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Abstract. We consider the problem of how numerical simula-
tions of convection in a spherical shell can be used to estimate
turbulent transport coefficients that may be used in mean field
theory. For this purpose we analyse data from simulations of
three dimensional Boussinesq convection. The rotational influ-
ence on convection is described in terms of the A-effect and
anisotropic eddy conductivity. When the resulting transport co-
efficients are used in a mean field model, the original rotation
law is recovered approximately. We thus conclude that the flow
can be described in terms of a A-effect. Our results are also
compared with analytical theories and observations.
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1. Introduction

Understanding the dynamics of stars and giant planets (e.g. dif-
ferential rotation and magnetic activity) is one of the challenging
problems of present day astrophysics. The basic difficulty when
dealing with such problems comes from the turbulent nature of
the fluid motions in these objects, as no good theory of turbu-
lence yet exists. This lack of understanding leads us to study
turbulent flows using experiments. However, in the case of tur-
bulent convection in stars, real experiments are difficult to set
up. The main difficulty is to generate the radial gravity. In the
experiment of Hart et al. (1986) the radial gravity was simulated
by an electric force, and in this way they managed for the first
time to simulate convection in a spherical shell. Another con-
venient way of performing experiments is by using numerical
simulations. One solves the set of hydrodynamical equations
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and measures, as in experiments, some diagnostic quantities as
the flow evolves in time.

We solve the equations of convection for the simple case of a
Boussinesq fluid inside a rotating spherical shell. Such a config-
uration is far from that of a star, but it has frequently been used
in the past to investigate the rotational influence on convection
in a spherical shell (e.g. Gilman 1977). We concentrate here on
determining the turbulent transport coefficients that govern the
mean rotation law. Originally, the runs were tailored to repre-
sent the outer core of the earth, and that is the reason why we
chose the ratio of outer to inner radius to be 0.4, but the results
obtained are of more general interest and comparison with the
sun can therefore be made.

In the present paper we concentrate on various average prop-
erties of the flow and investigate the possibility, of whether these
averages can be determined from the simulation and how these
functions can be used in mean field models of differential rota-
tion using the A-effect approach (Riidiger 1980). The A-effect
describes a non-diffusive transport of angular momentum, sim-
ilarly of the a-effect in mean-field electrodynamics (Krause
& Ridler 1980) describes a non-diffusive contribution to the
electromagnetic force in addition to the turbulent magnetic dif-
fusion. The A-effect is also related to the anisotropic kinetic
a-effect (or AKA-effect, Frisch et al. 1987).

In Sect. 2, we describe the basic equations of the problem.
We then present results for various averaged quantities (Sect. 3)
the A-effect (Sect. 4), and the eddy conductivity (Sect. 5). The
resulting turbulent transport coefficients are used in a mean field
model of differential rotation (Sect 6) and, finally, some astro-
physical implications are discussed (Sect. 7).

2. The model

We consider a fluid contained in a spherical shell of outer radius
R and inner radius . The fluid is assumed to be incompressible
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and the Boussinesq approximation is used. The equation of state
is
p = poll — (T — Tp)], ¢

where p is density, 7" temperature, o the expansion coefficient
and the suffix O refers to the hydrostatic reference state. The
inner sphere is filled with fluid of the same density but remains
at rest. The gravity inside the fluid is

4
g= —%Gpr. 2

The superadiabatic gradient 3 is produced by a uniform distri-
bution of heat sources with an energy production rate ). Such
a configuration has often been studied (see e.g. Chandrasekhar
1961; Roberts 1968; Busse & Cuong 1977; Zhang & Busse
1987; Zhang 1992), and its linear stability properties are well
known.

Using the thickness d of the shell as the length scale, the
dynamical time tay = (d/3g0)"/? as the time scale (with g =
%ﬂGpd), and B = Qd?/3k as temperature scale (x is the heat
diffusivity), the nondimensional equations of the fluid motion
in a rotating frame of reference are

Du |
—b?'i'kaXu——VP'F@X'I' EAU, (3)
div u =0, “)
DO 1

— +tu-xcr= AO, 5
Dt ZRa ©)
with

[Tocp 2\ 2 3
Fr = Ta@, Ta = (ZQOR ) , Ra = g_ﬁ_ggci_, (6)
Ra v VK

where D/Dt = 8/0t+u-V is the total derivative, u the velocity,
© the temperature fluctuation with respect to the hydrostatic
solution, 2 the angular velocity of the initially rigid rotation, v
the kinematic viscosity, k the unit vector in the direction of the
rotation axis, « the dimensionless radius vector, &° = v/k the
Prandtl number, Ra the Rayleigh number, Ta the Taylor number,
and Fr is the Froude number. As in the references cited above, we
have neglected the centrifugal force and thus the baroclinic flow.
The system of equation was completed by stress-free boundary
conditions on the velocity on both the inner and outer shell.

Using (4), these equations may be reduced to three scalar
equations for the vertical velocity, the vertical vorticity and the
temperature fluctuation, which are developed in spherical har-
monics for the angular part and Tchebychev polynomials for
the radial part, e.g.

Imax Tmax

F(2,0,0)=> Y aimn®Tn(@)Y™ (6, ¢). (7)

Im n

The coefficients ajmy,(t) are computed using an Adams-
Bashforth integration scheme. A Crank-Nicholson scheme is
used to treat the diffusion terms implicitly and the other terms
explicitly. This same (pseudo-spectral) technique has been used
by Glatzmaier & Gilman (1982). The boundary conditions were
accounted via a technique proposed by Patera (1984).

M. Rieutord et al.: Reynolds stresses and differential rotation

Table 1. Parameters of the various runs.

Run A Run B RunC RunD

Ta 10° 1.6710° 10° 10°
Ra 3.1Ra, 4.4Ra. 4Ra, 8Ra,
Nu 3.2 4.2 3.4 8.1
Fr 5.8 5.8 9.5 6.7
us 0.65 0.79 0.52 1.0
Ro™! 8.8 7.3 18 6.7
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Fig. 1. Time sequence of the Nusselt number (Run A). The abscissa is
measures in turnover times. The horizontal, dotted, line indicates the
average value

3. Properties of the runs

‘We accumulated data for runs with different Rayleigh and Tay-
lor numbers. In all cases &” = 1, rg = 0.4 R, I = 20 and
Nmax = 32. Conservation of energy and angular momentum was
checked in all cases and we confirmed that increasing the res-
olution did not change the results significantly. The strength of
rotation relative to convection is characterised by the inverse
Rossby number Ro™! = 2Qyd/u;, where u; is the rms-velocity
of the turbulence. The parameters of the runs are summarised
in Table 1.

The flow is only mildly supercritical, although many modes
are excited and the temporal evolution is irregular (Fig. 1). In
this paper we apply this flow to the determination of ‘turbulent’
transport coefficients, keeping however in mind that the flow is
not really turbulent.

In order to facilitate comparison with mean field theory we
compute various mean quantities adopting combined longitudi-
nal and temporal averages. For the four runs we present contours
of the average angular velocity Q = Qg + (u4) /(7 sin 0), helic-
ity H = (w - u), where w = V x u, and two components of
the Reynolds stress tensor, Qry = (upuy) and Qg = (uguy)
(Fig. 2). (Primes denote deviations from the mean.) All four
fields are spatially smooth and show almost perfect symmetries
about the equator: symmetry for 2 and Q,4 and antisymme-
try for H and Q¢. (In Runs A and C, however, the Rayleigh
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Fig. 2. Contours of angular velocity 2, helicity H, and two components of the Reynolds stress tensor, Q.4 and Qg4. Dotted contours refer to

negative values

number is still not high enough for antisymmetric modes to be
excited.)

In Runs A, B, and D, the angular velocity in the equatorial
plane increases toward the centre, whereas in Run C the inverse
Rossby number is much larger and the angular velocity now
decreases toward the centre. This is in agreement with Gilman
(1978) who finds a change from equatorial acceleration to de-
celeration when (for fixed Taylor number) the Rayleigh number
is increased.

The helicity is, as expected, negative (positive) in the north-
ern (southern) hemisphere, but close to the equator near to the
surface are ‘islands’ with opposite helicity. Since at the poles
the background vorticity is maximal (w = 22), one would also
expect there a maximum of H. However, as can be seen from
Fig. 3, for large inverse Rossby numbers, the helicity vanishes
inside the cylinder tangent to the inner radius of the shell. Con-
sequently, the extrema of the helicity are at mid-latitudes. This is
a consequence of the Taylor-Proudman theorem which inhibits
vertical motions in polar regions. Thus, the helicity profile is not
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Fig. 3. Latitudinal profile of the helicity atr = r,, (Run A and Run C).
The dotted line gives the fit using odd values of £ between 1 and 5

given by a simple cos § dependence (as one would expect from
a simple proportionality to background vorticity) but is better
represented by an expression of the form

H(r,0)= > Hyr)Pu(cosb). ®)
£=1,3,5,...

The coefficients for odd values of ¢, at mid-depth 7, in
the shell are Hy(r,,) = (—0.7,40.6,+0.2) (for Run A),
(=0.9,+0.6, +0.5) (for Run B), (—0.6,+0.7, —0.1) (for Run C),
and (—0.5,+0.3, —0.5) (for Run D). The profile of H(r,,) and
its fit for Run A are plotted in Fig. 3.

The helicity is related to the a-effect in mean field dynamo
theory. An expansion similar to Eq. (8) has been obtained for the
a-effect (cf. Schmitt 1987). This has important consequences
for constructing solar dynamo models, because the correct field
geometry can only be reproduced if o decreases toward higher
latitudes (e.g. Yoshimura 1975; Belvedere et al. 1991).

In the following we are interested in the A-effect, which
only exists if the flow is anisotropic. It is therefore important
to characterise the degree of anisotropy of the flow. Following
Riidiger (1980), we define

Ay = ((ug) — (u)/uf,  An = ({(ug) — (up))/ui, ©)

that describe the anisotropy in the vertical and horizontal direc-
tions. In Fig. 4 we plot Ay and Ay as a function of latitude for
the middle of the layer. Note that Ay is negative at low latitudes,
and positive at higher latitudes. Since the sign of Ay determines
the radial gradient of Q (Riidiger 1980), we expect that at low
latitudes € increases inwards, but outwards at higher latitudes
(for Run A). This is in agreement with the differential rotation
obtained in the simulation.
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Fig. 4. Latitudinal profiles of Ay and Ag, taken in the middle of the
layer (Run A)

4. The A-effect

The flows presented in this paper display differential rotation
as a natural consequence of the rotational effects on the turbu-
lence. In the context of solar and stellar convection zones this
mean flow may be described by the A-effect (Riidiger 1980,
1989; Kitchatinov 1986; Durney 1987, 1991). Clearly, our sim-
ulations cannot reach the extreme parameter regime relevant to
solar convection, but it is nevertheless possible to verify the con-
cept of the A-effect and to determine the governing parameters.
For this purpose, we compute the components of the Reynolds
stress and try to express them in terms of the mean velocity
and its gradients. Since in our cases the dominant component
of velocity is the azimuthal one, we restrict the dependence of
the Reynolds stress to this component. In this connection, we
develop a general formalism that may readily be applied to other
convection simulations in spherical geometry.

4.1. The horizontal part of the A-effect

We consider first the horizontal part of the A-effect which is
important, because of the observational evidence (Ward 1965;
Gilman 1984; Virtanen 1989; Tuominen 1990).

The horizontal component of the Reynolds stress tensor,
Qo¢, may be written in the form

Q
Qog =cos OAgQ — I/t(H) sin 62—0,

where Ay is usually written as

(10)

Apr = v, [HV sin®0 + H? sin*f] (11
(Riidiger 1980). Here, we have distinguished between the
isotropic turbulent viscosity v; and a horizontal part »{""). The
coefficient H" has been derived from the Greenwich sunspot
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data (Ward 1965; Gilman 1984). More recently, Virtanen (1989)
and Tuominen (1990) repeated this analysis and determined also
H®_In those studies the representation
Qo =11 Qg cosd sin?0(w; + w, sin?6) (12)
has been used, where the solar rotation law is already incor-
porated, and 1/§H ) = u; is assumed. The analysis of Virtanen
(1989) and Tuominen (1990) gives w; = 1 and w, = 5.6. Ward
(1965) determined also one of the coefficient, namely w; = 2
(see Riidiger 1989); however, since the expansion in term of
sin@ is not an orthogonal one, two representations with differ-
ent order of truncation are not directly comparable. Ward used
only one coefficient, thus its value cannot be compared to the
others mentioned in the text. The coefficients w; and w, have
also been derived from numerical simulations of rotating turbu-
lent convection in a box located at different latitudes (Pulkkinen
etal. 1991, 1993), who finds w; = 1 and w, = 5.

We now expand €2, Qg4, and Ay in terms of orthogonal
functions

_ 1 1
Q=——s > wpPi(cost), (13)
k=1,3,5
Qog = Z ¢ P2(cos §), (14)
n=3,5,7
cosOAg =v;sin 6 Z A;H)Pe' (cos ), (15)

£=2,4,6

where we have assumed symmetry about the equator which, in
our case, is indeed a good approximation (even for Run B where
antisymmetric modes were excited, symmetric modes imposed
their symmetry; see Fig. 2). Note also that we restricted our-
selves to the first three terms in this expansion. The coefficients
wi, ¢4, /\2H), and VéH ) are functions of depth, but we focus
attention to their values at the surface, where Qg is larger than
inside the shell, and where comparisons with observations are
possible. (Note that we use a definition for the associated Leg-
endre polynomials, which have a minus sign for odd m-values,
e.g. Pl1 (cos @) = —sinf). For comparison purposes, we also
give the expressions of H® and H® in terms of \{":
HO = 30 100, H® =35/2){ (16)
The coefficients wy and qéH ) are obtained by fitting (13) and
(14) to the profiles of € and Qg4 as measured from simulations
or observations. Inserting (13)—(15) into Eq. (10), multiplying
by P2(cos 6), and integrating over the sphere we find

=3 > Fanwed —vfPw, n=3,57. (17)
k=1,3,5 £=2,4,6

The coupling coefficients

Fin = / P!P}P2dz / / P2P2dz (18)
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can be expressed in terms of Gaunt integrals or Clebsch-Gordon
coefficients, and the relevant ones are given in Table 2.

The system of Eq. (17) is underdetermined, because we have
3 equations and 4 unknowns (the three )\EH )and uéH )). We there-
fore consider different approaches. In principle, ViH ) can be
estimated by
Vg = %utf, (19)
where £ is the correlation length of the turbulence. Following
Pulkkinen et al. (1993), we set £ = d and assume I/,EH ) = v and
solve for the three /\2H ). On the other hand, we may omit /\(6H )
in the expansion (15) and solve explicitly for VEH ) together with
the first two AgH)-coefﬁcients. In the first case we solve

nASENS = ¢ + viwsan,  @,8=1,2,3, (20)
and in the second

v AGPLED = ¢, a,8=1,2,3, @1)
where L = AP AP 1y s a vector and

ASD = [(1=6p3) D Frppoanwr | — pswran (22)

k=1,3,5

is a 3 x 3 matrix where w; = 0 is assumed. In components,
Eq. (21) reads

H H
Fipswk Fraswr —ws AQH) ng)
Frpswk Fraswe —ws AP = | gD (23)
Fipgwe Fragwe 0 v &

where summation over k is assumed.

In Table 3 we give the results for X for three different
cases: (i) I/t(H) is solved for, (ii) Vt(H) = 0 is assumed, and (iii)
) = vy is assumed. The results for other values of v can be
obtained by linear interpolation between the cases (ii) and (iii).
Mean field theory predicts that the A-coefficients are quenched
with increasing rotation rate (Kitchatinov & Riidiger 1993).
Some of the \H)-coefficients in Table 3 do indeed seem to vary
systematically with the inverse Rossby number, although these
coefficients may still change sign within the range of Rossby
numbers considered.

For Run A the surface rotation law and the Qg4 compo-
nent are plotted in Fig. 5 together with the fits (13)-(15). The
results for the various coefficients are summarised in Table 3.
The we-coefficients in (12) are related to the quH )_coefficients.
For Run A, for example, we find wy/w; = 3.5, which is
a similar ratio to that given by Virtanen (1989) and Pulkki-
nen et al. (1993). The )\;H )_coefficients corresponding to the
we-coefficients measured for the sun are AS" = —1.4 and
A =402, ie. AP /A = —0.14. In the case where ) is
given, the resulting )\EH )_coefficients depend linearly on v,
Thus, )\iH ) / )\(ZH ) = —0.14 could be reproduced by taking a rela-
tively small value of D). On the other hand, if we solve directly
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Table 2. Coefficients Fren, = [ PyP; Prdz/ [ PAPidz

M. Rieutord et al.: Reynolds stresses and differential rotation

n 3 5 7

k\¢ 2 4 6 2 4 6 2 4 6
1 1/5 —1/9 0 0 179  —1/13 0 0 1/13
3 1/5 8/33  —35/143 | 1/7 32/2713 1/13 0 50/429  177/2431
5 | —2/11 125/429  49/143 | 1/13  5/39  32/221 | 15/143 625/7293  4050/46189
3.10
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Fig. 5. The surface rotation law for Run A and the horizontal compo-

nent Qs of the Reynolds stress tensor (solid lines) together with the
fits (13) and (15) (dotted lines)

for v then we get unrealistically large values, and in deeper
layers ) can even become negative. This is clearly an arti-
fact of our method being too sensitive to small changes in the
gradient of €.

Note that Qg4 is positive in the northern hemisphere. This is
an important result, because it shows that Eq. (10) cannot be sat-
isfied without the A g term, provided I/,EH) > 0. Riidiger (1977)
applied this argument to the sun where Qg4 > 0 (from sunspot
proper motions) and 92/86 > 0 in the northern hemisphere.

4.2. The vertical part of the A-effect

We now consider the vertical part of the A-effect. Following
Riidiger (1980), the vertical component, ()¢, of the Reynolds
stress tensor is expressed in the form

Qrg =sin Ay Q — v sin6 8Q/d1nr, (24)
where Ay is written as
Ay =1 [VO + VDsin20 + V@ sin*6). (25)

Again, we expand Q)4 and Ay in terms of orthogonal functions

Qrg= Y ¢V Pl(cosh),

n=1,3,5

(26)

Table 3. The coefficients for the horizontal A-effect at » = R. The
root-mean-square deviation from the fits is around 16%. The three
columns for A are for the cases where v{*" is solved (i), taken to be
zero (ii), and assumed to be given by v (iii)

)\(H)
2n
n wi-i ¢ @ (i) (i)
A 1 —2874 0.01909 031 —0.142 —0.091
2 —0.072 —0.00237 | —1.15  0.014 —0.119
3 0043  0.00149 | (8.81x) —0.034 —0.030
B 1 -2806  0.02499 053 —0.145 —0.005
2 -0.136 —0.00607 | —0.82  0.038 —0.139
3 0.057 000319 | (4.80) —0.061 —0.048
C 1| —4830  0.01228 | =022 —0.077 —0.162
2 0037  0.00061 | —0.14 —0.005 —0.087
3 0.041 —0.00035 | (1.65)  0.005  0.002
D 1 —3.033 0.02134 133 —0.077 0319
2 —0290 —0.01069 | —0.28  0.061 —0.036
3 0.024  0.00414 | 3.614) —0.057 —0.041
Av=ve > A Pycosh). @7

£=0,2,4

The relations between the /\Ev) and the V™ are:

VO _ )\gV) + )\(ZV) + )\SV) (28)
VO =3/ -5\, v®=35/8\ 29

The coefficients ¢¢ can be obtained by fitting (14) to the
profile of Q4. Inserting (13), (26) and (27) into Eq. (24), mul-
tiplying by P, (cos 6), and integrating over the sphere, we find

(30)

v v
V= 3" 3" Grenwi Y — 1wy,
k=1,3,5 £=0,2,4
where wj, = Owy /0 In, and the coefficients
Gren = / PlP,Pldz / / P!Pld: @31)
are given in Table 4.
Similarly as for the horizontal A-effect we either set Vﬁv) =
Vg, OF We omit AE‘V) in the expansion (27) and solve for V,EV)
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Table 4. Coefficients Gen = [ PiPePrdz/ [ Py Phdz

n 1 3 5

E\£ | 0 2 4 0o 2 4 0o 2 4
1 |1 —1/5 0 |0 1/5 —1/9] 0 0 1/9
3 |0 18/35 —2/7| 1 1/5 1/33| 0 2/7 22/273
5 {0 0 5/11| 0 5/11 5/39| 1 3/13 4/39

0 30 60 90 120 150

~0.00F

-0.05F

—0.10}

0 30 60 90 120 150 180
Fig. 6. The profiles of Q' = 9§2/81nr and Q¢ for Run A (solid lines)

together with the fits (13) and (27) (dotted lines)

explicitly. In the second case we obtain )\(()V), )\f‘V), and V,EV) by
solving the following system of linear equations

nADLY =0, a,8=1,2,3, (32)

where L = ()\gv), )\(ZV), ") is a vector and

Aap=|(1=6a3) Y Grop-220-1wk | — Baswio_; (33)
k=13,5

is a3 x 3 matrix. The result is shown in Fig. 6 and Table 5. Note

that the convergence of the quv) is much slower than that of q,f,H ),

If we solve for z/iv), we always find negative values. This is an
artifact of our method (see the discussion in the previous sub-
section). Note also that Table 5 shows a systematic dependence
of some of the AV coefficients on the inverse Rossby number,

similarly as for A(¥D.

4.3. The meridional part of the Reynolds stress tensor

The theory of the meridional part of the Reynolds stress tensor
is not well developed, mostly because it does not occur in the
equation for the angular velocity. Although this term is not di-
rectly important for driving differential rotation, it does occur in

477

Table 5. The coefficients for the vertical A-effect at » = r,,. The
root-mean-square deviation from the fits is around 26%. The three
columns for X" are for the cases where v/{"” is solved (i), taken to be

zero (ii), and assumed to be given by v (iii)

Aol
N wmo Wiy @) | @) (i) (i)
A 1 —-2.886 0.05 0.040 | —0.063 —0.05 -0.02
2 —-0.028 -0.20 -0.02 —0.06 0.10 0.32
3 0.042 0.07 0.010 | (-0.7vy) —-0.15 -0.36
B 1 -2976 0.54 0.060 0.002 -0.06 -0.17
2 —-0.057 -0.34 -0.03 —-0.15 0.10 0.52
3 0.059 0.09 0.014 | (-0.6v) —0.17 -0.47
C 1 —-4631 -0.87 0.006 | —0.087 -0.01 0.16
2 0.083 0.02 0.00 0.03 -0.01 -0.09
3 0.027 0.07 0.005 | (—0.4vy) —0.06 —0.19
D 1 -3723 244 0.072 0.239 —-0.05 -0.58
2 -0212 -0.52 -0.03 —0.33 0.06 0.78
3 0.051 0.02 0.013 | (-0.5»y) —0.11 —-0.30

the meridional part of the momentum equation and might be re-
sponsible for modifying and, perhaps, reducing the meridional
flow that is generated from the differential rotation. Thus, since
a meridional flow can modify the rotation law, the meridional
part of the Reynolds stress tensor can indirectly be important.

For rapid rotation ();; has, in addition to the diffusive part,
a component proportional to £2;€2;. In the following we focus
on the (7, 8)-component, which is proportional to — sin 8 cos 6,
and write

Qro =sinfcos A — Do, (34)
where

1 Ou, 0 [ug
Dro=u ;55 475 (%)) G3)
is the diffusive term. We expand A as
sin 6 cos O0AM = (U, 7o %) Z q§M)Pe] (cos 0) (36)

£=2,4,6

In Fig‘ T we pIOt Qre, D,y, and Q%[) = Qre + Dygatr =r,.
The expansion coefficients for Run A are

¢ =0.021, ¢ =0.007, ¢ =-0.010. (37

For comparison with the results of Pulkkinen et al. (1993) it is
useful to write Q7 in the form Apr = M® + M@ sin? §). We
find M® = —0.14 and M@ = 0.13, whereas Pulkkinen et al.
find M® = —0.03 and M@ = 0.06.

5. The eddy conductivity

We now consider the eddy conductivity that relates the convec-
tive flux (u'T") to the average temperature gradient via

(w;T") = =xi5V§(T). (38)
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Fig. 7. The profiles of Q¢ (dotted), D,p (dashed), and
Q%) = Qro + Dy (solid line) at mid-radius (Run A) '

Since we adopt longitudinal averages, the ¢-component of
V (T} vanishes. Furthermore, since the #-component of V(7'
is small, we restrict ourselves only to the r-component of V(T'),
and consequently only to the x,» and xg, components of the
eddy conductivity tensor. Following Riidiger (1980), x, and
Xor are expressed in the form

Xrr = Xt (VV(O) —VwDsin? 6 — VW@ sin? 0) ) (39)

Xor = —x¢ (HV® + HV® sin” 0) sin 6 cos 0, (40)

where we put x; = v;. We expand X, and Xp, in terms of
orthogonal functions

Xee =Xt Y X3 Pelcost), (41)
n=02,4
Xor=Xxe ), X" Pl(cos6). (42)

n=2,4,6

The profiles of . and xs. are given in Fig. 8 together with the
fits (41) and (42). The diffusion in the radial direction is larger
close to the equator than at the poles. This may be explained by
the Taylor-Proudman theorem which inhibits large scale mo-
tions along the rotation axis: heat transport is then reduced.
This point was also noticed by Pulkkinen et al. (1993): when
the latitude of their computational domain increased, the critical
Rayleigh number increased as well. Note that mean field theory
predicts (Kitchatinov et al. 1993) that in the limit of rapid rota-
tion, diffusion is strongest in the direction of the rotation axis.
This contradiction is connected to the assumption of a peaked
power spectrum, which is assumed in that theory (cf. Riidiger
1989) and which does not apply in our simulations. Another
reason for the difference may be related to the fact that in mean
field theory the correlation lengths along the axis is enhanced,
and therefore the turbulent diffusion in this direction increased.
In our simulations, however, the flow is not sufficiently turbu-
lent and therefore the correlation length is always comparable
to the thickness of the convective shell.

If the isotropic part of X is associated with x;xy , we find
values between 0.2 and 0.7 (Table 6), indicating that x is some-
what smaller than JuZ.
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Fig. 8. The profiles of x,~ and x¢, at mid-radius (Run A)

Table 6. The coefficients for the eddy conductivity tensor. The root
mean square deviation of the fits is 13% for Run A, 22% for Run B,
5% for Run C, and 40% for Run D

N Xi-s  Xop VWOV HV®D
A 1 0.3085 —0.1239 0.1508

2 —0.4856 0.0435 —-0.9111 —0.0636

3 0.3279 —-0.0147 1.4345 0.7618
B 1 0.3875 —0.1151 0.2614

2 —0.6264 0.0347 —1.5617 —0.0016

3 0.5003 —0.0141 2.1886 0.6072
Cc 1 0.2006 —0.0413 0.0400

2 —0.2900 0.0182 —-0.2120 —0.0578

3 0.1294  —0.0040 0.5661 0.3179
D 1 0.6624 —0.0882 0.7145

2 -13010 ~-0.0373 —4.8139 —0.1086

3 1.3531 —-0.0117 5.9197 0.6528

6. Application to mean field models

Having obtained the coefficients of the A-effect, we can use them
in a mean field model of differential rotation. It is important
to include the depth dependence of those coefficients in the
model. In Fig. 9 we show }\gV) and )\gH) as a function of depth.
For comparison, the corresponding surface values of H() and
H® are +0.10 and +0.07. At the surface, the V-coefficients
vanish, but for example at the mid-radius of the shell be have
VO =-0.03, VD = +0.18, V@ = —0.20.

We use these coefficients to compute a model of differen-
tial rotation assuming a uniform turbulent viscosity v; with a
turbulent Taylor number of 10* (for details of the method see
Brandenburg et al. 1992). The resulting contours of the differen-
tial rotation and the surface rotation law are plotted in Fig. 10.
There is clear, but no perfect, agreement between the original
rotation law and that inferred from the A-effect coefficients.

© European Southern Observatory ¢ Provided by the NASA Astrophysics Data System


http://cdsads.u-strasbg.fr/cgi-bin/nph-bib_query?1994A%26A...286..471R&db_key=AST

FT992A&A. © Z286. “AT1R

M. Rieutord et al.: Reynolds stresses and differential rotation

0.4} R

(H)
Az
F i
_/’—\
r/R
-04L ) -0.4
0.4 0.6 0.8 1.0 0.4 0.8 0.8 1.0

-04LF 3 -04¢L |
04 0.6 0.8 1.0 0.4 0.6 0.8 1.0

04F 4 04 T

ALH)
8
0.0 0.0 i
r/R

-0.4 -04 ke

0.4 0.6 0.8 1.0 0.4 0.6 0.8 1.0

Fig. 9. Depth dependence of A;V) (left) and )\EZH ) (right) for Run A

T T T

50.51

50.0

4951

49.0

48.51

48.0¢
0o 50 100 150

Fig. 10. Contours of differential rotation and surface rotation law for
a mean field model using the coefficients of the A-effect determined
above from Run A. (2 is measured in units of v/ R?.) Note the simi-
larity with the original rotation law (see Figs. 2 and 5)

Thus, a description in terms of mean field theory seems to be
possible, even though the fluid is not really turbulent.

7. Discussion

We have developed tools for estimating turbulent transport co-
efficients from convection simulations in a spherical shell. Here
we only applied these tools to incompressible simulations of
small Rayleigh number and it would be important to investigate
the trends as more realistic parameter regimes are approached.
However, even though our simulations are rather idealised, they
do show the existence of the A-effect: without the A-effect it
would be impossible to explain the positiveness of the Qg4 com-
ponent of the Reynolds stress.

Note that we have omitted the anisotropy of the turbulent
viscosity, because it is not the primary driver for differential ro-
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tation. However, in real applications this needs to be included.
Like all diffusive turbulent transport effects, such terms are diffi-
cult to determine, because they multiply average gradients that
are often small and therefore not very accurately determined,
which leads to uncertain results. More direct methods for de-
termining such diffusive transport coefficients therefore need to
be developed.

It is remarkable that the latitudinal distribution of the helicity
and various Reynolds stress components can be rather compli-
cated, and the convergence of the expansions can be rather slow.
This is partly because of moderate and rapid rotation that gener-
ally leads to the occurrence of higher order terms. In the models
presented here the inverse Rossby number does exceed unity,
and this is typical for the sun. It is therefore conceivable that
some of the trends shown here may also be found in the sun. The
helicity decreases towards the poles and close to the surface and
at the bottom it may even change sign at mid-latitudes. This has
important implications for mean field dynamo models, because
it determines the migration direction of the sunspot activity belts
(e.g. Krause & Rédler 1980).
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