
E L S E V I E R  Physics of the Earth and Planetary Interiors 91 (1995) 41-46 

Pt tYSICS 
O F T H E  EARTH 

AN D PLANI : .TARY 
I NTE RIORS 

Inertial modes in the liquid core of the Earth 

M i c h e l  R i e u t o r d  1 

Observatoire Midi-Pyr~n&s, 14 at:. Edouard Belin, 31400 Toulouse, France 

Received 7 November 1994; revision accepted 21 March 1995 

Abstract 

Using the simple model of an incompressible fluid, we have computed the eigenfrequencies of the lowest-order 
inertial modes (azimuthal wavenumber m = 0,1,2) in a spherical shell with the same aspect ratio as the liquid core of 
the Earth. The computed eigenfunctions show that all inertial modes have strong oscillating shear layers. For the 
very low Ekrnan number appropriate to the core, these layers might be the origin of some small-scale turbulence 
through shear instabilities. We have also studied the effect of a thin stable layer lying just below the core-mantle 
boundary, with the remainder of the core being neutrally stratified, as suggested by recent work. For plausible 
Nusselt numbers (0.8-0.9), the frequencies of the large-scale modes are only slightly increased (at best by 10-4). 

I. Introduction 

Understanding the oscillating properties of the 
liquid core is a cornerstone for building models of 
global oscillations of the Earth. Although acous- 
tic modes have been studied for a long time in 
connection with the interpretation of seismic data, 
core modes, such as inertial modes, have only 
recently at tracted attention, thanks to the devel- 
opment  of superconducting gravimeters (Aldridge 
and Lumb, 1987; Aldridge et al., 1989; Rieutord, 
1991). 

The eventual detection of these modes would 
have very important  consequences for our under- 
standing of the dynamical propert ies of the core. 
Indeed, these modes would give access to two 
important parameters:  the viscosity (or more gen- 
erally the dissipation) and the stratification of the 
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fluid core. However, as such a detection will by 
no means be an easy matter,  one needs to know 
the frequencies which should first be looked for. 

The aim of this paper  is to present  our first 
results of computations of inertial modes in 
spherical shells with the same aspect ratio as the 
Earth 's  core. In contrast to Zhang 's  work (see, 
e.g. Zhang, 1993), we do not consider the cou- 
pling of inertial modes with convection. Indeed, 
as Zhang has shown, inertial modes excited by 
convection have large azimuthal wavenumbers 
and very low frequencies, and these features make 
their detection unlikely. Therefore,  the fluid is 
assumed neutral with respect to convective insta- 
bility. In addition, and for the sake of simplicity, 
we do not take into account the variations of 
density owing to adiabatic compression and we 
thus assume incompressiblity. However, we shall 
also consider the case where a stably stratified 
layer is lying just below the co re -man t l e  bound- 
ary (CMB) as proposed by Lister and Buffett 

0031-9201/95/$09.50 © 1995 Elsevier Science B.V. All rights reserved 
SSDI 0031-9201(95)03040-9 



42 M. Rieutord / Physics of" the Earth and Planetao' Interiors 91 (1995) 41-46 

(1995). To treat this latter case and keep incom- 
pressibility, we use the Boussinesq approxima- 
tion. 

The paper is organized as follows: in Section 2 
we specify all the details of the model, and the 
numerical technicalities are briefly given in Sec- 
tion 3. Results on inertial modes in a spherical 
shell like the Earth's core are discussed in Sec- 
tion 4, and the role played by a stable layer lying 
below the CMB is investigated in Section 5. 

2. The model 

We assume that the liquid core is contained in 
a rotating spherical shell of aspect ratio 7/= 
1221.5 km/3480 km = 0.351 = 0.35. In this first 
approach, we do not include the density varia- 
tions owing to adiabatic compression across the 
shell, and thus we shall use a constant density 
fluid when the core is meant to be adiabatic 
(Section 4) and the Boussinesq approximation 
when a subadiabatic layer is included just below 
the CMB (Section 5). For the sake of generality, 
we give the equations of the flow in the latter 
case, setting the Brunt-V~iisiil~i frequency to zero 
when necessary. 

We use R, the radius of the CMB, as the 
length scale, 1 /21 /  as the time scale (where I~ is 
the angular velocity of the Earth) and 41q2R/ag 
as the temperature scale (where ot is the volume 
coefficient of thermal expansion and g is the 
gravity at the CMB). 

As we are interested in the modal properties 
of the system, we discard nonlinear terms and 
write the non-dimensional equations of the per- 
turbations in the following way: 

Au + e z × u = - V p  + T r  + E A u  

E 
AT + N 2 ( r ) u ,  = ~r AT  (1) 

V . u = O  
u = O  on r = 7  and r = l  

Here  u is the velocity field of the perturbations 
measured in a frame rotating with the angular 
velocity of the Earth and T is the temperature 
perturbation, p is the reduced pressure perturba- 

tion. We assume all the perturbations to be pro- 
portional to expAt. We introduced the Ekrnan 
number E, Prandtl number Pr and the local 
Brunt-V~iis~il~i frequency N, which are defined by 

u u o~g  

E 2f~R z, Pr = -K' NZ(r )  = ~ / 3 ( r )  

(2) 

where u and K are respectively the kinematic 
viscosity and thermal diffusivity and /3(r) is the 
temperature gradient at r. It should be noted 
that we have assumed gravity proportional to 
radial distance as implied by a constant density 
mass distribution (see Chandrasekhar, 1961), and 
that the spherical coordinate system (r,O,cb) is 
used. 

The values of E, Pr and N are barely known 
for the Earth's core. We shall assume E is very 
small compared with unity and use E = 10 -5 in 
numerical solutions (however, see Lumb and 
Aldridge (1991) for a review); The Prandtl num- 
ber is probably less than unity, as for liquid 
metals; however, uncertainties are such that we 
set this number to unity for the computations of 
Section 5. 

3. Numerics 

To solve this eigenvalue problem, we follow 
the method presented by Rieutord (1991). We 
first expand the velocity on vectorial spherical 
harmonics as 

+o0 

u =  ~ u ~ ( r ) R ~  +Vtm(r)S~ + w~(r )T t  m 
l=m 

where 

R'~ = Ytmer, S'~ = VYI m, T[" = V × R T 

As may be checked easily, each solution of (1) 
may be characterized by its azimuthal wavenum- 
ber m and its symmetry with respect to the equa- 
tor. Symmetric solutions will be denoted by m ÷ 

and antisymmetric ones by m- .  
We then expand the radial functions on 

Chebyshev polynomials. The eigenvalue problem 
is then simply a complex generalized eigenvalue 
problem of the form 

[ A I X = A [ B ] X  (3) 
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where [A] and [B] are matrices whose dimension 
is given by the resolution. If Lma x is the highest 
degree of the spherical harmonics expansion and 
N r the highest degree of the Chebyshev polyno- 
mials' expansion, then the dimension of [A] and 
[B] is of order L m a x N T  . 

4. Inertial modes in the liquid core 

We first set the Brunt-V~iisiil/i frequency to 
zero and compute the eigenfrequencies (Table 1) 
and associated eigenfunctions (Fig. 1) of pure 
inertial modes. Hence, in these computations we 
assumed the simplest model for the liquid core of 
the Earth: an incompressible viscous fluid con- 
tained in a spherical shell of aspect ratio '1 = 0.35. 
Such a model will give, however, the gross fea- 
tures of the spectrum of long-period oscillations. 
We indeed expect that the inclusion of density 
variations owing to adiabatic compression will 
shift the frequencies by a small amount (10% say) 
but will not change the shape of the spectrum 
dramatically, as far as large-scale modes are con- 
cerned. 

We selected large-scale inertial modes from 
the resolution of (3) by choosing the eigenvalues 
which are the closest to the real axis and thus 
correspond to the least damped modes. It turned 
out that the order in which the eigenvalues ap- 
pear is sensitive to parameters such as the aspect 

ratio r/, the Ekman number or the boundary 
conditions. For instance, a mode such as (6,1,0) 
(using Greenspan notations (Greenspan, 1969)), 
which is the second least damped in the 0 ÷ 
symmetry when the sphere is full, is shifted to the 
twelth position when a core with r /=  0.35 is 
there. 

To present as clearly as possible this complex 
situation, we have selected in Table 1 and Fig. 1 
all the modes which systematically appeared in 
the least damped ones, regardless of the bound- 
ary conditions and the Ekman number. These 
modes might thus be considered as the best can- 
didates for detection and identification. 

Because of numerical constraints, we studied 
in detail the situation only for E = 10 -5. This is a 
rather large value for the Earth's core, and thus 
to have a better idea of the situation at very low 
values of E, we computed the modes using 
stress-free boundary conditions. In such a case, 
viscous dissipation occurs mainly in the internal 
shear layers. As it is weaker than in the Ekman 
boundary layers, the eigenfrequencies are closer 
to their asymptotic limit E = 0. The comparison 
of these frequencies with those computed with 
rigid boundary conditions gives an idea of the 
effect of Ekman layers: it is always less than 1% 
for E = 10 -5. 

Finally, one may note that most of the modes 
that we selected have a period in the 15-17 h 
band. This is a rather favourable situation as far 

Tab le  1 
E igenva lue s  of  some la rge-sca le  iner t ia l  m o d e s  in a spher ica l  shel l  wi th  "O = 0.35 

l~rr )[ff Per iod  (h) Symmet ry  Iden t i f i ca t ion  

- 5.977 + 0.74383i - 1.621 + 0.74354i 16.14 1 + (3,1,1) 0.7550 
- 6.095 + 0.75200i  - 1.540 + 0.75131i 15.96 0 -  (5,2,0) 0.76506 
- 6.197 + 0.50079i + 0.50000i  24.0 1 - (2,1,1) 0.50000 
- 6.744 - 0.69936i - 1.825 - 0.69901i 17.17 1 - (6,1,1) - 0.7021 

- 7 . 1 9 0  + 0.66216i - 2 . 4 8 4  + 0.66109i 18.12 0 + (4,1,0) 0.65465 
- 7.331 + 0.74731i - 1.385 + 0.74730i  16.06 2 -  (5,3,2) 0.7482 

- 7.463 + 0.81736i  - 3,117 + 0.81736i  14.68 0 ÷ (6,2,0) 0.83022 
- 7 . 5 9 3  + 0.81308i - 2 . 3 1 2  + 0.81278i 14.76 2 ÷ (6,4,2) 0.8217 

- 8 . 2 2 4  + 0.33355i - 0 . 0 5 8  + 0.33333i 36.0 2 -  (3,1,2) 0.33333 
- 8 . 7 1 4  + 0.68559i - 4 . 4 6 0  + 0.68428i 17.50 0 ÷ (8,2,0) 0.67719 

A,r and  Aff re fe r  to the  e igenva lues  c o m p u t e d  respect ive ly  wi th  r igid or  s t ress-f ree  bounda ry  condi t ions  on bo th  shells,  i is such 
tha t  i 2 =  - 1  and  the  rea l  pa r t  has  b e e n  mu l t i p l i ed  by 103. The  th i rd  co lumn  gives the  co r r e spond ing  per iod  for  the  Ear th .  The  
co r r e spond ing  m o d e  for the  full  sphe re  us ing G r e e n s p a n ' s  no ta t ions  (Greenspan ,  1969) and  its f requency  are  g iven in the last  two 

columns.  Al l  compu ta t i ons  were  done  for E = 10 -5  and  N = 0 us ing a reso lu t ion  of  Lrnax = 32 and  N r = 26. 
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as gravimetry is concerned. Indeed, because noise 
increases as a power of the period, this band has 
the minimum noise for inertial modes; in addi- 
tion, the noise produced by tides is rather weak 
around 16 h. 

The shape of the modes is represented through 
various quantities in Fig. 1. In each picture, lines 
for the characteristics and critical latitudes are 
given by a tick mark on the outer and inner shell, 
respectively. We recall that the critical latitude is 

co= 0 . 7 4 4  

co= - 0 . 6 9 9  

co= 0 . 7 5 1  co= 0 . 5 0 1  

co= 0 . 6 6 1  co= 0 . 7 4 7  

co= 0 . 8 1 7  co= 0 . 8 1 3  co= 0 . 3 3 3  
Fig. 1. A plot of nine large-scale inertial modes  in a spherical shell like the Ear th 's  core. In the upper  part of each picture we have 
drawn isocontours of the radial velocity component  (imaginary part on left, real part on right) for non-axisymmetric modes,  and for 
axisymmetric modes meridional streamlines are plotted. In the lower part of each picture are drawn the longitude- and 
t ime-averaged kinetic energy (right) and viscous dissipation (left); dark areas represent  high values. To enhance  internal shear  
layers, stress-free boundary conditions have been used for all modes except for the spin-over mode (to = 0.5), for which rigid 
boundary conditions were used (for this plot Ekman layers are removed to make internal layers visible). Tick marks on the outer  
shell indicate the direction of lines of characteristics lines, and those on the inner shell are at critical latitudes. The symmetry of the 
mode is indicated at the centre of each plot. 
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0 c = arcsin(to) (to is the imaginary part of ,~) and 
that the direction of characteristics makes an 
angle O c with the rotation axis. 

A major feature of the inertial modes which 
appears in Fig. 1 is the internal shear layers. 
These are particularly conspicuous on the plots of 
the mean dissipation or kinetic energy. There we 
may see that these layers are often between lay- 
ers with high kinetic energy. This reveals that 
internal shear layers are in most cases the domi- 
nant feature of the interior flow. Another point, 
actually noticed by Hollerbach and Kerswell 
(1995) with the spin-over mode (the inertial mode 
excited by precession), is that shear layers often 
emerge at a critical latitude on the inner bound- 
ary and propagate around the characteristics 
cone. We show here that this is a general feature 
of inertial modes when an inner core is present. 

A strong difference from the full-sphere case 
is the oscillatory nature of the velocity field lines 
for axisymmetric modes. Indeed, when the fluid 
completely fills the sphere, the flow pattern is, up 
to viscous damping, steady. When the inner core 
is present the internal viscous shear layers are 
shifted in phase (by ~-/2) with respect to the 
original flow pattern; this is visible in Fig. 1 for 
the first 0 ÷ mode (to = 0.661): the imaginary part 
of the meridional flow is very similar to the flow 
pattern without the core, whereas the real part 
shows rather clearly the presence of shear layers. 
The complete discussion of the properties of these 
modes will be presented elsewhere (Rieutord and 
Valdettaro, 1995, in preparation). 

In the context of the core dynamics, the pres- 
ence of thin shear layers may be the origin of 
small-scale turbulence. Indeed, using an Ekman 
number of 10-16, and given the thickness of the 
layer is O{E 1/3} (see Kerswell, 1995), the shear 
instability will grow on a time scale of order 
Ts = E 1 / 3 R / V  (approximately 3 h) if we take V = 1 
rams-1 as the amplitude. This is sufficiently short 
for the instability to grow during an oscillation, 
especially for long-period modes. With the same 
numbers, we computed the Reynolds number of 
such shear layers, and found a value around 10 5, 
which is sufficiently large to produce some turbu- 
lence. We may thus conjecture that this turbu- 
lence will damp the modes more efficiently than 
is predicted by linear theory. 

5. The influence of  a stable layer 

In view of the uncertainties in the heat flux 
and the adiabatic gradient at the CMB, Lister 
and Buffet (1995) suggested that the heat flux at 
the CMB may well be lower than that which 
would be conducted up the adiabat, implying 
therefore the presence of a stable layer in the 
upper part of the liquid core. J. Lister (personal 
communication, 1994) proposed that the thick- 
ness of this layer is given by d = 1000(1- Nu) 
km and its stable stratification is characterized by 
the Brunt-V~iis~il/i frequency at the CMB: N m = 
0.0002(1 - N u )  s-~. In these expressions Nu is a 
Nusselt number defined as the ratio of the actual 
heat flux to that which would be conducted up 
the adiabat. As the layer is subadiabatic this 
number is less than unity. The stability of this 
layer is also supposed to decrease linearly with 
depth and vanish at depth d where the adiabat 
takes over. We shall then use the following distri- 
bution for N(r): 

N = 0  r/~< r ~< ~Ts 

( r - r l ,  I (4) 
N = N , ~  1 _ %  ] %~<r~<l  

where % = 0.713 + 0.287Nu is the inner radius of 
the stable layer in units of the outer radius of the 
core. 

Realistic values of the Nusselt number would 
be around 0.8 - 0.9 (J. Lister, personal communi- 
cation, 1994). To have a general idea of the 
effect, we computed the frequencies for various 
Nusselt numbers between zero and unity. Results 
are summarized in Table 2. They show that for 
the realistic values mentioned above the frequen- 
cies increase only very slightly (less than 10-4). In 
this case, the shape of the large-scale inertial 
modes is barely modified by this layer. 

6. Conclusions 

We have computed the largest-scale (and least 
damped) inertial modes in a spherical shell like 
the liquid core of the Earth. Our predictions 
show that most of these modes have periods 
around 16 h, which is rather favourable as far as 
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Table 2 
Relative increase in frequencies of inertial modes when a 
stable layer is included just below the CMB 

1 0.0 
0.9 = 1 0  - 6  

0.8 = 10 -4 
0.5 = 10 -2 
0.2 = 10- I 
0.0 > 10- 

flows, and  Lorenzo  V a l d e t t a r o  for his he lp  with 
the  numer ica l  aspect  of  this  work. Many  thanks  
are  due  to Kei th  A l d r i d g e  and Gary  H e n d e r s o n  
for the i r  very useful  comment s  on the  manuscr ip t .  
I also gra teful ly  acknowledge  the suppor t  of  the  
F r e n c h  geophysica l  communi ty  t h rough  the  D B T  
p rog ra mme .  

gravimetr ic  de tec t ion  is conce rned .  These  pe r iods  
are  ou ts ide  the  t idal  bands  and  on  the  high-  
f requency  side of  the  iner t ia l  modes '  spec t rum.  
The  f requenc ies  for  the  real  core  may, however ,  
be slightly d i f fe ren t  f rom the  one  p red ic t ed ,  as 
our  m o d e l  uses  an incompress ib le  fluid. The  in- 
clusion of  dens i ty  var ia t ions  a long the  ad i aba t  will 
be  t aken  into account  in a fo r thcoming  pape r .  
However ,  as the  core  dens i ty  var ia t ions  are  cur-  
rent ly  e s t ima ted  to be  a r o u n d  10% (Smylie  et  al. 
1984), we expect  the  f requency  shift  owing to 
these  var ia t ions  to be  r a the r  small .  

W e  have also shown tha t  o the r  p h e n o m e n a ,  
such as viscous d iss ipa t ion  or  the  p re sence  of  a 
small  stably s t ra t i f ied  layer  be low the  CMB,  have 
a very small  inf luence  on the  f requencies .  Con-  
cern ing  the  damp ing  of  the  m o d e s  we have shown 
that ,  because  of  the  very low value  of  molecu la r  
viscosity, one  can expect  the  gene ra t i on  of  some 
smal l -scale  tu rbu lence  by in te rna l  shea r  layers  of  
the  modes  in the  f in i t e - ampl i tude  reg ime  and  
the re fo re  an e n h a n c e m e n t  of  the i r  decay  rates .  
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