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Expansion in spherical harmonics is used to solve linear equations of flows of homogeneous viscous
fluids in a rotating frame. For a truncated series, analytical solutions are obtained for the radial
functions. These solutions are used to investigate the modal properties of a viscous incompressible fluid
in a spherical shell. The results are compared to the experimental data of Aldridge. The problem of
identification of inertial modes in the Earth’s outer core is also discussed.
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1. INTRODUCTION

In a former paper, Rieutord (1987) (henceforth referred to as I), we presented a
new set of solutions for describing steady incompressible flows in a rotating frame
at linear approximation. These solutions use expansions in spherical harmonics
and apply either tc viscous homogeneous fluids or to uniformly stratified viscous
fluids (ie. of constant Briint-Viisald frequency). They are well adapted to
geometries close to that of the sphere and are thus of natural interest for
astrophysical and geophysical problems.

In this paper we pursue the study started in I of the properties of such solutions
and we focus particularly on time periodic ones. In the inviscid limit such
solutions are inertial modes, the properties of which have been much investigated
in the past. We refer the reader to the work of Aldridge who experimentally
(Aldridge, 1967; Aldridge and Toomre, 1969) and theoretically (Aldridge, 1972),
investigated the properties of the inertial modes of an incompressible fluid in a
rotating sphere or spherical shell. These papers give mainly the modal properties
of a rotating fluid in a full sphere, while the case of a spherical shell remains
largely unknown, despite its importance. The main difficulty in this latter problem,
is due to the fact that no analytical solution is known for the inviscid problem
(zeroth order in the boundary layer theory). In addition, it is an ill-posed
boundary value problem (see Stewartson and Rickard, 1969; Aldridge, 1972)
therefore very few results are available from mathematical analysis. The approach
we use allows us to include viscosity, making the problem well posed and
tractable.
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The aim of this paper is twofold: first we wish to present the wide possibilities of
applications of expansions in spherical harmonics to problems of rotating fluids
and second to bring some new light on the problem of modal properties of a fluid
in a rotating spherical shell and especially its application to the Earth’s outer core.

After recalling briefly the set of equations that are solved and the expression of
solutions in series of spherical harmonics (Section 2), we compare these solutions
to experimental data obtained by Aldridge (1967) and we also study the influence
of the core on the inertial modes (Section 3). Then the recent problem of
identification of inertial waves in the Earth’s outer core is discussed briefly
(Section 4).

2. THE FORMALISM
2.1 Equations
If we consider a homogeneous incompressible fluid in a rotating shell, equations
for perturbations can be written in dimensionless form as
Ju/0t+e,xu= —VP+ EAu,
V-u=0,

or, eliminating the pressure, as

V x (0u/dt +e, x u)= EAVu,

(2)
V-u=0,

where the time scale and length scale are respectively (2Q) ™! and R; Q being the
angular velocity of the shell and R the radius of the outer shell. The dimensionless
number E is the Ekman number

E=v/2QR?, (3)

where v is the kinematic viscosity. These equations are completed by the boundary
conditions specific of the problem. In the following applications we shall always
use the rigid (noslip) boundary conditions.

To solve this system we expand the fields (velocity u and pressure P) into
spherical harmonics, in the form*

u=u, R+ v, S +w,Tf", P=p, Y7, (4)
with
R'=Ye,, S'=VY}!, Tp=V xR}, (5)

*We assume summation on repeated indices. The top or bottom place of the indices has only
aesthetic meaning.
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where YT' are the standard normalized spherical harmonics, e, is the unit radial
vector and V is taken on the unit sphere.

If such an expansion is used in (2) the partial differential equations yield the set
of partial differential equations for the radial functions u,, v!,, w',

i 0 0 (u ! 0
EAw 4| - Ol gt =1 9 (MmN g -2 0 ae3 e ,
le+[l(l+1) af:lwm 1-1% ax xl_2 1+1X ax(x um )

i 0
EAAGaul)+| - O A (xul
1 l(xuM)+l:l(l+l) o 1(xXuy,) 6)
1 1-1 0 Wﬁnﬂ 1 =20 iva 41
=Bl,1X 5); xl_l +Bl+1x a(x W )’
I+ 1)vf,,=1 ﬁ (xzuf,,),
x 0x
where
1 Pem?
A;—lei 1:1_2 \/412_15
(7)

_ 12—m?
Bi_,=B; 1=(12—1)\/412_1,

and x is the dimensionless radial coordinate.

2.2 Solutions

We shall look for time periodic solutions so that all functions will be taken
proportional to exp(iyt). In order to solve this system we shall truncate the
expansion in spherical harmonics to a finite order (L,,,) so that all the radial
functions with I>L,,,, are set to zero. Then the set of equations (6), truncated to a
finite order L,,,, admit exact solutions in terms of polynomials or Bessel type
functions. These solutions may be written

Imax

Un =2, Vi [ An i)/t X + By X)/ 1]

i=1

+ Y CLPH(x)+DiQkix™h),

j=mom+2,. ..

U =171+ 1) " 1x ™ 1a(x2ut ) /0x, (8)
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wh=Y VRILAL j(ptx)+ BLy(pbx)]
i=1 )
+ Y CLPY(x)+DiQRi(x7Y),

j=mm+2,...

where iy, =min(Ly.—|m|+1,L,,,) is the number of eigenvalues, j, and y, are
spherical Bessel functions of the first and second kinds, u), and V%' are the
eigenvalues and eigenvectors of the matrix derived from (6) when Bessel functions
are substituted (see Appendix). The P4/ and Q'/ are polynomials. The constants
Ai, B, C: and D!, are determined by the boundary conditions of the problem. The
pressure may be obtained from (1) as

Pd= :% {- 3 W LAY ot + Byo i) ]
+ZijP{(x)dx+Dij{(x’)dx}, 9)

ph=1"1(1+ 1) Y{Eo[xA(xul)]/0x + imx(ul, + v},)} + iyxvt,

—(I= DAL pewp P =+ DI+ DAL xw, 10

We have given all the technical details of this method (in particular how to
compute the eigenvalues p', and the polynomials) in the Appendix.

As as a general remark let us note that these solutions preserve the separation
between interior almost inviscid solutions (the polynomials) and boundary layer
solutions (the Bessel functions). This separation allows much simplification in the
case of small Ekman numbers since results from the boundary layer theory can be
used.

Then, it should be pointed out that the polynomials P;/ are exact solutions of
(6) (see Appendix), or that

J
w,= ) PL/(X)RT+ P, (x)S}+ PLI(x)T, (10)
l=m

where PLi(x)=1"'(1+1)"'x"'0[x*P4i(x)]/0x, is an exact solution of (2). Such
solutions, of course, do not meet any (realistic) boundary conditions at the surface
of the sphere. However, when the viscosity is zero* they can be combined to meet
the boundary conditions of the inviscid fluids (u-e,=0); this combination then

*The polynomials P and Q are the only solutions to survive when viscosity is set to zero.
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describes the inertial modes of the cavity. The eigenfrequency of these modes can
be computed both for the full sphere and the spherical shell. For the full sphere,
the eigenfrequencies given by Greenspan (1969) are found again. For the spherical
shell, this frequency depends on the radius of the inner core.

For instance, we computed this frequency for the first axisymmetric mode [(4,1)
in Greenspan’s notation] when the radius of the inner core is small. Using an
expansion with 4 spherical harmonics, we found:

y=/3/T01—(5/Tm*1+0(n") (11)

This dependence in #n° at lowest order shows that large scale modes are quite
insensitive to the presence or absence of an inner core. In the case of the Earth
(n=0.4) such shift in frequency is less than one percent. This result however is not
true for modes of higher order as can be noticed from Figures 1, 2, 3. There we
plotted the pressure response (measured as the pressure difference between the
poles of the inner and outer sphere) for different inner radii (=0, n=0.4, 1=0.8)
and for an excitation of the fluid similar to that used in the Aldridge experiment
(see below). On these spectra one can identify the main modes (n,1) and the
viscous break off at low frequencies. The geostrophic mode which would be
resonant at y=0, appears as a little peak around y=0.075 (for #=0) because of
the form of the excitation (see 18). One can note from the curves =0 and n=0.4,
that only the modes (4,1) and (6,1) keep their frequency close enough to be
identified. However, as shown by Figures 4 and 5 the spatial structure is seriously
modified by the presence of the inner core.

2.3 Convergence of the Series

An important question to address before concluding this section, is that of the
convergence of the spherical harmonic series.

To see how fast the series converge towards the solutions, we plotted in Figure
6 the relative difference between two values of C, (the quantity plotted in Figure
9) computed with L., and L., +2 spherical harmonics. We repeated this
computation for different values of the Ekman number.

The curves show that for Ekman numbers larger than 102, the convergence
rate is extremely fast and very few spherical harmonics suffice to describe the
solution accurately. The reason is that the rotation is moderate and the property
of the non-rotating solutions that spherical harmonics components are all
decoupled, is already felt. The decrease of the spherical components is then almost
exponential. For lower Ekman numbers, the convergence is not so fast and
becomes algebraic when the asymptotic solution (E=0) is reached (that is
E <1019, Because of its importance in applications, we shall now look closer at
the expansion in spherical harmonics of an asympotic solution.

For the sake of simplicity, let us consider the steady spin-up flow in a full
sphere, which was already used in I. The leading component of the flow is a
geostrophic flow (see (3.4) in I) which reads
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Figure 1 Pressure response measured at the North pole of the external sphere. The sphere is full
(7=0), the Ekman number is 10~ ° and the series were truncated at L...=22.
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Figure 2 As Figure 1 but with n=04.



OSCILLATIONS IN A ROTATING SPHERE 191

Lm=22 — n=0.800 - E=1.00 107®

0.2

T T T T T

a~—

0.05
t

Y
Figure 3 As Figure 1 but with n=0.8.
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Figure 4 Meridional section of the flow for the full sphere when the (6,1) mode is excited
(0/2Q=0.471). The Ekman number is 107 and L., =12 (Note that a defect of the contour plot
program makes the streamlines rather bad close to the sides of the container).
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Figure 6 The rate of convergence of the spherical harmonics series for one point of Figure 9
(Q/w=1.5), but for several values of the Ekman number. The two very close and not annotated curves
on the top of the figure were computed with E=10"1° and 10712,
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Figure 7 The radial functions w' for the asymptotic solution (3.4) of the paper I as a function of , at
two different locations x=0.5 and x=1.
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xsin 6

u= \/E o {[1—(cosotC)e_‘“c]%—(SindC)e_"{ee}, (12)

when completed by its boundary layer counterpart, a=(1—x2sin?6)”'/* and

{=(1 —x)/\/E. The decomposition of this solution in spherical harmonics is quite
instructive. The radial functions wh(x) may be obtained from

I+ Dwp(9) == [ uy ’dQ (13)

which may be expressed as

N cosB(l—(7x2/4) sin 0)
l(l+1)w0(x)—\/E(j) (1—x2sin2 6% g)1/4

sin 6.d6, (14)

in the interior (x < 1), and as

I+ Dywh(x) = 4?“2(15;") <5n+\/$5,3>, (15)

in the boundary layer (1—x<<\/ E) where §;; is the Kronecker symbol. This last
expression shows that the boundary layer flow is very well described by the
spherical harmonics series. The inviscid part is, on the other hand, not so well
represented. To evaluate the convergence of the series, we plotted in Figure 7 the
integral

jz[1—7x2(1 22)/4]
[1—x2(1—231"

Y{(z)dz

as a function of [ for two different locations in the interior. The first location is at
mid-radius (x=0.5) and is typical of the main part of the interior flow; at all
values of x not close to unity, the series converges rapidly. The value x=1 (second
curve) is in fact the part of the solution which is worse represented by spherical
harmonics. This is so because

()= [ ATV, (16)

goes to zero as [~%2 This part of the solution unfortunately plays an important
role in the final solution. It is indeed in the region of asymptotic matching between
the interior solution and the boundary layer one, i.e. when

JE«—x«l, (17)
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so its misrepresentation by spherical harmonics is affecting the whole interior flow.

The dependence of the convergence rate with the frequency is also interesting.
As is shown by Figure 8, convergence is faster with increasing frequency. This
picture also clearly shows the separation between the hyperbolic solutions (y < 1)
and the elliptic ones (y>1). For these latter solutions the influence of rotation is
small and fast convergence is recovered.

Finally let us mention the problem of the singular regions of the boundary layer
near the critical latitude [A.=sin"'(w/2Q)]. Previous investigations [e.g.
Friedlander (1976)] have concluded that this region did not play any dynamical
role. This implies that such region is affecting the convergence rate only locally in
a vanishingly small part of the flow (see I also). This is the opposite of the
asymptotic matching region which imposes its convergence rate on almost the
whole flow.

The results above have been derived from the special example of the steady
spin-up, but are in fact of more general relevance. The slow convergence of the
series causes difficulties only at very low E; Figure 6 shows that for E>107° the
series still converge rather rapidly and so leave many applications possible. At
lower Ekman number, a possible way to accelerate the convergence of the series is
to remove the \/|cos| dependency from the solution; this is however yet to be
implemented.

3. THEORY VERSUS EXPERIMENT

The final test of any theoretical model is certainly its confrontation with
experiment. Such a confrontation is here provided by the experiments of Aldridge
(1967). The experimental set up is described in Aldridge and Toomre (1969). We
recall here that axisymmetric inertial modes were excited by giving a sinusoidal
rotation of the form

Q(t) =Qy + ew cos (wt), (18)

to a sphere (or spherical shell) filled with water (Q, is a constant and e« 1). The
response of the fluid was measured through the pressure response at a point on
the axis of rotation. To obtain the theoretical counterpart of the experimental
results we have to solve (1) with the forcing corresponding to (18). After
linearisation (keeping terms of first order in ¢) and adimensionalization, the
equations of the flow are

iyu+e,xu=—VP+EAu—1le, x x,
(19)
V.u=0,

where E=v/(2Q,R?). The term }e,x x is the forcing due to the acceleration of the
angular velocity of the frame. The boundary conditions are rigid u=0 on the inner
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and outer spheres. In Figures 9 to 13 we reproduce the experimental data along
our theoretical predictions based on solutions (8).

We see that agreement is quite good, especially for the full sphere. Experimental
amplitudes are however, systematically lower than the theoretical ones. This
discrepancy (around 15 percent) is certainly the effect of nonlinear terms.

In Table 1 we present the damping rates of the modes computed with these
solutions, together with their experimental counterpart and the previous boundary
layer analysis of Greenspan (1969). These numbers show that expansions in
spherical harmonics give a better agreement with experimental data than bound-
ary layer theory. The reason is that the viscous coupling between modes is better
accounted for with these solutions than with boundary layer theory.

4. THE EARTH’S OUTER CORE

One of the major fields of application of the modal properties of a rotating fluid in
a spherical shell, is obviously the Earth’s outer core. This subject enjoyed recent
interesting developments when Aldridge and Lumb (1987) (hence referred to as
ALS87) noticed that the long period gravimetric data of Melchior and Ducarme
(1986) might be exhibiting the presence of inertial waves in the core.* However, a
major problem for identifying core inertial modes in the data is that the core
response is very much unknown theoretically (see Melchior et al., 1988; Aldridge et
al., 1988, 1989; Lumb and Aldridge, 1988; Gunn and Aldridge, 1988). At the
moment the principal effects that have not been accounted for are the presence of
the core and the stratification.

In Figure 14, we plotted the response of the fluid in a spherical shell with n=0.4
(as the core of the Earth), when inertial modes of 0* symmetryt are excited
through a mechanism similar to that of the Aldridge experiment (see above). We
selected in the spectral response the period interval of 12 hours to 20 hours and
plotted along the response of the shell, the observed periods of Melchior and
Ducarme (1986), as reported by AL87. For comparison we plotted in Figure 15
the same data with the response of a full sphere.

The coincidence of observed periods and predicted ones is not quite convincing.
The reason may be that other types of symmetry are excited. We thus investigated
two other symmetries: 17 and 1. In Figure 16, we plotted the pressure
perturbation at the equator when the inner core oscillates along the x-axis thus
exciting the inertial waves 1*. Figure 17 shows the spectrum of inertial waves with
1~ symmetry. Such waves can be excited when the core oscillates around the
y-axis in the following way

Q... =Qpe, +cwcos wte,. (20)

*This discovery is however controversial see Zirn et al. (1987).

+tWe classify the inertial modes according to their symmetry which is referred to by a symbol m* or
m~ which refers to the azimuthal dependence exp(im¢) and its symmetry (+) or antisymmetry (—)
with respect to equator.
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Figure 9 Pressure response of a fluid in a full sphere along experimental data of Aldridge.

Measurement is taken at the North pole of the sphere (x=1). For the definition of C, see Aldridge and
Toomre (1969). L,,,, = 22.
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Figure 10  As Figure 6 but measurement is done at x=0.5 (Lmax = 24).
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As Figure 6 but for a shell with #=0.254 and measurement x=0.26 (L, =22).
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Figure 12 As Figure 8 but with #=0.349 and x=0.36 (L,,,=26).
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Figure 13 As Figure 8 but with #=0.51 and x=0.53 (Lmax =28).

Table 1 Decay factor for the first
fundamental axisymmetric inertial
modes computed with boundary layer
theory (BLT), spherical harmonics
decomposition (SH) and from experi-
ment (Exp)

Mode Decay factor

BLT SH Exp.
4,1 —3.38 —3.58 —3.88
(6,1) —4.64 —5.08 —-5.17
8,1) —5.62 —6.67 —6.32

Its rotation vector has a small component on e,.

These figures* show that the best coincidence of the observed periods and the
peaks of our spectra is achieved by the 1" -spectrum. In particular the mode with a
period of 15.6h can be identified. The slight discrepancy on the period (0.4%)

*We have taken for these pictures a very low Ekman number (1078) so that many modes are visible.
However, this implies that a large number of spherical harmonics is necessary to achieve accuracy;
truncated at L,,,~30, amplitudes are still subject to 10% fluctuations, but the frequency of the
resonances, which is the interesting parameter, has already converged.
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Figure 14 Spectrum of axisymmetric inertial modes 0% for the n=04 spherical shell along the
observed periods (vertical lines) reported in AL87 (L., =32).
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could be due to stratification. In total, 5 modes can be identified. This result is
certainly encouraging, all the more in that the 1*-symmetry is the one likely to be
excited by earthquakes happening in the equatorial plane.

Another point of comparison between theory and observation is the width of
the resonances, which is directly related to the dissipation mechanism. On this
point AL87 noted a serious discrepancy between the decay rate of the modes and
the estimated one using Earth’s core viscosity. This discrepancy appears also in
our results: with an Ekman number of 10~® we find a width of resonances which
is close to the one observed. However, the value currently accepted for the Earth’s
core Ekman number is around 107 '°. This means a discrepancy factor of 107 on
viscosity. This can be explained if some additional mechanisms of dissipation are
operating in the core, like small scale turbulence, non-Newtonian properties of the
core’s fluid or coupling with magnetic fields.

Our conclusions is that the identification of Earth’s core inertial modes in the
Melchior and Ducarme data, although not certain, seems to be quite likely.
However, more definite conclusions should await the detection of the more intense
long period inertial modes. The inclusion of stratification (now under progress)
might also provide better agreement. The next step will then be to invert the
observations and go back to the physical parameters of the liquid core. For such a
purpose our solutions provide an adequate tool.

5. CONCLUSIONS

In this paper we have presented some further results on how expansions in
spherical harmonics can help us to grasp the physics of rotating fluids in spherical
shells. The computation of some time periodic flows and their comparison with
experimental data show that this approach is powerful. This power is partly based
on the fact that such solutions keep track of the difference between boundary layer
and interior solutions and so are good at low Ekman numbers.

What has been presented above is obviously only a sketch of what can be done,
however, and much more complex problems can be treated. In an earlier work
(Rieutord, 1987b), we used this approach to compute the spin-up of a tidally
distorted star. The fluid was treated at the an-elastic approximation, the geometry
was a non-axisymmetric ellipsoid with free surfaces.

Concerning the problem of the detection of inertial waves in the Earth’s core, we
showed that there are indeed some good candidates, but the definite conclusion
should await the detection of the modes with the largest amplitudes and the
completion of our theoretical understanding of fluid motions in a rotating
spherical shell.
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APPENDIX

We gather here all the technical details of the method presented in the paper.
1. Bessel Type Solutions
If we set

(%)= —iU" jy(ux)/ux,

u
Win(x) = W' ji(px),

then (6) becomes

ADU T WA YU = (A ) W,
(D +l(l+1) (I+1) (A+7)

—BOW' UL B+ YW = (AU,
(1) +l(l+1) +B(I+1) (A+7)

with A= —iEp? or u=/(i}/E), #=—1, A(l)=A!_,=A!"! and B(l)=B' =B ".
We can write (21) in matrix form

MU =(i+7y)U.

One notes that the eigenvectors are independant of y and that A=A,_9—y. For a
mode m~ (m#0) the matrix M reads

m —

~ M gm0 0 0
m(m+1) -
o
m
_B ™ Bm+2 mt1
D) ot hma2) m+2) 0 Un
M = , U=| wn+2
m
0 Am+2 ™ :
M+ Dmed)
0 0 g I

and for a mode m* (m#0)
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- m _
mim+ 1) B(m+1) 0 0 .. FU,,, B
m m+1
Am+1) (“”;1*1“)—(’"—4_25 —A(m+2) 0o ... whn
M-+-: m , U= U$+2
0 “Bmtd ) mey)
0 0 L -
L : _

For modes m=0, the matrix is obtained from the m=1 case by deleting the first
line and column and setting the diagonal to zero.
With the correspondance 1* =07, 17 =0".

we have

0 B2 0 0 .| Ut ]

A2) 0 —4A3) 0 w3

MO )=| 0 —B3) 0 B@ u=| U3

0 0 A4 0
T o .. ]
B2 0 B3 0 .. U2
MO )=| 0 43 0  —4@) u=| w3
0 0 —B4 0 :

Truncated to the same order, matrices M* and M~ have the same set of
eigenvalues but the eigenvectors are different.

We give, in Table 2, the first series of eigenvalues (the first line indicates the
order L,,, of the truncation).

One may notice that the eigenvalues are identical to the dimensionless frequency
@/2Q of the inertial modes in the full sphere. Indeed, they are solutions of the
same algebraic equation. This means also that when the excitation frequency gets
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Table 2

m=0
1 2 3 4 5 6 7 8 9
0.000000 0.447214 0.000000 0.285232  0.000000 0.209299 0.000000 0.165279  0.00000
0.654654  0.765055 0.468849 0.591700 0.363117 0.477925 0.295758
0.830224 0.871740 0.677186 0.738774 0.565235
0.899758  0.919534  0.784483
0.934001

~ 3
II

2 3 4 5 6 7 8

0.500000 —0.083304 —0.410004 —0.591703 —0.702108 —0.773611 —0.822366 —0.857018
0.754970 0.305992  —0.034095 —0.268667 —0.431362 —0.547035 —0.631543

0.854012 0.522799 0.220227 —0.018073 —0.200043 —0.339105

0.902999 0.653039 0.395126 0.171996 —0.011194

0.930842 0.736872 0.518892 0.316696

0.948191 0.793822 0.609050

0.959734 0.834199

0.967804

IS
Il
[\

3 4 5 6 7 8 9

0.333333 —0.115963 —0.381668 —0.546284 —0.654000 —0.727904 —0.780644 —0.819523
0.615963 0.233450 —0.050895 —0.254997 —0.402917 0.512289 —0.594914

0.748218 0.442124 0.179768 —0.028855 0.192054 —0.320038

0.821722 0.576529 0.344838 0.146202 —0.018636

0.866986 0.667946 0.466027 0.282672

0.896892 0.732830 0.557170

0.917705 0.780489

0.932779

close to one of these values, one boundary layer solution is transformed into an
interior one, since a Bessel function with a small argument is simply a polynomial.

2. POLYNOMIAL SOLUTIONS
2.1 Solutions Regular at Origin

We set

W (X) le+k/2+1 1 kEPf,’lj(X),
uﬁn(x zll+k/2+1 1 k_Pl ](x)

where the g are real quantities. Equations of motion (2) then read

A k=142)q ' —Ziqi— AU+ 1) (k+1+3)gk = E(k— 1+ 2)(k + 1+ 3)g. 5,
(22)
B() -, B(l+1)

2 )3 g P =E(k—1 k+1+4 ,
(k+l_+_2)41k + 14k+(k l+1) ( +3)(k+1+4)q;+ 2
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where X, =[m/I(1+1)] —7.
Each solution is characterized by its order J and its symmetry m*. To

characterize the parity of the solution we shall introduce i, where i,=0 for m*
solutions and i,=1 for m™~ solutions. Then we have

J=m+i, m+i,+2,....
The general form of the solutions is

m__ m J—-1 m m+1—i
f =qy-1X + +qm+1—ipx 7,

WJ-3 q.l 3x.l 1+q.l gx.l 3’
W= g i,

W= g,

uJ=xJ*1

This solution is computed by solving (22) after setting g} _, to unity. f stands for
uor w.
For example: the solution 0%, J=2 gives

"= \/5 =Py
3y

u?=x=P%?%(x).

[\

2.2 Solutions Regular at Infinity

In the same way as before we set

w’(x Z ll+k/2+ 1 I Ql _](x—l),
u'(x)=Zi'+"/2+1q£x"‘EQf;,j(x_1),
k

and obtain
A(D)(k+1-2)qL” +Z,qk+A(l+1)(l—k+3)q’“—E(k+l—2)(k—l—3)qi_2,

B
BO oy BUFD) u+n
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We notice that these solutions, contrary to those regular at the origin depend on
the order of the truncation L. Their general form is

w=x7"2
Wt =gitia I,
Wi,

W =gl gt
J+4_ J+4 —-J-2 | J+4_—J-4

u =qj+2X +qy14X >

frme=ghmyx 724 "+‘11L,I.';‘;”+.~Px_(l“m”+i")-
) . + .
For example: the solution 1*, J=3, L, =3 gives
1 -3 1,3(,.-1
w=x"=0p(x""),

wi=gix =03 3(x ),

wW=gix3=0P3(x7Y),

with

3i 64 -1
2_ (L Y A B _1
q3 = 4\/5 12 Y)I:5><7><9 (r—12)(y 6):, >

5x7x%x9

B= —5@[ 64 —(y—ﬁ)(y—é)]* .

CORRIGENDUM TO PAPER I

Equation (2.18) should read the same as Eq. (8). The expression given after (2.18)
for the pressure field is valid only for /0. Then the expression (3.2) should read

2N

2N
xup(x)= 3. AUjfux)+ Y CPx)+(4n/5) 2axdd,
i=1 ji=2,4

TR

seen

m should be set to zero in (3.3).
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