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Abstract. Recent numerical simulations of compressible con-
vection in a stratified medium suggest that strong downwards
directed flows may play an important role in stellar convective
envelopes, both in the dynamics and in the energy transport. We
transpose this idea to stellar convective envelopes by assuming
that these plumes are turbulent plumes which may be described
by Taylor’s entrainment hypothesis, whose validity is well estab-
lished in various geophysical conditions. We consider first the
ideal case of turbulent plumes occurring in an isentropic atmo-
sphere, and ignore all types of feedback. Thereafter we include
the effect of the backflow generated by the plumes, and take into
account the contribution of the radiative flux. The main result is
that plumes originating from the upper layers of a star are able
to reach the base of its convective envelope. Their number is
necessarily limited because of their conical shape; the backflow
further reduces their number to a maximum of about 1000. In
these plumes the flux of kinetic energy is directed downwards,
but it is less than the upwards directed enthalpy flux, so that
the plumes always carry a net energy flux towards the surface.
Our plume model is not applicable near the surface, where the
departures from adiabaticity become important due to radiative
leaking; therefore it cannot predict the depth of the convection
zone, which is determined mainly by the transition from the
radiative regime above to the nearly adiabatic conditions be-
low. Neither does it permit to evaluate the extent of penetration,
which strongly depends on the (unknown) number of plumes.
We conclude that, to be complete, a phenomenological model of
stellar convection must have a dual character: it should include
both the advective transport through diving plumes, which is
outlined in this paper, and the turbulent diffusion achieved by
the interstitial medium. Only the latter process is apprehended
by the familiar mixing-length treatment.

Key words: convection — hydrodynamics — turbulence — Sun:
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1. Introduction

One of the main weaknesses of stellar physics remains our poor
description of thermal convection. It is true that the widely used
mixing-length approach permits to construct models which rep-
resent fairly well the gross properties of stars, but it fails when
one attempts to apply it to more subtle problems, such as convec-
tive penetration, the differential rotation of the Sun, or its mag-
netic activity. Over the two past decades, significant progress
has been achieved through the numerical simulation of increas-
ingly “turbulent” convection in a stratified medium, from the
pioneering, admittedly crude modal expansions, to the recent
fully compressible three-dimensional computations. But the re-
sults ‘are still difficult to apply as such to realistic situations,
because of the huge difference in the relevant control parame-
ters, the Reynolds and Prandtl numbers.

In this paper we shall describe a new approach to these
problems, which is inspired by the latest numerical experiments.
Those have revealed that fully compressible convection is highly
intermittent, and shows strong, long-lived, downward flows,
which contrast with the slower, random upward motions (Cat-
taneo et al. 1991; Stein & Nordlund 1989; Norlund et al. 1994).
These coherent structures, or plumes as they are called, originate
in the upper turbulent boundary layer, where they are initiated
by the strong temperature and density fluctuations, which arise
there in the steep superadiabatic gradient. Similar plumes have
also been observed in laboratory experiments of nearly incom-
pressible convection (Castaing et al. 1989); there they move in
both directions, up and down, as expected from the symmetry
of this problem.

Again, it is impossible to directly apply the results of these
numerical experiments to the convection zone of a star. But they
suggest that coherent structures may play an important role in
the dynamics of a turbulent convective layer, and thus open the
possibility of a different description of stellar convection.

In a stellar convection zone, viscous coherent structures are
extremely small (less than a millimeter!) and they do not play
any role in the large scale dynamics. But the thermal structures
are of much larger size: at the top of the solar convection zone
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they span about 1 Mm, as demonstrated by the granulation. A
flow on this scale has a very large Reynolds number (~ 10°)
and is therefore strongly turbulent. Due to that turbulence, the
downflows originating in the uppermost layers entrain the sur-
rounding fluid and carry with them an increasing amount of
matter. The principal aim of this paper is to model these down-
flows, and to examine whether they can reach the base of the
convection zone.

Such turbulent plumes are observed in the Earth atmosphere,
where they rise above concentrated heat sources (chimneys, vol-
canos, etc.). Actually, they may also have been seen in Castaing
et al. convection experiment where they have been identified
as jets (see Kadanoff 1990). Their theoretical interpretation is
based on the entrainment hypothesis, which was first proposed
by G.I. Taylor (cf. Morton et al. 1956); we shall recall it below.
In astrophysics, they have been invoked by Schmitt et al. (1984)
as responsible for the penetration into the stable domain under-
neath the solar convection zone. More recently, an estimate of
that penetration has been made by Zahn (1991), which is also
based on a crude plume model.

In the present paper we move a step forwards, by letting the
plumes develop through the whole convection zone. We adapt to
amedium which is highly stratified, in density and temperature,
the treatment which is used in geophysical fluid dynamics. Fur-
thermore, we take into account the backflow which results here
from the confinement of the plumes in a limited volume. Our
ambition is not to give just another phenomenology of thermal
convection in stars, but to describe its dynamical properties in a
more consistent way. We hope that this will lead eventually to
a more realistic picture of stellar convection, including penetra-
tion and overshoot. Moreover, we anticipate that it may enable
us to interpret the observed differential rotation, and perhaps to
contribute to the understanding of the magnetic cycles.

We begin by describing the basic properties of plumes occur-
ring in an isentropic envelope. After this ideal case, we consider
the plumes as being the main actors of stellar convection, and
we present a model of the solar convection zone which is based
on this assumption. In particular, we examine the role of the
backflow, which plays a severe role in limiting the depth the
plumes may reach.

2. Turbulent plumes in an isentropic atmosphere

In this section we shall first examine the basic properties of tur-
bulent plumes which rise or dive in an isentropic, plane-parallel
atmosphere. We shall in both cases assume that the plume is fed
steadily by a cold (or hot) layer of fluid lying on the top (or the
bottom) of the atmosphere. A schematic view of the flow for a
diving plume is sketched out in Fig. 1.

2.1. Equations of motions

The equations governing the structure of turbulent plumes have
been established in the original work of Morton et al. (1956),
but we refer also the reader to the book of Fischer et al. (1979)

Fig. 1. The plume flow

and to the excellent review by Turner (1986). For sake of clarity,
we shall rederive these equations.

One assumes that the flow is stationary, that the plumes are
axisymmetric, and that all horizontal variations, namely those
of the vertical velocity v, of the density excess §p and of the
excess of specific enthalpy 6k, have the same gaussian profile:

v,(r, 2) = V(2) exp(—17 /b%)
8p(r, z) = Ap(z) exp(—r? /b7) (1)
8h(r, z) = Ah(z) exp(—r2/b%)

where b = b(2) is the effective radius of the plume. For conve-
nience, we take the vertical coordinate z pointing downward; the
density and the specific enthalpy of the isentropic atmosphere
will be designated by po(z) and ho(2).

The equations describing the vertical profile of the plume
are derived from the three basic equations of fluid mechanics
expressing the conservation of mass, momentum and energy.

2.1.1. Conservation of mass

In the steady flow of the plume, the mass conservation implies

. 10rpv, Opv,
= L0

=0;

when integrated over r, this equation becomes

d

+00
—/ pvrdr + [rpueJ§ = 0. )
dZ 0

The entrainment hypothesis made by G.I. Taylor postulates
that the radial inflow of matter is proportional to the central
vertical velocity:

lim rv, = —ab(2)|v,(0, 2)| 3)
r—+00
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where «a is the entrainment constant. The absolute value guar-
antees that the plume is always accreting matter, whether it is
directed upwards or downwards. Using the gaussian profile of
v, and 6p, one casts the mass equation in its final form

d 1
= [(é;_) pobZV] = 2apobV )

where we have introduced the density contrast £ = 1 + Ap/po.

2.1.2. Conservation of momentum

Ignoring the viscous stresses, the flow obeys the steady Euler
equation:

0;(pvjv; + 6pbsz) = dp gs

where the static equilibrium has been subtracted. We assume that
the plume is in pressure balance with the surrounding medium,
although this is only true to first approximation (see Massaguer
& Zahn 1980). We thus neglect §p and write the z-component
as:

1 Orpvru, . 8p’u§
r or 0z

=g

which we integrate in the same way as the mass equation, to
reach

d 26 +1
4 [(_L; ),,obZVZ] —2gAp. )

2.1.3. Conservation of energy
We start from the steady energy equation
div(pev) = div(xVT) — pdivo,

where e is the specific internal energy and x the radiative con-
ductivity, and rewrite it in a more convenient form by using the
momentum equation and the definition of the specific enthalpy
dh = de + d(p/p):

div |(h + %vz)pv —-xVT|=pv-g.

This equation may be further simplified by remembering
that

g=Vho

in an isentropic atmosphere (see below). Finally, the conserva-
tion of the energy flux is expressed by:

div [<6h + %vz) pv — XVT] =0, 6)

where we recognize respectively the enthalpy, kinetic and ra-
diative fluxes.
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To make contact with previous work, we first neglect the
radiative flux. Proceeding as before, we integrate in the radial
direction, and obtain

1(26+1\ 1(36+1\ o
2< 3 >p0bVAh+6<——-4 >pobv_—.7/7r,(7)

where % designates the total flux (enthalpy plus kinetic) carried
by one plume.

From now on, we shall drop the subscript ¢, since there will
be no ambiguity anymore between the local values of density
and temperature, and their counterparts in the isentropic atmo-
sphere.

2.1.4. Thermodynamics

For simplicity, we shall assume throughout this paper that the
fluid is a perfect monatomic gas, with v = 5/3 being the adi-
abatic exponent. We thus complete the system of governing
equations with the two thermodynamic relations:

0h = cpéT
(p+6p)T +6T) = pT,

where the latter expresses the pressure balance between the
plume and the surrounding medium.

2.1.5. The isentropic atmosphere

As is well known, the isentropic atmosphere is a polytrope of
index g = 1/(7y — 1). In plane-parallel geometry, the density and
the temperature vary with depth z as:

p(2) = po(z/20)?
(®)
T(2) = To(z/ 2).

The origin of the vertical coordinate z is taken at the “surface”,
where pressure, density and temperature vanish altogether, and
the subscript o now designates the reference level, for which we
choose here the base of the atmosphere. The reference depth 2o
is related to the reference temperature by

20=c—p5.

2.1.6. Non-dimensionalization

It is convenient to put the governing equations in non-
dimensional form. We take zy as the length scale, V7, the initial
velocity (just below the cold layer for a diving plume), as the ve-
locity scale and we normalize all the thermodynamic quantities
by their value at the reference level, i.e. the base of the atmo-
sphere. With these new variables, the isentropic atmosphere is
described by

p()=¢1
{T(o ¢ ®
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while the plume equations now read:

£](532) o] s

2+ 1 2,2 2
x [( 3 )Cqﬁ ] INGIA (Y

1/26+1 +1 32
5( 3 )@—I)Cq ﬂu+

1 (3¢+1 25 -
() ot

(10)

\
where we have set
=2/
B=0b/z
u=V/V;
0¢=1 (11

292

I'= =~
V12

F

F=—u—
T Po gzon

L

As it will be useful later, we also give the expression for the
Mach number

/2q U
Ma = Cl/z

2.1.7. Boundary conditions

(12)

The set of differential Egs. (10) needs now to be completed by
suitable boundary conditions. Since these are all applied at the
start of the plume, we could as well call them initial conditions,
although the problem is independent of time.

In the traditional approach, a plume is described by its mass
flux M, momentum flux P and buoyancy flux B (which is pro-
portional to the enthalpy flux). With our dimensionless vari-
ables, these quantities would be expressed as:

'M <§+1)€qﬁ2
P <2§+1><qﬁ2 )

B= 2 (26"' 1> (@ l)Cq“ﬁzu

However, we find it more convenient here to specify instead

(13)

the density contrast &, the size § and the velocity u at the starting
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level of the plume. At this point one has to distinguish between
rising and diving plumes. For the rising plume we set

B=b
u=—1 at (=1,

=1/v

while for the diving plume, because of the vanishing density at
¢ = 0, the initial conditions must be imposed at a small, but
non-zero depth ¢ = €:

(14)

B=b
u=1 a (=e¢. (15)
E=v

The initial density contrast is characterized by v, a real number
larger than unity.

For the purpose of numerical integration, the governing
equations (10) have been rewritten using the momentum flux
P and a modified mass flux defined as

= (2§+1)Cqﬂ2

We give in the Appendix the differential system which results
from these transformations.

16)

2.2. Asymptotic solutions

The equations governing the plume flow are nonlinear and in
most cases it is necessary to integrate them numerically. How-
ever, the system has asymptotic solutions which can easily be
obtained in analytic form.

2.2.1. Diving plumes

The first and somewhat extreme case is that of a diving plume,
during its initial phase, when its density is much larger than
that of the surrounding medium, i.e. when £ > 1. We shall call
this regime the “free-fall” phase, in which the flow velocity is
small and entrainment still negligible. The mass and momentum
equations then become

4 gty =0

¢
amn
2 ety = Sre o
d¢ 2
which reduce to the free-fall equation
du?
— =3T
d¢
with the following solution:
w2 =143 —¢)
(18)

b (e/¢)°

2 _
&= [1+30(¢ —e)]1/2
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Fig. 2a—d. The radius (a), density contrast (b), velocity (c) and Mach number (d) for a diving plume. The dotted line represents the asymptotic
solution reached when the plume fluid is well mixed. The parameters I' = 10°, v = 1.1,y = 5/3, b = 0.01 and € = 1072, are chosen to match

approximately the solar conditions

This solution is however not consistent with the energy equa-
tion, because the self-similarity of the plume profile, which we
have postulated by imposing a Gaussian, cannot be conserved
in this free-fall solution.

Another asymptotic regime which has an analytical solution
is the limiting case of very small density fluctuations,i.e. £ —1 <«
1. It corresponds to the developed phase of the plume, when it
is fully controlled by entrainment. The equations simplify into

2 [c8%4] =20¢01u
2 [crB%] =THCE -~ ) (19)
L€~ 1™ U — = (1p = F

\ 2 3r
The asymptotic solutions are of the form

B=ho?, w=uol", €~ 1=RoC™ 0)

Once these power laws are inserted in Egs. (19), one easily
determines the exponents:

rp=1
_ogq+2  2y-—1
3 7 3(y-1 (21)
me 20+7_ Ty=5
T 3 T 3(y=1)

For v = 5/3, one has r = —7/6. A direct consequence of
Taylor’s entrainment hypothesis (3) is that the plume radius
increases linearly with depth. The half-angle [y of the cone is
related to the adiabatic exponent:

fo = 3a 3a(y-1)
0T g+2 2y—1

(22)

For the perfect monatomic gas, we have Gy = 6a/7. The en-
trainment coefficient o has been determined experimentally in
various situations, and the value 0.083 is widely adopted (Turner
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1986); we shall assume that this value also applies to our fully
ionized gas. For later use we also give up and Ry

e (6FL)1/3
*T\ 4B

_(a+2)\ g
R"‘(3>F

23)

The careful reader has certainly noticed that one does not
retrieve the incompressible case by letting the polytropic index
tend to zero, ¢ — 0. The reason for this singular limit is the
assumption made in the classical treatment (Morton et al. 1956)
that the surrounding medium is isothermal, while in our strati-
fied atmosphere the temperature grows linearly with depth. Let
us emphasize however that our asymptotic solution (20) is rather
special, since its focal point ¢ = 0 coincides with the “surface”
of the atmosphere.

An interesting property of this asymptotic regime is the strict
proportionality between the flux of kinetic energy and that of
enthalpy:

/ %pV3rdr
R=—4——"——

/ pcp 0T Virdr

= cst. 24)

With the gaussian profile we have adopted for the plume, this
ratio is given by

2 292
qg+2  2y-1"

(25)

Its value is 1 for the Boussinesq fluid (no density stratification)
and decreases to 4/7 for the perfect monatomic gas.

In their recent numerical experiment Cattaneo et al. (1991)
observed to their surprise that the strong downdrafts carried a
flux of kinetic energy which very nearly cancelled the flux of
enthalpy. Thus their downward plumes do not contribute much
to the net transport of energy, which is due mainly to the quieter,
interstitial medium. We find, on the contrary, that a diving plume
transports a net amount of energy in the expected direction,
namely towards the surface. The explanation, as also proposed
by Cattaneo et al., is that the plumes of the numerical experiment
are laminar structures which approximately satisfy Bernoulli’s
theorem.

2.2.2. Rising plumes

The case of rising plumes is radically different and more com-
plex than that of diving plumes, contrary to one’s naive expec-
tation that similar approximations would lead to similar asymp-
totic solutions. The main reason is that the origin of the plume
is no longer located in the vicinity of the “origin” of the atmo-
sphere, and therefore they obey different scaling laws.

Let us start as above, and consider first a very light plume:
imagine, for example, a plume of air rising from the bottom of
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the sea. We assume again that mixing is negligible. The approx-
imation is now £ < 1.

The momentum equation thus yields the very simple “free
rise” solution

w?=1+2I(1 —).

We now turn to the fully mixed situation where |¢ — 1|
< 1. In this case the flow is still determined by (19) but u <
0 and £ < 1 and the initial conditions are taken at { = 1.
An interesting point can be made if we cast this system into a
second order differential equation for the momentum flux P, =
A—Z/ 3 Cq ,02,“2

iz |ore ()] -
where A = 4al'F'. Since diving plumes obey this same equation,
power law solutions exist: one verifies that

9 2/3
P, = ( ) C(q+2)/ 3
2q(g+2)

is a solution. However, a rising plume never approaches this
solution. A closer look on (26) reveals that its solutions have
movable branch points (i.e. which depend on the initial condi-
tions); therefore by starting with different boundary conditions
one obtains very dissimilar solutions (but see Ince (1926) for
further details on these equations). Actually, the fact that the
power law solution (27) cannot be reached by ascending plumes
could have been guessed from the form of the constant Ry in
(23) which is always positive, while rising plumes should have
Ry < 0 because of (20).

Nevertheless, just as diving plumes, rising plumes reach a
“universal regime” after a transient depending on the initial con-
ditions. Unfortunately, and contrary to diving plumes, such a
regime cannot be expressed in terms of known functions. As we
shall see in Fig. 3, the plume velocity is almost constant with
height, in sharp contrast with the diving plume, where the flow
slows down as the depth increases.

(26)

@7

2.3. Numerical solutions

‘We have integrated the governing equations (10) for various ini-
tial conditions. Figure 2 displays the results for a diving plume
in conditions similar to that of the Sun. The plot of the veloc-
ity clearly demonstrates the two asymptotic regimes described
above. The fluid initially accelerates in almost free fall and the
width of the plume shrinks rapidly, as required by the conser-
vation of mass. As the atmosphere gets denser, entrainment be-
comes stronger and the flow slows down, while the width of the
plume now increases; a glance at the density ratio shows that
the plume is then well mixed.

From thereon, the flow approaches the asymptotic regime
described in Sect. 2.2.1: it is almost self-similar, and its strength
depends only on the energy flux carried by the plume. The initial
conditions which specify the initial mass flux and momentum
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Fig. 3a—d. The solution for a rising plume when & ~ 1. The parameters of the flow, A = 0.2, b= 0.1 and I = 10’, are representative of solar
conditions. Note the difference in horizontal scale for the rising and diving plume (dashed line) in a

flux are thus “forgotten”. As expected, the closer the initial con-
ditions are to the self-similar solution, the faster the plume tends
to its asymptotic shape; we found that this regime is obtained
more quickly when the kinetic energy flux is neglected. The
asymptotic regime is best illustrated in the linear increase of the
radius (; note also that the monotonic decrease of the density
contrast, which approaches the predicted power law.

Figure 3 shows the behavior of rising plumes. Again, as the
plume rises, the density contrast decreases while the section of
the plume increases, although its growth is no longer a linear
function of height. But the velocity curve is more intricate. Af-
ter the initial “free-rise”, the flow begins to slow down, due to
mass loading caused by entrainment. Thereafter, because the
surrounding medium is less and less dense, entrainment is less
effective while the momentum flux still increases; the conse-
quence of this is an acceleration of the flow in the upper part of
the atmosphere. We note that as for the diving plume flow, the
rising plume is subsonic all the way.

In concluding this section, we would like to emphasize once
more the difference between rising and diving plumes. This dif-
ference is manifest in the size of the plumes and in their ve-
locity. Indeed, as shown by Fig. 3a the horizontal size of the
rising plume is much larger than that of the diving plume, while

its velocity remains well below that of the diving plume (com-
pare Fig. 2c and Fig. 3c). For these reasons we do not expect
the rising plumes to play a major role in the dynamics of the
convective layer and we shall neglect them in the next section.

3. Turbulent plumes in the solar convection zone

In the preceding section we have presented the basic properties
of rising or diving turbulent plumes in a horizontal plane-parallel
layer. We now proceed to build a model of stellar convection
zone which consists in an ensemble of diving plumes. We take
the extreme view that all the convective flux is transported by
these plumes, thus neglecting the contribution of the interstitial
medium. As mentioned above, we ignore the possibility of rising
plumes: presumably, these are difficult to initialize in the lower
part of the convection zone, since there the temperature gradient
is very close to adiabatic.

To be specific, we shall illustrate the possible role of turbu-
lent plumes in the solar convection zone, whose basic parame-
ters are recalled in Table 1.

Up to now, we have considered the case of a single plume
in an infinite isentropic plane layer. Here we progress towards a
more realistic situation: we now take into account the spherical
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Table 1. Solar parameters used in the calculations

go 270ms~2
Ro 6.9610°m
Lo 3910%WwW
n 0.7

To 1.8610°K
po 190kgm™3

geometry of the fluid layer and include the variations of gravity
with depth (neglecting however the mass of the envelope) so that
the density and temperature field of the background are given
by

1

o) = [T @8

z=1-(1-n)X

where 7) is the radius, scaled by the total radius, corresponding
to the reference level. The set of Egs. (28) is now replacing (9).

We shall also take into account the radiative flux by sub-
tracting it from the total flux, thus (7) now reads

1 (&_1) pb’ VAl + % <3£‘:— 1) pb* V3

2 3
= —(%ot — %d)/ﬂ' .

(29)

The radiative flux is proportional to the temperature gradi-
ent; thus

or
Foad = —X (_87> ,
ad

where the radiative conductivity ¥ is related to the opacity « by

_ 16013
T 3kp

)

with o being the Stefan constant. Using Kramers’ law to express
the conductivity in terms of density and temperature, and choos-
ing the reference level where the radiative luminosity equals the
total luminosity, i.e. where the convection zone should end ac-
cording to the Schwarzschild criterion, we have

yd T6.5
.yr:n (0.8 —pT . (30)

With our assumption that all the convective energy is trans-
ported by the plumes, whose number is IV, the total flux amounts
to the luminosity of the star:

N %y = Lo, 31)

M. Rieutord & J.-P. Zahn: Turbulent plumes in stellar convective envelopes

3.1. Plumes interactions

Two types of interactions, presumably, will play a major role:
interpenetration and coalescence. The first one is simply the
confrontation of plumes of opposite signs (diving and rising)
while the second one concerns plumes of the same sign (both
rising or both diving). Much like vortices, plumes attract plumes
of the same sign and repel or avoid those of the opposite sign
(Moses et al. 1993).

3.1.1. Plumes diving in a rising counter flow

We shall not deal with the mutual interpenetration of diving and
rising plumes since we banned the latter from our convection
zone. However, the diving plumes themselves are always evolv-
ing in a counter flow: since the volume of the convection zone is
finite, they generate this flow in order to ensure the conservation
of mass.

Let us first estimate the maximum number of diving plumes
which may coexist in the solar convection zone (SCZ), assuming
that they all originate at the top and that all reach its bottom
without being hindered by the counterflow. This number is given
by the ratio of the area of the base of the SCZ to the section of
a single plume at this depth:

2
n
N=4|——— 32
[ﬂo(l - n)} G2
where J is given by (22). Taking n = 0.7, the result is
Nmax ~ 4300 . 33)

We see that even if the plumes were closely packed, they
would not be very numerous. The important point to note here
is that if the diving plume number equals Npyax, the filling factor
f (fraction of the total area occupied by the plumes) will vary
from zero at the top of the convection zone to unity at the bottom
(disregarding the fact that discs cannot pave the sphere). Once
f becomes larger than 1/2, at depth zp/ V2, the velocity of the
backflow exceeds that of the plume.

To model the effect of this counterflow, we shall assume
that the entrainment of mass into the plume is proportional to
the difference between the velocity of the plume and that of the
surrounding fluid. We thus write the mass equation as:

4 K?’—l) psz] =2a pb(V — V)

dz 2 34

where V,, is the upward velocity of the surrounding fluid; since
V. < 0, entrainment is enhanced. The momentum equation
needs also be completed by a term taking into account the en-
trainment of momentum into the plume, since the surrounding
medium is no longer at rest. We thus transform (5) into

ztd—z [(g;_l) pb2V2] =2gb*Ap+4apbVy(V —V,)  (35)

Equations (34) and (35) are completed by

(47r? — N7b*)pVy, + Nmb*pV =0 (36)
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Fig. 4. Profiles of characteristic quantities of a diving plume for typical solar conditions as a function of depth. The number of plumes is 1000.
Note the change of sign of the density fluctuation Ap which induces buoyancy braking and the reversal of the enthalpy flux. The ratio of the
kinetic energy flux to the enthalpy flux is also plotted along the asymptotic value of 4/7 (dashed line)

which expresses the conservation of mass. The consequence
of these additional effects is that diving plumes will reach the
bottom of the convection zone only if they are strong enough
and not too numerous. We shall return to this question when
discussing penetration at the base of the convection zone.

We integrated numerically the modified governing equations
(34), (35), together with (36) and (29). The solution for typical
solar parameters is presented in Fig. 4. From this integration it
turns out that only 1000 plumes are able to reach simultaneously
the bottom of the SCZ.

3.1.2. Plume coalescence

At the top of the SCZ, the number of diving plumes probably
equals that of the granules, which is considerably larger than
1000. Hence a drastic reduction of the plumes number must
take place as depth increases. This is achieved by two means:
by the adverse effect of the upflow and through the merging of
plumes.

As one may note in Fig. 4, the velocity of the upflow is in-
creasing with depth. Thus the diving plumes will be stopped at a
depth which depends on their strength: only the 1000 strongest
reach the bottom, while the millions generated by the granules

do not go below 10 Mm (say). Once it has come to rest, the cold
fluid of the plume may well dissolve in the (turbulent) back-
flow, and disappear as such. However it can also have another
fate. Just imagine that the plume which stops at some depth
has in its vicinity a slightly stronger companion. Because this
companion is accreting the surrounding medium, the cold fluid
which remains from the stopped plume will soon flow into the
neighboring plume, thereby rendering it even stronger.

But the merging of two plumes may proceed in a smoother
way, as observed in the numerical simulations of Stein & Nord-
lund (1989) (see also Spruit et al. 1990). Two neighboring
plumes are advected by each other, since they both accrete sur-
rounding fluid, and they are pulled to each other until they fi-
nally merge. The merging depth can be estimated if we reduce
the plume to its central line and assume the flow to be in the
asymptotic regime. We give in the Appendix the details of the
calculations; the result is

d
V2afo

37

Zm
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where d is the initial separation of the two plumes, which we
assumed here to be identical. If we use the values of 3 for the
monatomic ideal gas and o = 0.083, then

Zm ~9.2d.

Such coalescences then repeat at increasing depths, until the
survivors reach the base of the convection zone. This is a sort of
inverse cascade with a large scale flow building up from smaller
scales. Interestingly enough, this phenomenon has recently been
observed in the case of laminar plumes by Moses et al. (1993).

3.2. Penetration and overshoot
3.2.1. Penetration at the base of a convection zone

When the plumes reach the bottom of the unstable domain, they
still possess a finite velocity which enables them to penetrate
some distance into the stable, subadiabatic region, where they
establish a nearly adiabatic stratification by releasing their en-
tropy when they come to rest. A first attempt to estimate the
extent of penetration of such plumes was made by Schmitt et
al. (1984). However, they did not include the return flow, and
they had to impose both the velocity V' and the filling factor f
at the base of the unstable domain because they did not solve
the plume equations above that level. They found empirically
that the penetration depth varies as f!/2V3/2, This scaling was
explained by Zahn (1991), who also gave a crude estimate of
the extent of penetration: a fraction (of order unity) of the scale-
height of the radiative conductivity, which is here zp/3.5 with
Kramers’ law.
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Fig. 5. The extent of penetration, scaled by the thickness of the unstable
domain, as a function of the number of plumes. The dashed line traces
the case when the upward motion of the background is neglected: the
penetration depth is then almost independent of N. The dotted line is
for the same case but when the kinetic energy flux is neglected: the
difference between these two lines shows the important role played
by the kinetic energy in the penetration process. When the backflow
is incorporated (solid line), the penetration depth decreases monoton-
ically with N. The zero level is the boundary given by Schwarzschild
criterion
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In our approach we compute the penetration in a more con-
sistent way, by integrating the governing equations from the top
of the convection zone until the plumes come to rest; the re-
sults are displayed in Fig. 5. We consider first the case where
the effect of the backflow is ignored. As a consequence, the
penetration depth is almost independent of the plume number,
as was predicted by Zahn 1991; however the limiting value is
very large and incompatible with the helioseismic observations
(Dziembowski 1993). In the second case, we include the in-
teraction of plumes with the backflow. The penetration depth
depends almost linearly on the plume number; indeed as this
number increases, the backflow strengthens the loading of the
plume flow with upward momentum.

This dependence shows that a much more sophisticated
model is needed to describe the termination of the plume flow.
In particular, the loss of mass by the plume in this region, or
“detrainment”, and its transfer to the upward motion, is not ac-
counted for by the equations we use. A way of dealing with
this was presented by Abramovich (1963) for the case of a jet
in a dead-end channel. It consists in connecting the turbulent
entraining flow to a potential flow. His results show however
only qualitative agreement with the experiments.

3.2.2. Overshoot at the top of a convective envelope

The problem of convective overshoot in the atmosphere of the
Sun is not, unfortunately, just the mirror image of that of pene-
tration. The main reason is that in the top layers the horizontal
scale of the coherent structures, namely the granules, is so small
that the Péclet number is order of unity and thus radiative cooling
becomes important. Moreover, these thermally coherent struc-
tures do no longer behave as long-lived plumes, but rather as
ephemeral thermals, and their dynamics cannot be described by
stationary flows.

The realm of the plumes is thus the bulk of the convection
zone, with its penetrative extension below. Near the surface,
another approach must be taken, if one wishes to significantly
improve beyond the mixing-length formalism. But this region
is also in much closer reach of the numerical simulations, which
yield there excellent results, as it has been demonstrated con-
vincingly by A. Nordlund and his coworkers.

4. Discussion

Let us summarize the few results we have obtained in this first
exploration of the role that turbulent diving plumes may play in
stellar convective envelopes. »

If Taylor’s parametrization of the entrainment of surround-
ing fluid into turbulent plumes holds in the hot plasma of stars
(this point will be discussed in a forthcoming paper by Bonin
& Rieutord 1994), then a limited number of such plumes can
reach the base of the convection zone.

To first approximation, these plumes behave much as if they
were traversing an isentropic atmosphere, with no feedback at
all, and ignoring the radiation flux. Shortly after their start, they
reach an asymptotic regime where their size increases linearly
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with depth. Due to the density stratification, the cone angle is
somewhat smaller than in the Boussinesq case treated so far: it
is 6c./7 instead of 6c/5, with o being the entrainment constant
(whose experimental value is o = 0.083).

Another non-Boussinesq effect is the importance of the ki-
netic energy flux, which is directed downwards. This adverse
flux could well, in principle, neutralize the action of the plume,
as was observed in the numerical simulations of Cattaneo et al.
(1991). We find however that the enthalpy flux always exceeds
the kinetic flux: the ratio between the two is constant in the
asymptotic regime, and its value is 4/7, if one assumes that the
horizontal profile of the plume is gaussian.

These asymptotic properties are strictly valid only in a plane-
parallel atmosphere and if self-similarity of the flow is preserved
(see Bonin & Rieutord 1994); they are modified somewhat in
a spherical envelope. Another step towards a more realistic de-
scription is to take into account the quiescent backflow which is
generated by the plumes. It operates as a severe selection mech-
anism: the weakest plumes will be stopped at some intermediate
level, if they have not merged before with a stronger neighbor.
This backflow causes also some departure from the asymptotic
regime of the ideal plume, at large depth.

Assuming that the solar convection zone is superadiabatic
over a depth of 200,000 km, we have calculated the maximum
number of plumes that may reach this level, where the convec-
tive flux reverses its sign. Taking the counterflow into account,
we found that number to be around 1000, which means that the
spacing between plumes would be about 60 Mm. Note how-
ever that this evaluation is based on a very strong assumption:
namely that the totality of the convective energy flux (enthalpy
plus kinetic) is carried by the diving plumes. Under these same
conditions, the extent of penetration into the stable region be-
neath would depend on the number of plumes, but neither can
be predicted by this simple model.

All these results are independent of the top boundary condi-
tions on the mass flux and on the initial momentum flux carried
by the plumes. What determines the flow is the convective en-
ergy flux near the surface, which would be conserved along the
plume if there were no radiative transport.

Implicitly, we made another assumption, namely that these
plumes behave as plumes, i.e. that their life time largely exceeds
the flow travel time. We thus postulated that the downflows are
stationary, although it is not obvious that they will ever reach
their steady regime in the adverse upflow.

But our plume model suffers from a far more severe short-
coming: it is not applicable to the upper layers of the convection
zone, where radiative leaking becomes important, and where
we know from the observations that the turbulent eddies behave
much more like thermals than as plumes. Thus our model is un-
able to predict the depth of the convection zone, which depends
heavily on the transition from the radiative regime at the surface
to the nearly adiabatic conditions below.

It thus appears that a complete phenomenological model of
a stellar convection zone must have a dual character: it should
include both the advective transport by a collection of diving
plumes and the turbulent diffusion of the interstitial medium,
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whose stratification is not strictly adiabatic. We feel that it would
be worthwhile to build such a model, in order to test its prop-
erties. In the meanwhile, the mixing length approach is better
suited to deal with the upper boundary layer, even though it
depends on a free parameter.

An important feature of the solar convection zone, which
has been ignored in this paper, is its rotation. Since the ambiant
angular momentum will be entrained into the plumes, these will
spin up with depth, and they will concentrate both vorticity and
helicity. Owing to their robustness, such vortices could well be
the cause of the observed differential rotation, especially of its
peculiarity of being quasi-independent of depth (Brown et al.
1989; Dziembowski et al. 1989). Furthermore, we can easily
imagine that plumes play a major role in the generation of mag-
netic fields. Since they are places of high helicity they will also
be the seat of strong alpha-effect. Recent dynamo simulations
of Brandenburg et al. (1993) have shown that laminar diving
plumes were indeed playing an important part in the field gen-
eration and its storage at the base of the convective layer. Such
arole is also expected for the turbulent plumes.

These aspects, which are of great importance for stellar ac-
tivity, will be addressed in a future paper.
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Appendix A

A.l. Flux equations for plumes dynamics

We give here the governing equations (10) in the form where
they have been integrated numerically.
The conservation of mass equation is given by

E+1\dM M df 4o [3P( AD
2041) d¢ QE+1)2d¢ 3\ 26+1°

likewise, the momentum equation reads

%% =T(€ - DM/, (A2)

while the energy equation becomes:
€2[3u? /2T — 2 +4L /M) +£[u? /2T + ¢ + 2L/ M1+ ¢ = 0.(A3)
By differentiation we get

[3g+1_u2_ ZL}%_‘_ u? ¢ d¢
Tl2eqiTM T | A [(2§+1)22F_?.d<

_ 1_1 _3¢+1 P dP

B 3 26 +1 M2 d¢
here u = P/M is the velocity. Equation (A4) combined with
(A1) and (A2) yields the evolution of M.

(A4)
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A.2. Merging of two plumes

We consider two diving plumes in the self-similar regime whose
velocities are expressed as

Vea=Wi¢™"
Vap =W
They both induce an radial accretion flow
Vrtz = —afBoVi¢' ™™ /z12(0)
Ve = —afoVal' ™" /212(0),

where V/. 1, is the radial velocity imposed by plume 1 on plume
2 and vice-versa for V;. 51, (B is the half-angle of the cone and
T12 is the distance between the axes of the two plumes. If z is the
coordinate along the line joining their centers and z; the position
of the second plume, the trajectory of this plume verifies

i, ot (1)
ag z12 \V2

while for the other plume we have

doy ot (V)
g T, \V1

The distance between the two plumes 1, = z, — zj is a
solution of

@ aﬂoC (V] + VZ)
dg z2 \Va W

(A5)

If d is the initial distance between the plumes, then we have

Vi
T1p = \/d2 — afo (—1 + —) ¢ (AS)
z12 = 0 gives the depth at which the two plumes merge:
d
Cm = (A7)
Voo (Vi/Va + Va/Vi)

which yields (37) when V] =
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