self-similar regime under which we can separate
the variables in the following way

5p = 5pm(2)k(E)
6p'V" = 5pmUnm N (€)

T = Up(2) f(£),
w'v' = U3 (2) (&),

where £ = r/b. However, we make no assumption about the
shape of the radial profiles. RZ95 assumed a gaussian profile
for the mean velocity and density contrast since, in laboratory
experiments on plumes, gaussian curves usually fitexperimental
data. Here we shall not specify the profile functions f, k, L and
N. This makes impossible an exact calculation of the searched
quantities but still gives their variations with depth, because of
the similarity hypothesis.

Now let’s multiply equation (22) by r and integrate from
zero to infinity with respect to this variable. We get
8pmUmb* = B (23)
where B is a constant. This equation is the same as (18).

Now, doing the same with Eq. (20) but integrating only from
zero to T we get

SR 2
v= pobgaz[pﬂb UnmA(©)]

with A€) = [§ yf@)dy.
Using (23) and (24) in Eq. (21) we finally get

24

Umdz(POszm)
b*6pmg
pOUyzndzb -1 '

+ (W) Ede[A(OEf (O]

) 2
(BRU) g - (200a0) g

k(&) = — ( ) £ de[A©) F())

6pmyg 6pmbg

PoUrzn -1
+ (b&pmg) § de[€L(E)]

(25)

This equation implies that the coefficients on the right hand
side are constants. It yields the following conditions:

d,b = cst (26)
poUZ,

=cst 27
bépmyg
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dz(POU,%;)

— M =cst 28
bpmg %)

dz(pOUmbz)

2 M — st 29
poUmb @9

The last condition is obviously Taylor’s entrainment rela-
tion (compare to the first equation of system (16)). If now we
separate the variables in the buoyancy equation (22) we obtain
after straightforward simplifications:

d:(pob*Um) ) o1
—( T )5 de[K(©AQ)]

+E 7 dg[EN (O] + dsb{ €7 de[K(©)A'(O)]

—2[f (k)] — £de[ f(OKE)] } =0 (30)

which yields no additional condition.

The fact that condition (29) is exactly Taylor’s assumption
provides a direct proof that Taylor’s relation is necessary in a
self-similar regime.

In an isentropic atmosphere where
po x 2%,

Ty x z, g=cst

we get from the preceding conditions, together with (23)

— g azs
Up x 2773 ,0pm x 273

(3D
as previously obtained in (19). The preceding power-laws ap-
ply to the self-similar plume regime when dissipation can be
neglected in the buoyancy equation.

We shall now control whether they are compatible with the
enthalpy equation (14). Let us put the relevant quantities in this
latter equation under the self-similar form

6T = 6Tk(€), 6T = 6T U N(€)

w?=U2H(E), v2=U%Q()

where 67T}, is immediately found from 6p,, using (5) and the
other mean quantities have been previously given. We shall ne-
glect turbulent correlations of order higher than two (see the
discussion in Sect. 4). Reporting in Eq. (14) we get the addi-
tional self-similarity conditions

bdz(pO(STmUm) _
o3 ToU =cst (32)
b dz (pOUr3n)
z\ 07 m] 3
0T cst (33)
2
—-m =
5T, cst (34)

It may be checked that the power-laws (31) found previously
obey these conditions. Thus, they are perfectly compatible with
the enthalpy equation.
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The self-similar solution (17) used in RZ95 verifies the sim-
ilarity conditions (26), (27), (28), (29), (32), (33), (34), but (23)
is replaced by the additional requirement

poU2b* = cst (35)
thus leading to the power-laws given by (17). As these latters
are incompatible with (23) that is, with the buoyancy equation
without dissipation, one must conclude that to get the solution
of RZ95, dissipation must play an important part. The previous
solution (31) and that in RZ95 might then correspond to different
asymptotic regimes, the physical relevance of which we discuss
now.

3.3. The two asymptotic regimes: the role of dissipation

The question to examine now is the importance of dissipation,
and the conditions under which each asymptotic regime is rel-
evant. Egs. (11) and (14) will not prove to be sufficient for a
full discussion. We need complementary forms of the energy
equation. A kinetic energy budget on the mean flow can only be
obtained by averaging Eq. (2) and multiplying by V. After some
rearrangements and neglecting pressure and mean flow viscous
terms (see Sect. 2.1), we get

v-[%vzv + poV- IV @ V1] = polv/ @ VI: [V¥] +6pg¥  (36)

It can easily be checked that the second order correlations in
this equation contain terms which are O(1) from boundary layer
evaluations and thus cannot be neglected. The first term on the
right hand side is known as the gradient production of turbulent
kinetic energy: due to shear of the mean flow, kinetic energy is
transferred to the turbulent fluctuations, and this amounts to an
energy loss for the mean velocity field. The second term on the
right hand side is obviously the production term from potential
energy due to the density contrast.

Now, let’s multiply (2) by v and get the total kinetic energy
equation, as we did previously to get the enthalpy equation.
We then subtract expression (36) and find the equation for the
turbulent kinetic energy:

v-(%V'ZV) =D +6pV'g— polvV ®V]: [V¥] (37)
where pressure and additional viscous terms have been dropped
as before, as well as the third order correlations.

From this latter equation, it appears that the dissipation term
is at most of the same order as the inertial terms (turbulent kinetic
energy transfer and gradient production). With typical orders of
magnitude, this means that D < poV3/2.

Now, let’s examine more carefully Eq. (11) in order to com-
pare its left hand side to the dissipation term. Considering typical
orders of magnitude we have :

6 pV Po V3 CpT()
z

epToV-(6pv) ~ ¢, Tp p—

(398

where it has been taken into account that g6pV ~ pV3/z, that
is, in a plume the amount of potential energy flux is of the same
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order, as a source term, as the kinetic energy flux. This latter
condition differentiates the jet and the pure plume regime in a
buoyant jet (see Appendix).

Let us consider the case c,Tg > gz which means that the
height z of the plume is much smaller than the atmospheric scale
height. If we remember that dissipation D is at most of order
poV?3/z, then from (38), we immediately see that

epToV-(8pv) > D
so that to first order

V-@pv) =0 (39)
which means that the flux of buoyancy is conserved and leads
to the power-laws found using (23) together with the similarity
conditions. In addition, if the height of the plume is small com-
pared to the atmospheric scale height, the background density
and temperature are nearly constant, ie we must consider that ¢,
tends to infinity, which brings ¢ = 0 in the power-laws. We then
recover the well-known Boussinesq regime (see for example
Turner 1986).

The regime described by (39) may be interpreted as follows:
the plume carries an enthalpy flux which is converted into ki-
netic energy fluxes via the work of the buoyancy force. The
latter compensates dissipation and provides kinetic energy to
the mean flow. As the enthalpy term is dominant, it is barely
altered. Note that dissipation being of the same order as the gra-
dient production term (see Eq. (37)) it evacuates a part of the
turbulent kinetic energy created by the mean shear (see (36)).
Thus the gradient production term acts more or less as a dissi-
pation for the mean flow; it is the well-known “eddy viscosity”
effect, although the analogy with viscous friction must be taken
carefully.

Let us now turn to the case where the plume height is of
the order of the atmospheric scale height. In that case, we get a
constraint on the density contrast:

_'OOV3<:>%NV_2NM2@_
P gz z

opVg ~

where M is the Mach number and zy = ¢,Tpo/g is the atmo-
spheric scale height, Tp being the temperature at the bottom of
the convective zone. As we assume z/2zp ~ 1 we find that the
density contrast is of order the square of the Mach number.

In this regime,

3
PodhV N cpToépV ~ g8V ~ pov—
z z z
which means that the enthalpy flux is now of the same order as
the kinetic energy flux.

This new regime may be interpreted as follows: since the
kinetic energy flux is bounded by the enthalpy flux, when these
two fluxes are of the same order of magnitude, a steady state
is reached when dissipation is just compensated by the work of
buoyancy. As a consequence, the enthalpy flux is frozen, and
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the condition poU3,b? = cst of RZ95 holds, bringing the power-
laws given in the latter paper and recalled in Sect. 2.

The role of the gradient production term as an “eddy vis-
cosity” effect in (36) remains the same.

Of the two asymptotic regimes that we have just described,
the first one is never reached by cold plumes coming from the
top of the convection zone since there c,T' ~ gz. Only the
regime described in RZ95 is relevant. However, if the plume
originates lower, it can undergo the two regimes, the second
one corresponding to the final equilibrium state, which controls
the energy transfer. The important point is the role of dissipation
in the establishment of this equilibrium: as the energy available
from buoyancy has to compensate dissipation, it does not pro-
vide any longer energy to the mean flow, which therefore carries
frozen mean fluxes. Thus, dissipation is a very important ingre-
dient of the plume dynamics, although it does not appear in the
global enthalpy budget of Eq. (14).

3.4. The entrainment hypothesis

The entrainment hypothesis was introduced by Taylor in the
forties and applied to the study of turbulent plumes and thermals.
It postulates that the radial inflow of matter in the plume is
proportional to the mean vertical velocity on the plume axis.
Presented this way, it appears as a crude dimensional estimation,
according to the fact that the vertical mean velocity on the axis
is a natural velocity scale for the problem.

As we have shown above, Taylor’s hypothesis is a natural
consequence of self-similarity (see also Batchelor 1954). Mor-
ton et al. (1956) extended the use of the entrainment assumption
to conditions where the flow obviously lacked self-similarity.
They obtained good results in the estimate of a plume terminal
height in the atmosphere. Much later, Turner (1986) argued that
the entrainment assumption had been applied successfully in
the study of plumes rising from volcanos on a height of 40 kms
by Wilson et al. (1978). He suggested that perhaps, Taylor’s en-
trainment hypothesis could have more physical meaning than
initially thought and reflect some inner equilibrium between tur-
bulence responsible for accretion of surrounding fluid and mean
flow. This deserves some comments.

First of all, the experiment of Morton et al. (1956) was car-
ried on a height of 3 kms, which is insufficient to make density
variations clearly destroy the self-similar regime. On the con-
trary, these effects should be present in the study of Wilson et
al. (1978). However, the formula borrowed from Morton et al.
by these authors for the plume height can be found on purely
dimensional grounds, as noticed by Turner himself. The striking
fact is that the numerical coefficient in the formula, computed
with Taylor’s hypothesis, agrees with observations of the termi-
nal plume height in several eruptions.

This success of the entrainment relation may be explained
if we remember that in turbulent boundary layers the ratio be-
tween lateral and longitudinal velocities is always around 0.1.
Therefore, we rather understand these good results as correct
estimations of the main orders of magnitude.

P. Bonin & M. Rieutord: On the internal dynamics of turbulent plumes

These are relevant to predict geometrical quantities, such as
the plume terminal height, but insufficient to simulate properly
the actual evolution of the dynamical variables such as the ve-
locity field or the density contrast. If one is mainly concerned
with the latters, Taylor’s hypothesis should not be used out of
its range of validity, that is, out of the asymptotic self-similar
regimes, where it appears as a consequence of self-similarity,
as previously shown.

Note that if one compares the two possible asymptotic
regimes, there is a priori no reason that o should remain the
same, after the transition from a regime to another, as well as it
actually changes from the jet to the plume regime in a buoyant
jet (see Appendix).

In the stellar context, many processes are alike to break
the self-similarity of the flow, making the use of Taylor’s as-
sumption rather uncertain. We now discuss this point in further
details.

4. Discussion

The question is: does an asymptotic self-similar plume regime
always exist? This amounts to asking if conditions (26)-(34)
are always fulfilled. A simple way to see that this is not always
the case is to consider gravity variations in a stellar convective
envelope. If the self-gravity of the envelope is neglected then g
varies as

_ GM,
=0
where R and M stand respectively for the radius and mass of
the star and 2 is the depth of the convective zone. Consequently,
for the density we get

Z/ZO
(1+2#5=2)

po o [ 1

One can then verify that the similarity conditions (26)-(34)
are never reached simultaneously.

However, variations of g are not the only reason for not hav-
ing self-similar solutions; the presence of rising counter flows,
background rotation and magnetic field makes the possibility of
self-similar solutions rather implausible. To make progress, it
is then necessary to get solutions of the system (1), (2) and (3)
without the assumption of self-similarity.

This implies to investigate the turbulent mechanisms in-
volved in the plume dynamics: basically, this is a problem of
coupled heat and momentum transfer in a free turbulent bound-
ary layer, travelling in a specific medium. Additionally, there
are several phenomena that interfere with the plume dynamics,
some of which we just enumerated above, and which are basic
ingredients of stellar environment.

Another fundamental question, dealing with convection, is
the treatment of the energy transfer. Our rough treatment, ne-
glecting the effect of turbulent pressure fluctuations and third
order correlations in (37) is sufficient to point out the existence
of two asymptotic regimes. However, pressure fluctuations are
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known to redistribute the energy towards more isotropy in the
small scales of the energy cascade, and there are some cases
where third order correlations do play a significant dynamical
role (Monin & Yaglom, 1975). It is difficult to evaluate a priori
the consequences of turbulent kinetic energy transfer processes
on the mean dynamics but we cannot exclude its influence on
the evolution of the plume after a sufficiently long time.

5. Conclusion

We have shown in this paper that viscous dissipation plays an im-
portant part in the final asymptotic régime of a turbulent plume
in an isentropic atmosphere. To our knowledge, this is the first
time that a dissipative process is shown to control the dynamics
of a turbulent free shear flow.

We have also shown that this effect is totally non-
Boussinesq. It suggests that once this régime is reached, all the
work done by buoyancy is dissipated and that the kinetic energy
flux saturates at a level of the order of the enthalpy flux. Because
of turbulent dissipation, the kinetic energy flux remains smaller
than the enthalpy flux and therefore the turbulent plumes carry
some heat flux unlike their laminar sisters observed in numer-
ical simulations which convert efficiently potential energy into
kinetic energy thanks to their relatively high Reynolds number
(a few tens say, but see Cattaneo et al. 1991).

We have also emphasized that Taylor hypothesis rigorously
applies only to self-similar flows. The use of this model with-
out this condition may still give correct orders of magnitude,
as this is the case, for instance, when the terminal height of a
plume is computed, provided one inputs the right physics in the
equations.

However, a more detailed description of the turbulence is
now needed to take into account the effects of magnetic fields
or rotation. This requires a solution of the closure problem for
the transport of momentum and temperature. This point will be
presented in a subsequent paper.
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Appendix: buoyant jets

A well-known example of transition between two self-similar
asymptotic regimes is that of buoyant jets, when the buoyant
flow receives an important initial flux of momentum. It then
starts with a jet rather than with a plume behaviour, the influ-
ence of buoyancy forces being negligible compared to the flux
of momentum. Buoyancy is dominant only when the velocity
is sufficiently lowered by entrainment. Let us come back to
equations (20) and (21) with the self-similarity assumption but
neglecting the buoyancy term. Eq. (24) is still valid but now,
multiplying (21) by r and integrating from zero to infinity with
respect to this variable we get

poU%b* = M = cst
Reporting into (21) we get

(A1)

1

_Umdz (pObZUm)g

de[A©) f(©)]

227
1
+(dszoU3n)Edg[A'(§)f(€)] +b(2)d.(poUp,) f(€)*
1
—Q2poUZ,d,bEFEf'(€) + poUangdg(éL(ﬁ)) =0 (A2)
from which we have the conditions
d,b=cst (A3)
d2(pob*Up)
pob—Um = cst (A4)
d-(poU2)
bﬁ = cst (AS)

Condition (A4) is again Taylor’s assumption but the entrainment
constant has no reason to be the same as in the pure plume
regime. Actually, it is known to be slightly less in an isothermal
jet (0.05) than in a plume (0.083). The difference is small but the
power-law solutions are completely different. For an isothermal
medium

Up o< 27!

and from (22) and (23) still valid we get

8pm o< 27!

without additional similarity conditions. In this case, the density
contrast, or equivalently heat, is transported passively, while its
transfer is coupled to the momentum transfer in the pure plume
regime.
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