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Why should we make 2D-models ?

To deal properly with rotation!

Rotation means
@ non spherical stars
@ baroclinic flows in radiative region
@ anisotropic convection
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Why should we make 2D-models ?

To deal properly with rotation!

Rotation means
@ non spherical stars
@ baroclinic flows in radiative region
@ anisotropic convection
We note that
@ 1D rotating models are valid when Q — 0
@ A lot of physics is condensed inside adjustable (transport)
coefficients
@ 1D models are not usable in asteroseismology of rapid
rotators
@ New data from optical/IR interferometry require a 2D view...
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Interferometry : Achernar

Intensity | (W/m2/nm/srad)

3.75410° 6.31-10° 8.87-10° 1.14+10* 1.40-10°

Ficure — Achernar with VLTI (Domiciano de Souza et al. 2014, AA 569)
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Interferometry : Altair

Model of a fast-spinning star Actugl image of Altair from the]

HARA Interferometer

~

Equator bulges and
darkens as Star spins faster

2.8 revolutions/day

Fiaure — Altair seen by CHARA (Monnier et al. 2007).
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The actual state of ESTER models

An idealization/simplification

@ We consider a lonely rotating star
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The actual state of ESTER models

An idealization/simplification

@ We consider a lonely rotating star
@ We are interested in long time-scales
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The actual state of ESTER models

An idealization/simplification

@ We consider a lonely rotating star
@ We are interested in long time-scales
@ We discard all magnetic fields.
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The equations of the structure
PDE

A¢ = 4nGp
pTV- VS = —DivF + &

PG AT+ 7-VP) = ~VP - pV(¢ - 1025 + F,
Div(p¥) = 0.

(1)
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The equations of the structure

Microphysics

k= k(p,T) OPAL ()

P=P@p,T) OPAL
e« =&p,T) NACRE
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The equations of the structure
Turbulence

The energy flux

F=—,VT- A

/\/LurbT =
Ru

The transport of momentum

Fo=pfu®) = p|Av+ 39(5-9) +2(Ving-9)7

- = 2 - -
+V1n,u><(V><\7’)—§(V-\7)V1ny] .

or any mean-field expression of the Reynolds stress.
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Boundary conditions

@ On pressure

@ On the velocity field
$-7=0 and ([cl)AR=0
@ On temperature (black body radiation)

VT +T/Ly =0
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The last touch

f rsinfpu, dV = L
W)

or

vo(r =R,0 =m/2) = Vgq
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The ESTER code

View on GitHub ()

ESTER

Evolution STEllaire en Rotation

Project Description

The ambition of this project is to set out a two-dimensional stellar evolution code, which
fully takes into account the effects of rotation, at any rate and in a self-consistent way.

The difficult, but important point is that rotating stars are spheroidal and are never in
hydrostatic equilibrium. They are pervaded by flows everywhere, even in the stably
stratified radiative regions. These flows are essentially convective flows in thermally
unstable regions (convection zones) and baroclinic flows in the radiative regions. These
latter flows are grosso modo a differential rotation and a meridional circulation, with likely

Ficure — Freely available on the www




Gravity darkening of Achernar (« Eri)
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Gravity darkening exponent : Top oc g7

Lyr

0.20

018

0.16

0,14

0.00 0.05 0.10 0.15 0.20 025 0.30
e=1-R /R,

Fiaure — Observed values of 8 and a simple model of Espinosa Lara &
Rieutord (2011).

M. Rieutord ESTER



Models of nearby stars

We have modeled 8 stars of intermediate mass :

Star
Altair
Alderamin
Ras Alhague

Vega
Regulus
Achernar

M (Mg) Veq(km/s)
a Aql 1.9 286
a Cep 1.9 265
a Oph 2.2 242
o4 Vel 227 &2.43 150 & 143
a Lyr 2.4 205
a Leo 4.1 335
a Eri 6.5 339
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0 Vel seen by Kervella et al. 2013 at VLTI with PIONIER

—_— Aa photocenter
— Ab 2H — displacement
A~2.20um

% center of mass

#1+$ NACO

- N (mas)

10 0.5 0.0 —0.5 1.0
E + (mas}

Ficure — The orbit of delta vel (Kervella et al. 2013).
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o Velorum A
An eclipsing binary made of A stars

Star

Mass (My)
Req (Ro)
Rpol (RG)
Teq (K)
Tpol(K)

L (Lo)

Veq (km/s)
P.q (days)
Ppor (days)

env.

core / Xenv.

N X X

Delta Velorum Aa

Obs.

243 +0.02
2.97+0.02
2.79+0.04
9450
10100
67+3

143

Model

2.43
2.95
2.77
9440
10044
65.2
143
1.045
1.084
0.70
0.10
0.011

Delta Velorum Ab

Obs.

2.27+0.02
2.52+0.03
2.37+0.02
9560
10120
51+2

150

Model

2.27
2.52
2.36
9477
10115
48.5
153
0.832
0.924
0.70
0.30
0.011
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Inside the stars : internal differential rotation

M=30M,, at 98% of critical angular velocity

Rotation period (hrs)

19.36

18.88

18.40

17.92

17.44

16.96

16.48

16.00

15.52

0
rin solar radii

Espinosa Lara & Rieutord (2013) A&A,552,A35
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Inside the stars : meridional circulation

M=5M,, at 70% of critical angular velocity
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Espinosa Lara & Rieutord (2013)
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Towards evolution

HR diagram track of a 7M,, star of constant angular momentum, starting at Q/Q; = 0.5.
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Towards evolution

HR diagram tracks at constant angular momentum

Main Sequence Evolution
T T
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Evolution of a 5M,, star at constant angular momentum :

heading to the Be state

—4|

-z =2 0 2 i
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Last developments and road map

@ Portability improved, github management
@ Documentation strongly improved (93 pages)
@ Low mass stellar models under construction

Next :
@ Implement nuclear evolution on MS
© Implement thermal evolution (PMS and post-MS)
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Thermal Evolution : How to implement

We consider an isothermal atmosphere, which is cooling in some
prescribed way. The problem is 1D

v, oP
— = —— —p
f ot 0z s

Assumptions : ¥ small and vis-
cosity negligible.

P=R.Tp with T =T(t) prescribed

Hydrostatic solution is

p = poe”

where d = R.T/g is the scale
height.
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Thermal Evolution (2)

Atmosphere evolution is through po. How do we get it ?
The mass of the atmosphere is constant and so is its surface
density . This determine the evolution of pj, namely
= f p(2)dz = pod (3)
0
since d(t) = R, T(t)/g is known.

What about the velocity ?
We start with masse conservation

dpv, _@
oz or

with o = poe 4

or

dpv, —z/d [P0 dz
P Ve
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Thermal evolution (3)

However

p_0+€=0
po d

After some calculation we find :

d
L?Z = —Z
d

where we used the boundary condition v,(0) = 0.
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The spherical case

We now consider a self-gravitating sphere of gas of uniform
temperature. This is a polytrope n = co.

The evolution of temperature is supposed to be known.

We need to solve :

;izdir (1’2%) = 4nGp
dpP d¢
P 0
P= c2p

where ¢? = R.T(¢) is the isothermal sound speed.
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The spherical case

Hydrostatic equilibrium gives :

‘/5(‘ B ¢
p=peoxp(*55) )
and 1 d 1
d (249 ~(6-40)/
—— =] = 4nGp, ‘ S
r2dr(r a’r) P ©)

This equation gives the dependence ¢ = ¢(p.) and p. comes from

M = 47rp(;f e~ 0=/ )2 g
0

M is the total mass. Now p is known everywhere.
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The spherical case : the velocity field

Since the evolution of density is known, we deduce the velocity
field that ensures mass conservation

i op 1 6r’pv (9,0
D = —— —_ =
B R "

v(r) = f 6—px7d
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The algorithm with the cartesian case

We wish to solve

9ip + 9 (pv;) =0

0.P+pg=0 (6)
0,T = kAT — (P/pc,)0,v,

P =R.pT
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The algorithm with the cartesian case
Time — discretization

0:(pnvyy) = —(on — pn-1)/0t

0Py +png =0

kAT, — (Pn/pncv)azv;i = (T, —Ty-1)/ot
P, = R*pnTn

which can be formally written
ﬁ()?n) = 511—1

which can solved by a Newton-Raphson solver as the steady
equation that have to be slightly modified.
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Nuclear evolution

Let us consider a simplified version first.

1/3
ecno = 8.67 1()27ngXCNOT6_2/3€_152'28/Tﬁ cgs

During the pp or CNO cycles, protons are converted into He and

this release
0 = (4my — mye)c? =43 x 10712 J
so that
dX 4mpe 23 13
E = Q — _KPXX(14N)T6 / e 152'28/16
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1D model : Nuclear evolution

;P + pd,¢ =0

A¢ = 4nGp

DivyVT + &(p, T) = pT(8,s + V,s)

X+ VoX = _XPX(]4N)T6_2/3e‘152‘28”61/3

d;Inp + Vo, Inp = —-0,(r*V)/r?

P=P(p.T.X.2), x=xp.T.X,2)
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1D model : Nuclear evolution

0Py + 00,6, =0
Apy = 4nGpy
6I(D1VX€Tn + 8(,0117 Tn) - pnTnVnarsn) = (pT)n(Sn - Sn,])
9)

— 1/3
t(V0, Xy + XupX(UN)T, P12/ = X, — X,

ot(V,0,Inp, + 8,(}’2‘/”)/}"2) =Inp, —Inp,

P=Pp,T,X,72), x=xp, T,X,7)

We note that in the 1D-problem, 6:V = 6¢, namely the
displacement during ¢ solely comes into play.
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2D model : Angular momentum evolution

The foregoing equation generalize immediately in 2D. But there is
the question of the angular momentum evolution.

In steady case this is determined by

002 (VP A Vp),
S =

0z ou

Div(ps>Q#) = Div(us’VQ)  and  Div(ow) = 0
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2D model : Angular momentum evolution

Time-evolution of the local angular momentum needs to be taken
into account.

P+ d AP =—(VP)/p - Vo + Frie
the ¢-component gives :

8,(ps>Q) + Div(ps*Qi¥) = Div(us*VQ)

while

dw 902 (VpAVP
6_;0 + Rot(Rotw AWy —§ 3 ( L e

5 + otF |,

02
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2D model : angular momentum evolution

At first order we may say that

00> (VpAVP),
_ =
0z 0>

and

8,(ps>Q) + Div(ps*Qi¥) = Div(us’VQ)
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2D angular momentum evolution : Conclusion

The local time-evolution of angular momentum changes the
meridional circulation that must adapt to the change of density.
Hence

o - V(s2Q) = Fu(Q) — pdy(s*Q)
and
Div(pw) = —d;p
But there is a subtlety :

What about the grid velocity ? In 1D lagrangian models
the velocity of the fluid = the velocity of the grid.

ESTER is a bit lagrangian because the grid follow the surface and
the interfaces...
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