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Does solar differential rotation arise from a large scale instability?
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Abstract. The suggestion by several authors that the solar dif-
ferential rotation is caused by a large scale instability of the
basic convective state is examined. We find that the proposed
mean-field models are unstable to a Rayleigh-Bénard type insta-
bility, but argue that this cannot explain the differential rotation
of the Sun, because such a flow would become nonaxisymmet-
ric. We discuss the applicability of the mean-field equations to
the problem.
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1. Introduction

Commonly proposed mechanisms for explaining the origin of
the solar and stellar differential rotation in terms of mean-field
theories include the effects of anisotropic viscosity (Biermann
1951; Kippenhahn 1963), non-diffusive parts of the Reynolds
stress (i.e. the A-effect; see Riidiger 1977), and a latitude-
dependent heat transport (Weiss 1965; Durney & Roxburgh
1971). However, there have been several indications (Gierasch
1974; Schmidt 1982; Chan et al. 1987; Riidiger 1989; Chan &
Mayr 1991; Riidiger & Tuominen 1991; Riidiger & Spahn 1992)
that the governing equations exhibit a global instability and it
has been proposed that the solar differential rotation might be
caused by this instability, the nature of which has not been fully
elucidated.

One purpose of the present paper is to point out that this
instability, as discussed in the literature (cf. Riidiger 1989, Sec-
tion 11.4), is simply a large scale convective Rayleigh-Bénard
type instability. At first glance this may seem paradoxical, since
the equations solved are mean-field equations where the effects
of small scale flows (such as small scale convection) have been
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subsumed into mean-field transport coefficients. In general, one
would expect the mean-field equations to be stable to small per-
turbations and not subject to instabilities, as has been argued
by Orszag (1970) in a somewhat different context. That this
may not generally be the case is seen in the mean-field dynamo
problem (Krause & Rédler 1980), where the finite amplitude
mean magnetic field (B) is a result of an instability of the state
(B) = 0. This mechanism is often invoked to explain the mean
magnetic field in the Sun. Thus, an instability in the mean-field
equations is a priori not novel or unphysical.

2. The mean-field Rayleigh-Bénard problem

In this section we discuss the field equations that are commonly
used to describe the evolution of the large scale hydrodynamical
structure of the solar convection zone. The most crucial equation
is the mean-field energy equation

D) (g4 ) V) (9= V- Caloh@VED,

(Durney & Roxburgh 1971), where x; is the turbulent heat con-
ductivity. This equation is rather similar to the original energy
equation

oT (% +u- V) §=V - (xpcp,VT), 2)

(eg, Chandrasekhar 1961), where x is the radiative diffusion
coefficient. In Eq. (1) we have neglected terms involving cor-
relations between velocity « and density p, which are expected
to be small (cf. Riidiger 1989, Chapter 8.2). Furthermore, we
have here also neglected the radiative flux and the turbulent vis-
cous heating (but see Sect. 6 of Brandenburg et al. 1992). The
main difference between these two equations is that in (2) the
diffusion is over temperature 7', whilst in (1) diffusion is over
the mean specific entropy (s). This property of Eq. (1) ensures
that no large scale convective energy transport is possible in the
adiabatic case (s) =constant.
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Let us consider the case where the turbulent viscosity tensor
is isotropic. The momentum equation for the mean velocity is
then of a similar form as the original equation, with the viscosity
being replaced by a turbulent viscosity v;:

0 (5 + @ V) (w) ==V + g - V- (O

where again, correlations between velocity and density have
been neglected and in Cartesian coordinates we have

Gij = —ve((Wi ) + (uji) — 36i5(uk k))- @

In the limit of weak stratification the set of mean-field equa-
tions reduces to those used to describe Boussinesq convection
(Chandrasekhar 1961). Thus, it is not surprising that the set
of mean-field equations can also show a Rayleigh-Bénard type
instability. The Rayleigh number now has to be defined using
turbulent coefficients for viscosity and conductivity:

4
Ra, = —J— — =%, 5)

where g is gravity, d the thickness of the layer, and sy is the
entropy gradient of the quasi-hydrostatic reference solution. It
is preferable to evaluate Ra, in the middle of the layer, at aradius
Tmid = %(ro + R), where rg and R are the inner and outer radii
of the shell. The Rayleigh numbers evaluated at the top or the
bottom of the layer, Ra;® or Ral™, depend more on the strength
of the stratification than does Ra?jd; see Glatzmaier & Gilman
(1981) and references therein.

Using the expression for the radial component of the con-
vective flux

Feony = “‘Xt(P) <T> dSO/d'I‘, (6)

the perfect gas equation p = (1 — 1/7)c,pT’, and neglecting the
radiative flux (i.e. the luminosity is L = 471r? Foony), We may
write Ral™ in the form

Raf™ = (1 — 1/v) Pr}Lgd* /(4mr?v}p), )

where Pry = v/ is a' turbulent Prandtl number. Using solar pa-
rameters, v = 5/3, L = 3.9 103 gcm?/s?, gmig = 3.7 10*cm/s?,
d =210"m, rmig = 6 101%m, we have

-1
mid _ 5 103 py2 Yt - b
Rag™ =210"Pr, (1013cmzs—1) (1012gcm—ls‘2> - ®)

For typical values from solar mixing length models we have
Pr; = 0.33, v, = 5102cm?/s, p = 810'2gcm™'s~2, and thus
RaM¢ = 2 10*. Below we will show that this is somewhat above
the critical value for the onset of convection. However, a turbu-
lent viscosity twice as large would make the Rayleigh number
subcritical. Thus, given the uncertainties in v, too much weight
should not be attached to the mixing-length value.

The set of mean-field equations has been solved for spher-
ical shells in the presence of strong density stratification by
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Glatzmaier & Gilman (1981). They determined critical turbu-
lent Rayleigh numbers both for axisymmetric and nonaxisym-
metric modes using a constant temperature boundary condi-
tion.on r = 19, R. Glatzmaier & Gilman found critical values
Rag™ around 600...800 in the absence of rotation and around
5000...10* for solar values of the turbulent Taylor number
Ta; = 402 R* /u? = 1057, where § is the basic angular veloc-
ity. Similar values for the critical Rayleigh number have been
found by Schmidt (1982) in the context of axisymmetric mod-
els for solar differential rotation. His boundary conditions were
that the flux be constant at r = r and converted into radiation
(F~cT*atr=R,ie.

Foony = L/(47r3) on 7 =1y, )
Feow=0(T)* on r=R. (10)

These boundary conditions will also be used in our models pre-
sented below.

3. Models presented in the literature

We now estimate the Rayleigh numbers for various mean-field
models presented in the literature in order to see whether or not
these numbers are larger than the critical value, in which case
the solutions should be unstable with respect to the Rayleigh-
Bénard type instability. A similar comparison has also been
presented by Riidiger & Spahn (1992) using, however, a local
axisymmetric model.

Schmidt (1982) found a Rayleigh-Bénard type instabil-
ity for x; = 3.51083cm?%s, Pr;, = 0.1, d = 1.610cm,
and (ds/dr)pe = 1071%¢c,/cm. He quoted as critical value
Rai’Ot = 2103. The value of the Rayleigh number in the mid-
dle, Ra™¢, may be computed from Ra® using the condition
72 Feony=constant, where Fiony o< po0so/0r and g o< r~2. This
gives

Rai™ = Ravot (r*P)vot /(7*P)mia- an

For the model of Schmidt (1982) we have then Ra‘tnid =~ 6700.
(Since in this model, g=constant was assumed, a more consistent
estimate would be Ra{tnid = Ralt’m('rzp)bm /(r*P)mia =~ 10* in this
case.) This value is close to critical.

Gierasch (1974) used v, = 210%cm?/s, Pr, = 0.5, d =
1.410cm, and (ds/dr)eee = 410~Pc,/cm. This leads to
Ra ~ 10° and Ra™? ~ 4 10°, which are clearly supercritical
values. In fact, Gierasch noted that the region covered by his
model is convectively unstable, but he associated this with the
intrinsic background convection, rather than with an instability
of the mean-field solution itself.

The parameters for the model considered by Chan & Mayr
(1991) are v; = 1.210%m?/s, Pr; = 0.3, and (ds/dr)mia =
5107%c,/H, = 10~Bc,/cm, where H, is the pressure scale
height. This gives a rather large value of Ra™¢ ~ 10'°, which
is highly supercritical. The model of Chan et al. (1987) is very
similar, but with v; =~ 10'2cm?/s, which leads to Ra™? ~ 109,
that is also supercritical. Chan et al. identify their solution with
an “axisymmetric resonant mode”, which they relate to similar
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solutions obtained by Schmidt, but no connection is drawn with
a convective instability of this solution.

The governing nondimensional parameters employed by
Riidiger (1989, Section 10.1) and Tuominen & Riidiger
(1989, hereafter TR89) are f* = (R/cp)(dso/dr)ep, g* =
gR/(vFRTop), and T* = 1S TL0p R?/v2, where 22T = p/p.

These parameters are related to Ra;® by

Ray® = (d/R)*Pr, f*g*T*. (12)
As solar parameters they take f* = 200, g* = 1500, T* =
5107, Pr; = 0.33, corresponding to Ra}® = 410' (with v =
5/3). Ra™4 may be computed from Ra}*® analogous to Eq. (11)
which gives Ra;nid = 410°, where we have used the value of
Pmid/Prop from the zero-order model of TR89. Again, the value
of Ra;“id is supercritical. However, Riidiger (1989) characterizes
the solution for these parameters as stable, but he mentioned the
possibility of a “new instability” for parameters that correspond
to Ra® = 210°. In the following section we point out that
this is the value at the second bifurcation, which is physically
irrelevant.

4. A detailed example

We now analyse in more detail the case considered in TR89. We
first compute critical Rayleigh numbers of the linearised system
of hydrodynamical mean-field equations by seeking the zeros
of the determinant det(M) of the coefficient matrix M of these
equations. The inner radius of the spherical shell is 79 = 0.7 R.
In Fig. 1 we show critical values of Ra™¢ for different Taylor
numbers and f* = 200, g* = 1500, Pr; = 0.33. For the sake
of completeness and for later discussion, we have also included
higher order critical Rayleigh numbers which, however, are not
of physical importance. Note that for large values of Ta; the
critical Rayleigh numbers approach an asymptotic law which
is somewhat steeper than the Ra ~ Ta?/3 law, derived in the
theory for the onset of convection in the presence of rotation
(Chandrasekhar 1961; Bisshopp & Niiler 1965; Busse 1970,
1973). This discrepancy will be discussed below.

The location of the Sun, indicated by an asterisk in Fig. 1,
is in the unstable region just beyond the second bifurcation.
The line marking the secondary bifurcation is strikingly simi-
lar to the form and the position of the stability curve shown by
Riidiger (1989, Figure 11.8), but there the regime where the Sun
is located is indicated as stable. Since here the critical lines are
obtained from the zeros of a determinant det(M) one cannot
in principle tell which side of the critical line corresponds to
stability. Below we will show that the lowest line in Fig. 1 in-
deed corresponds to the first bifurcation and that below this line
the models are stable. In view of our present results we expect
that the critical line shown by Riidiger corresponds actually to
a secondary bifurcation. From the qualitative and quantitative
agreement between the critical line plotted by Riidiger and the
lowest dotted curve of Fig. 1 we may conclude that we have
identified the instability quoted by Riidiger.

In Fig. 1 only the lowest (latitude-dependent) modes in the
spherical harmonic expansion of velocity components (see Eqgs.
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Fig. 1. The critical Rayleigh numbers for different values of the Taylor
number for f* = 200, g* = 1500, and Pr; = 0.33, and varying values of
T™. The location of the Sun in this diagram is indicated by an asterisk.
The slope for the asymptotic Ra ~ Ta%? law is shown by a dashed
line

Table 1. The first unstable mode and the critical values of Ra™ for the
high stratification model of Fig. 2 (2nd and 3rd column) and for the
low stratification model of Fig. 3 (4th and 5th column) as a function
of Taylor number

Ta n Raf™ n  RaM™
4100 4 4910° 2 3.010?
410> 4 4910 2 3.110
410° 4 531020 2 3.610
410* 6 8810° 6 6.810%
410° 14 2310° 12 2.110°
410° 28 6.010° 24 7.310°
4107 56 1.510* 44 2910

16-18 in TR89) were involved (n = 2 in the figure). This has
generally been sufficient for models of the solar differential
rotation. When using the system of TR89 in the present context,
for an investigation of a Rayleigh-Bénard type instability, it is
necessary to check the importance of the higher modes in the
expansion. As shown in Table 1 the first unstable mode is of
increasingly higher order when the Taylor number is increased.
The slope in this case remains slightly smaller than 2/3; see
Fig. 2. It should be noted, however, that our model has a quite
strong density stratification of 15 pressure scale heights, which
is as strong as in the mixing length convection zone models for
the Sun (eg, Spruit 1974).

The models presented in Brandenburg et al. (1992, here-
after BMT92) have a weaker stratification than used in TR89.
The parameters used in the convectively stable “Model T5” of
BMT92 are Pr; = 0.1, £ = (yg*)~! =0.01, [ = g*T* =3 10",
and & = f*T™* pop/(pyPrs) = 105, where p = [ pdV/ [ dV is
the average density of the convection zone. These parameters
correspond to g* = 60, f* =8 10~4, and T* = 5 10°. In order
to compare the models of TR89 and BMT92 we show in Fig. 3
critical Rayleigh numbers for these values of g* and f*, with T™
varying. The curve for TR89 again represents the first unstable
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Fig. 2. The critical Rayleigh numbers for the most easily excited mode
for different values of the Taylor number, for f* = 200, g* = 1500,
and Pr; = 0.33, and varying values of 7. Table 1 gives the value of
n for each value of the Taylor number. The slope for the asymptotic
Ra ~ Ta%? law is shown by a dashed line

mode, whose latitudinal order n increases with Ta; (see Table
1). Both curves now approach the 2/3 law, although somewhat
more quickly for TR89. For small values of Ta; the two curves
are in rough agreement, but discrepancies occur for larger val-
ues of Ta;. This could be a consequence of the fact that in the
model of BMT92 the hydrostatic reference state changes as the
Taylor number increases: the faster the shell rotates, the more
oblate become surfaces of constant pressure and density. An-
other factor is that the stable model in BMT92 already has a
rotationally induced meridional circulation. This is not the case
in TR89. Nevertheless, it is clear that the instability found by the
two different approaches has the same origin. The supercritical
“Model T4” of BMT92 is for Pr; = 0.2, but has otherwise the
same parameters as “Model T5”.

For illustration, we now discuss solutions computed for
slightly supercritical Rayleigh numbers and different values of
Ta;, using the nonlinear code of BMT92. In all cases we used
41 x 41 mesh points in both the radial and latitudinal direc-
tions. In some cases we checked that results are similar when
using lower and higher spatial resolutions. In Fig. 4 we show
contours of {) and stream lines of the poloidal flow for differ-
ent values of Ta;. Note that the contours of angular velocity
are distinctly noncylindrical. For intermediate Taylor numbers,
Ta; < 4 10%, the contours are more “disk-shaped”, i.e. perpen-
dicular to the rotation axis. Such contours are similar to those
observed in the Sun (e.g. Libbrecht 1988). For larger values
of Ta; the convection breaks up into smaller cells and both the
stream lines and the Q2-contours develop more small scale struc-
ture. This increasingly small scale structure corresponds to the
increasing latitudinal order of the most unstable mode found
by the linear calculations discussed in Sect. 4. In the last panel
for Ta; = 4 107, however, the mesh point solution appears to be
not fully resolved. This also might help to explain the increasing
discrepancy between the two solutions in Fig. 3 for large Taylor
numbers.
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Fig. 3. The critical Rayleigh numbers as a function of the Taylor number
for f* = 8107, g* = 60, and Pr; = 0.1. The solid line corresponds
to data obtained with the code of BMT92, whilst the dotted curve
shows the first unstable mode as determined by the code of TR89. The
locations of the two models T4 and T5 of BMT92 are indicated by
asterisks. The slope for the asymptotic Ra ~ Ta%> law is shown by a
dashed line

In some cases we have included differential rotation gen-
erated by the A-effect (eg, Riidiger 1989). The strength and
sign of the radial gradient of the angular velocity is controlled
by the parameter V© (for details see BMT92). For the model
with Ta; = 410° and V@ = —1 we find that the onset of the
convective instability occurs at slightly smaller value of Ra™?
(=~ 1150 instead of ~ 1250), whilst for V@ = +1 it occurs
for larger values (= 1350). Thus, a radially outwards increas-
ing angular velocity (V© > 0) has a stabilising effect, which
is to be expected from the stability criterion for Couette flow
(eg, Chandrasekhar 1961). In models with subcritical Rayleigh
numbers and differential rotation generated by the A-effect the
resulting contours of the angular velocity are nearly parallel to
the rotation axis if Ta; & 10° (e.g. BMT92).

5. Turbulent convection with large scale flows

We now discuss the physical significance of the large scale
Rayleigh-Bénard instability and the differential rotation gener-
ated by the resulting circulation. In the beginning of this discus-
sion we refer to well-known experimental results for nonrotat-
ing laboratory convection in Cartesian and cylindrical geometry,
but we anticipate that some aspects of the qualitative behaviour
of convection at different Rayleigh numbers will carry over to
spherical geometry. We then consider the possibility that the
mean-field equations might actually become invalid before the
mean-field Rayleigh-Bénard type instability occurs.

Consider first a fluid in the absence of any convection. As we
increase the heat input from below, i.e. as we increase the (or-
dinary, nonturbulent) Rayleigh number, the system undergoes a
sequence of bifurcations marking the onset of oscillatory con-
vection, chaotic behaviour, soft and finally hard turbulence (see
Heslot et al. 1987). Moreover, as discovered by Krishnamurti
& Howard (1981), a large scale flow sets in at some Rayleigh
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Fig. 4. Large scale convective flow. Contours of {2 (top) and stream lines of the poloidal flow (bottom) for the marginal or slightly supercritical
case and different values of Ta; (4 10°...4 107). The values for Ra™ used in the different cases are RaT™ = 480, 720, 1250, 2100, and 7000.
The  contours are equidistantly spaced between the minimum and maximum values of Q. For Ta; < 4 10* the differential rotation is about

1%, for Ta; = 410° about 3%, and for Ta, > 4 10° around 100%

number around 2 10%; and this is also observed in the experi-
ments of Heslot et al. (1987). Recently, Libchaber et al. (1991,
and private communication) found that at even larger Rayleigh
numbers around 10'3 this large scale flow can become time
dependent, changing its direction continuously, indicating ei-
ther reversals or a rotation of the large scale flow pattern about
the vertical axis. These features of large scale flows, first lami-
nar and later (at higher values of Ra) time dependent, seem to
indicate empirically that the bifurcation sequence of ordinary
Rayleigh-Bénard convection (from steady to oscillatory convec-
tion etc.) is similar and might qualitatively be described at the
level of mean-field theory. From this point of view it seems that
an explanation of the large scale flow in terms of a mean-field
Rayleigh-Bénard type instability is a priori not unreasonable.
An outline of such a bifurcation sequence is given in Table 2.
We should, however, mention that other mechanisms to explain
such large scale flows have also been proposed. For example,
Howard & Krishnamurti (1986) interpret the large scale flow as
being driven by a nonlinear interaction between already exist-
ing convective modes (and not through buoyancy, as discussed
in the present paper). Massaguer et al. (1992) analyse the same
bifurcation, but including also three-dimensional modes. Fur-
ther interesting bifurcations may be expected before we reach
the solar regime of Rayleigh numbers around 1023, For ex-
ample Kraichnan (1962) expects a marked enhancement of the
heat transport as a result of shear boundary-layer effects.

The solar differential rotation is a clearly axisymmetric phe-
nomenon and there is so far no evidence for significant nonax-
isymmetric contributions to the rotation law. If a large scale in-
stability, as discussed in the literature (see Sect. 3), were really
responsible for driving the observed solar differential rotation,

Table 2. Sketch of the bifurcation sequence for laboratory
Rayleigh-Bénard convection. The critical values of Ra are taken from
Heslot et al. (1987)

Ra convection
610° onset of convection
910* oscillatory convection

large scale flow

1.510°  chaotic convection
310°  soft turbulence
~210° onset of large scale flow
4107  hard turbulence
~ 10" osc. large scale flow

then we would have to require that the dominant mode be ax-
isymmetric. According to the results of Glatzmaier & Gilman
(1981) this will not be the case for modest and rapid rotation. For
reasonable values of the Taylor number and in the presence of
strong stratification, Glatzmaier & Gilman find that the most un-
stable modes have azimuthal orders of around m = 10—-20. This
would correspond to “banana cell” convection patterns, which
have been observed in numerical simulations (eg, Gilman 1977)
and in small scale space experiments (Hart et al. 1986a,b); but
in spite of several attempts to detect these banana cells in the
Sun no observational evidence has so far been found (eg, Simon
& Weiss 1991). Thus, explaining solar differential rotation in
terms of a Rayleigh-Bénard type instability leads to fundamen-
tal difficulties. We conclude that, unless there are mechanisms
causing a preference for axisymmetric patterns in the highly
nonlinear regime, for example a strong toroidal magnetic field
(cf. Eltayeb 1972; Jones & Galloway 1988), such large scale
convection cannot be the cause of the solar differential rotation.
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6. Conclusions

Some attempts to explain the solar differential rotation as a re-
sult of a global instability have been based on mean-field models
that exhibit a large scale convective Rayleigh-Bénard type insta-
bility. This instability drives a meridional circulation that in turn
causes the angular velocity to be nonuniform. In the Sun this
type of mechanism is unlikely to operate, because it is known
that the meridional flow is, at least at the surface, very small.

The large scale convective instability perhaps seems some-
how paradoxical, because the basic state is already convectively
unstable, but the analogy with the occurrence of a large scale
flow in laboratory convection suggests that a description in terms
of mean-field theory is not inherently implausible. We would
argue, however, that such a phenomenon is unlikely to occur
in the Sun, because the resulting flow pattern is expected to
be nonaxisymmetric, and even axisymmetric calculations show
detailed latitudinal structures as the Taylor number is increased
(see Fig. 4). We thus reject the possibility that the solar differen-
tial rotation is aresult of such an instability. Instead, other expla-
nations in terms of anisotropic viscosity, A-effect and nonuni-
form heat transfer remain valid candidates for driving the solar
differential rotation.
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