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Abs t r ac t  We investigate the so-called inductive closure relation given by Re- 
ichardt for mean turbulent momentum transport in jets (1941). It is shown to 
be in good agreement with measurements in the axisymmetric jet by Pancha- 
pakesan and Lumley(1993). Despite these results, it is conjectured that there is 
a lack of account for intermittency effects which is hidden by the experimen- 
tal procedure of Panchapakesan and Lumley. Intermittency corrections are then 
proposed, based on the classical concept of intermittency factor and the cor- 
rected model is compared with the results of Bradbury (1965) for the plane jet. 
The agreement with experimental measurements appears to be very good. The 
underlying picture of the Reichardt 1941 model is discussed, mainly the fact 
that it expresses the self-injection of kinetic energy by the jet and the conver- 
sion of longitudinal into lateral momentum thus providing entrainment of the 
surrounding fluid. 

1 I n t r o d u c t i o n  

Momentum transport in a turbulent jet is determined by the physics of inho- 
mogeneous turbulent shear flows, which is far from being understood, although 
it has motivated a great deal of experimental and numerical studies. In various 
contexts, among which geophysical and astrophysical applications, turbulent free 
shear flows occur as a part of larger scale dynamics. It then seems desirable to 
get a description of turbulent transfer processes in those flows by means of sim- 
ple analytical relations, keeping heavy calculations for the larger scales under 
immediate interest. Being faced with a lack of deep physical understanding, 
analytical models are necessarily semi-empirical. Several models have been de- 
veloped in the thirties and forties, among which the well-known mixing length 
and eddy viscosity representations, due to Prandtl. Although these approaches 
partly succeed in simulating reality, they are known to have shoricomings linked 
to the uncompleteness of the transport processes reproduction, or to a wrong un- 
derlying physical picture. Reichardt (1941) developed an empirical model based 
on a "momentum transfer length". It is known to give good results in simulat- 
ing the mean velocity profiles in plane turbulent mixing layers and jets. It has 
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also been proved to be valuable for calculations of these profiles in the round 
jet  (Abramovicz 1963). We compare calculations based on Reichardt's model to 
experimental results due to Panchapakesan and Lumley (1993) for the round jet 
and to Bradbury (1965) for the plane jet. We also propose corrections to the 
model in order to take into account external intermittency effects. 

2 T h e  M o d e l  

We consider an incompressible fluid and an isothermal jet with surrounding 
medium at rest. The Reichardt model applies to the similarity zone of the jet 
and is used in the framework of Prandtl 's boundary layer theory (Schlichting 
1961), with the Reynolds decomposition applied to all quantities under interest. 
The small parameter is e = b/L, the ratio between the lateral and longitudinal 
length scales. One can then give an evaluation of the terms appearing in the 
dynamical equations, namely 

U = O(1),F = O(e), u'v' = O(e), u '---5 = O(e), v '--y = O(e), 0~ = O(1), by -- O(1/e). 

Keeping only the leading terms in the dynamical equations, one gets the 
simplified mass and momentum budgets: 

1 
-0y(x ) + = 0 (1) 
x 

Oz 2 = _ 0 y  ( 2 )  

where X -- 1 for a plane jet, X = Y for a round jet, u and v are the longitudinal 
and lateral component of the velocity respectively. 

Reichardt's model introduces the closure relation 

= -A(z)cOyU 2 (3) 

We assume self-similarity of the profiles ~ = U m  (z)g(~), where ~ = y/b. Let's 
first solve the problem for the round jet. The integration of (2) from y = 0 to 
infinity brings the integral conservation of momentum 

U~b 2 = cst (4) 

Using (3) in (2) and using (4) we get the ordinary differential equation on 
f =g2 

b dzb[2f(~) + ~f'(~)] = U~ [f"(~) + f"(~)] (5) 

whose boundary conditions are f(0) = 1 and f(oo) = 0. 
According to the self-similarity condition, the coefficients in the above equa- 

tion depend only on ~ and thus A is proportional to bdzb. As b is a scaling 
parameter, we can set a strict equality without loss of generality. We also see 
that  b spreads linearly with ~. Once simplified, the above equation becomes 
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1 
2 f  + (~ -F ~ ) f '  + f "  : 0 (6) 

of which the solution is the gaussian profile ~ = U . ~ e x p ( - ~ / 4 ) .  From (1) we 
then get 

v =um dzb [( + exp(- U4) - (7) 

It  is then straightforward, from (3) to get the Reynolds stress 

2 
u 'v '  = uv  - u v = -~ U~  dzb exp(-~2/4)[1 - exp(-~2/4)]  (8) 

This profile obtained for the Reynolds stress is shown in figure 1 and com- 
pared to the experimental data  of Panchapakesan and Lumley with the measured 
quanti ty dzb = 0.0576. We find good agreement between measurements and the 
model. The calculated curve seems too high near the maximum but there is a 
lot of scatter in the experimental data. It should be quoted that  the curve calcu- 
lated by Panchapakesan and Lumley from the measured mean velocities is even 
higher. So, the results given by the model seem quite acceptable. This is a good 
test because Reichardt had no Reynolds stress data  at his disposal and based 
his model on the observation of the mean velocity profile only. 
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Fig. 1. The Reynolds stress, normalized to the square of the mean axial velocity. The 
experimental data of Panchapakesan and Lumley are compared to the calculated curve. 

Now, it is well known that  in the outer part of the jet, external intermittency 
effects lower the efficiency of the turbulent transport.  The gaussian fits to the 
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mean velocity profile become poor in that  zone. Curiously, this does not appear 
in Panchapakesan and Lumley's measurements as shown by the quality of their 
gaussian fit to the data  even in the external part of the jet. We believe that  this is 
because they used a moving probe with a periodic motion of low frequency, and 
may have missed the appearance of laminar zones. In order to get intermittency 
corrections to Reichardt's model, we introduce the classical intermittency factor 

7(Y, z) = ~ I(y, z, t)dt (9) 

where I(y,z,t) is the intermittency function. The intermittency factor at position 
is also defined as the probability of the measurement location ~ to be within the 

turbulent domain The random position of the turbulent/non turbulent interface 
is not a single-valued function of z but for sufficiently long time-averaged values 
of the intermittency function, one may expect the laminar zones due to the 
folding of the interface to have a negligible life time compared to the total t ime 
spent out of the turbulent zone. Moreover, the random process describing the 
evolution of the interface location is expected to follow the central limit theorem 
if the dispersion is weak enough. Thus, we take the classical representation of a 
gaussian intermittency factor as a sufficiently good approximation, except near 
the axis, where the convergence to a gaussian process is not achieved for obvious 
reasons of symmetry. The intermittency factor thus reads 

1 f oo i 
7 - v ~  T(( ')  exp( (( 2~r2- ~~ )d~' (10) 

where ](" is the Heaviside function. We then propose to rewrite Reichardt's model 
considering that  it is valid only during the turbulent periods and neglecting the 
laminar contributions to momentum transfer. The latter point is justified by the 
experimental fact that laminar momentum fluxes are small within the precision 
of the boundary layer's approximations. We then have 

K2 
u-~ = -TAcgy ( 7 )  (11) 

Resuming the calculations as before, with the only change X = 1 we get for 
the integral conservation of momentum: U~b = c s t  and the solutions are the 
following ones: 

and 

with f(() = exp(- I o  ,, (12) 

17o = uma b[(vq- (vqd(,] 

u~v ~ 1 2 fo ~ = -~U~dzbd~[ v/Yd~'] ~ (14) 
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Fig. 2. The ratio ff/U,~: comparison between the data of Bradbury and the theoretical 
curve. The dotted curve is the gaussian obtained without intermittency corrections. 
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Fig. 3, The Reynolds stress: comparison of the calculated curve with the experimental 
data of Bradbury (recorded in the similarity zone), 
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We compare the calculated -ff/U,~ to Bradbury's  da ta  in figure 2, with the 
experimentally determined values d~b = 0,066 , ~0 = 2, 83 and ~ = 0, 62. The 
theoretical and experimental curves are very close to each other. Figure 3 shows 
the comparison between calculated and measured u'v i /U~.  We only kept the 
data  recorded far from the jet  source, to be sure that  they have been obtained in 
the region of approximate self-similarity. Experimental points show a great deal 
of uncertainty near the maximum but they are well represented by the calculated 
curve. It is then very likely that Reichardt's model with intermittency factor 
gives the quantities available by the boundary layer theory with good accuracy. 

3 C o n c l u s i o n  

The success of this model is surprising, owing to its roughness. One may then 
wonder what underlying physical picture it could contain. Relation (3) is a way 
of expressing that  the lateral flux of momentum is obtained through a mixing 
process whose result is to substract a part of the longitudinal momentum flux 
to the main flow and redistribute it. In other words, there is a kinetic energy 
self-injection of the jet  to provide entrainment of the surrounding fluid via this 
mixing process, occuring on a length scale A much smaller than the boundary 
layer's width. In this picture, the Reichardt relation appears as a new version of 
the mixing length concept, but based on a different approach as Prandtl 's .  Its 
originality is to characterize turbulent mixing by the whole lateral momentum 
flux and not only by the Reynolds stress. Indeed, the mean lateral component of 
the velocity is also a product of turbulent transfer processes, as already inferred 
by Prandtl  in his own mixing length model. But in contradiction to the latter, 
Reichardt 's model deals with momentum fluxes rather than with velocities and 
is free of the microscopic analogy underlying Prandtl 's  representation. Now, the 
reason why Reichardt's model provides an adequate representation of the mo- 
mentum transfer process is still open. Observations on turbulent jets show a 
small-scale nearly homogeneous turbulence to which Kolmogorov's ideas seem 
to apply well. They also show large vortical structures occuring on length scale 
b. It might be worth asking whether the very simple diffusion equation proposed 
by Reichardt 's model could describe transport  effects associated with the inter- 
action of a "universal" turbulent velocity field characterized by the Kolmogorov 
spectrum and larger flow-dependent structures. We shall investigate this point 
later. 
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