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2. Photosphere and circumstellar environment (CSE) of fast rotators

Poisson equation for the Roche model

When dealing with the equations of rotating stars it is sometimes useful to consider the Poisson
equation, which for uniform rotation can be written as

�⇤ = �⇧⌅ · ⇧ge� = 4⇤G⌅ � 2⇥2 . (2.10)

In the framework of the Roche model, where the mass is concentrated in a point at the stellar
center, Poisson equation for r > 0 becomes simply,

�⇤ = �⇧⌅ · ⇧ge� = �2⇥2 , for r > 0 . (2.11)

Critical velocity and surface shape of a Roche star

The stellar surface shape is obtained from the equation Roche potential (Eq. 2.9). The stel-
lar surface thus follows an equipotential (⇤ constant), which corresponds to the more general
condition that no work is required nor provided for any displacement ⇧ds on the surface,

⇧ge� · ⇧ds = �⇧⌅⇤ · ⇧ds = 0 . (2.12)

As already evident from Eq. 2.9, the surface shape of a Roche star is nonspherical since ⇤
is a function of both r and ⇥. The stellar surface is thus defined by the points r(⇥ R(⇥)) that
follow the equipotential (⇤ constant),

⇤ = � GM

R(⇥) � ⇥2R2(⇥) sin2 ⇥

2 = �GM

Rp
= �GM

Req
� (⇥Req)2

2 = constant , (2.13)

where the term ⇥Req(= veq) is the equatorial rotation velocity. The constant value setting the
surface equipotential is chosen as a reference point on this surface. In the equation above we
give values at two possible reference points that are often adopted, namely, equipotential in
terms of the radius at the pole Rp and at the equator Req.

The polar radius is used as reference mostly in works dealing with stellar evolution and/or for
comparisons with models without rotation since it is almost independent on the rotation (Ekström
et al., 2008). For example, rotation leads to a decrease of Rp of less than ⇤ 2% compared to the
case without rotation (at solar metallicity and masses between 3 and 20 M⇥). It is thus common
to consider Rp independent of rotation.

In works dealing with interferometric observations it is preferable to express the surface
equipotential in terms of the equatorial radius Req since the equatorial angular diameter (2Req/d,
where d is the distance to the star) is the quantity more directly related to the observations.
Indeed, Rp cannot be directly probed for an arbitrary inclination of the rotation axis i, unless the
star is seen exactly equator-on. Before deriving the complete form of the Roche surface, the
ratio between the equatorial and polar radii can already be obtained directly from Eq. 2.13,

Req
Rp

=
�

1 �
v2

eqRp
2GM

⇥�1
= 1 +

v2
eqReq
2GM

or

� ⇥ 1 � Rp
Req

=
v2

eqRp
2GM

,

(2.14)
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photons approximation),
⌥F = �⌃⌥⇧T = �4acT 3

3⇥⌅
⌥⇧T , (2.22)

where ⌃ is the coefficient of radiative conductivity, which is a function of the radiation constant a,
vacuum light speed c, local total mean opacity ⇥ (generally the Rosseland mean opacity), local
density ⌅, and local temperature T .

Assuming barotropicity, ⌅, T , and thus ⌃, are functions of the potential ⇤ only, or equivalently,
they are constants on an equipotential. In this case, using Eq. 2.8, we obtain the von Zeipel
theorem or law (von Zeipel, 1924)

⌥F = �⌃
dT

d⇤
⌥⇧⇤ = ⌃

dT

d⇤⌥ge� ⇤ �C⌥ge� , (2.23)

which is identical to Eq. 2.21 when the absolute values are considered. This equation shows
that the radiative flux vector is also antiparallel to the effective gravity in the von Zeipel law.

By integrating Eq. 2.23 over the stellar surface defined by an equipotential and using the
Poisson equation (Eq. 2.10), and the divergence (or Gauss) theorem, we can express the pro-
portionality term C (constant on an equipotential) as a function of fundamental stellar parame-
ters,

From the stellar luminosity L (integral of the radiative flux over the stellar surface defined by
an equipotential), the Poisson equation (Eq. 2.10), and the divergence (or Gauss) theorem, we
can express the proportionality term C (constant on an equipotential) as a function of funda-
mental stellar parameters,

C = �⌃
dT

d⇤ =
⇤ ⌥F · ⌥ds

⇤ ⌥⇧⇤ · ⌥ds
= L⇤

ge�ds
= L⇤

�⇤dV
= L

4⇤GM⇥
, (2.24)

where the definition of L is the stellar luminosity. When dealing with observations is sometimes
useful to relate C and L in the equation above to (1) the average effective temperature T e� over
the total stellar surface (equipotential) S�,

L = ⇧
⌅

T 4
e�(�) ds = ⇧T

4
e�S� , (2.25)

and to (2) the bolometric flux Fbol,

Fbol = L

4⇤d2 = ⇧T
4
e�

S�

4⇤d2 = ⇧T
4
e�

⇥2

4 , (2.26)

where ⇥ is the mean angular diameter of a spherical star having a surface area S�, and d is the
distance to the star.

The modified mass M⇥ in Eq. 2.24 is a consequence of the Poisson equation (Eq. 2.10), and
is given by

M⇥ = M

�

1 � ⇥2

2⇤G⌅̄

⇥

⌅ M , (2.27)

where M is the stellar mass and ⌅̄(= M/V ) is the average density inside the equipotential
surface of volume V . Values for the term ⇥2/2⇤G⌅̄ at different ⇥ in the Roche approximation
are given by Maeder (2009). It ranges from 0 to a maximum value corresponding to the Roche
critical velocity (Eq. 2.15),

⇥2
c

2⇤G⌅̄c
= Vc

2⇤R3c
= 0.361 , (2.28)
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at the stellar equator geq is given by the difference between the gravitational and centrifugal
accelerations at this point, as would be expected,

geq = ge�(�

2 ) = GM

R2eq
�

v2
eq

Req
, (2.19)

while the modulus of the surface polar effective gravity gp is simply given by the polar gravita-
tional acceleration, since there is no centrifugal force at the poles,

gp = ge�(0) = ge�(�) = GM

R2p
. (2.20)

2.2.2 Gravity darkening

Gravity darkening is an important effect in stellar physics resulting from a local surface radiative
flux dependent on the local effective gravity. In a seminal paper, von Zeipel (1924) showed that
under some equilibrium conditions the radiative flux F is proportional to the local effective gravity
ge� , i.e.,

F = ⇥T 4
e� = Cge�

or

Te� =
�

C

⇥

⇥0.25
g0.25

e� ,

(2.21)

where C is a proportionality constant composed of several physical quantities (see below), ⇥

is the Stefan-Boltzmann constant, and Te� is the local effective temperature. We note that,
because of gravity darkening, the star does not have a unique effective temperature over the
photosphere and thus presents a different aspect depending on the viewing angle. Moreover,
gravity darkening is responsible by internal circulations of matter, energy, and angular momen-
tum, and by non-spherical mass and angular momentum losses. All these physical processes
have a direct impact on the structure and evolution of the star. A precise formulation of the
gravity darkening effect is thus crucial for a more profound understanding of stellar physics.

Indeed, since the beginning of the XXth Century, the gravity darkening effect (also called
von Zeipel effect) has been discussed, improved, and computed by several authors: von Zeipel
(1924), Eddington (1925), Lucy (1967), Connon Smith & Worley (1974), Kippenhahn (1977),
Claret (1998, 2000, 2012), Maeder (1999), Rieutord (2006), Espinosa Lara & Rieutord (2011),
and many others. The results from this work concerning gravity darkening are presented in
Chapter 3.

On the other hand, observational proof and/or direct measurement of gravity darkening in
fast-rotating single stars has been provided only very recently, thanks to the high spatial resolu-
tion power from stellar interferometers: Ohishi et al. (2004), Domiciano de Souza et al. (2005,
Sect. 3.1), Peterson et al. (2006b), Monnier et al. (2007), Che et al. (2011), and others.

We present below a quick review of some of the basic equations and recent theoretical
developments and observations on the gravity darkening effect.

The von Zeipel theorem

In radiative regions of the star, in particular atmospheres of hot stars, the local radiative flux
vector is proportional and antiparallel to the gradient of local temperature gas T (diffusion of
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where Vc(= 2.2666R3
c) and ⇥̄c(= M/Vc) are the critical volume and critical average density of the

Roche model (cf. Kopal, 1987).

Generalizations of the von Zeipel theorem

Several recent works based on interferometric observations of fast-rotating stars measured val-
ues of � ranging from � 0.15 to � 0.23: Monnier et al. (2007), Zhao et al. (2009), Che et al.
(2011), Monnier et al. (2012), this work (Sect. 3.2). These observational results thus show that
the von Zeipel law (� = 0.25) is not generally valid and overestimates the dependence of Te�
with ge� .

This difference is not completely surprising since, in real stars, the conditions assumed to
deduce to the von Zeipel theorem are not strictly valid (diffusion approximation, uniform rotation,
barotropicity). For example, Lucy (1967) showed, by averaging from various stellar 1D atmo-
sphere numerical models, that the relation Te� ⇥ g0.08

e� reproduces better the gravity darkening
in cooler stars with convective atmospheres than Eq. 2.21. The computations and results from
both von Zeipel and Lucy contain important approximations, including small deviations from
sphericity (slow rotation).

In practice, in order to account for departures from the results of von Zeipel and Lucy, it is
usual to express the gravity darkening in terms of an ad hoc coefficient � relating the local F ,
Te� , and ge� , i.e.

F = ⇤T 4
e� = C�g4�

e� , (2.29)

or

Te� =
�

C�

⇤

⇥0.25
g�

e� , (2.30)

where C� is a proportionality constant obtained as in Eq. 2.24, but replacing ge� par g4�
e� . It is

sometimes useful to write this gravity darkening �-law in terms of Te� and ge� at a given point of
the stellar surface, such as

Te� = Tp

⇤
ge�
gp

⌅�

, (2.31)

where, in this case, the subscript "p" denotes the polar effective temperature and gravity.
Similarly as Lucy’s work, Claret (1998, 2000, 2012) used 1D atmosphere models to compute

� values for different physical conditions. The gravity darkening parameter show a continuous
variation from radiative (� � 0.25) to convective (� � 0.1) atmospheres. The exact behavior
of these numerically deduced � depends on the stellar mass, atmosphere model used, and
atmospheric optical depth considered. Espinosa Lara & Rieutord (2012) discuss the results from
Lucy and Claret, arguing that 1D models should be avoided when computing gravity darkening
exponents.

By adopting a different approach, Espinosa Lara & Rieutord (2011) propose an alternative
gravity darkening law that is independent on convective or radiative nature of the stellar atmo-
sphere. Their gravity darkening model is based on three hypothesis, which are generally valid
on stellar atmospheres:

• Flux conservation, i.e., there are no heat sources/sinks on the stellar atmosphere, which
is expressed as a divergence-free vector flux,

⌅⇤ · ⌅F = 0 . (2.32)
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Figure 2.3 – Specific intensity I⁄ (V, H, and K photometric bands starting from the left column) and

Te� (right column) maps for a fast-rotating B type star computed with CHARRON (Sect. 2.5.1).
Models were created for � = 0.20 and veq = 290 km s�1 = 0.929vc at different inclinations
i = 0⇥, 45⇥, 60⇥, 90⇥, plotted in each row. Horizontal and vertical spatial scales are normalized
by the equatorial radius Req. Further parameters of the models are given in Table 2.1.
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Apparent intensity distribution dependent on 
inclination. Teff variable over photosphere. 
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2.2 Equilibrium structure of fast-rotating stars

We shortly describe here some important concepts and equations defining the physical structure
of fast-rotating stars. These concepts and equations are described and developed by a large
number of works and authors. As one example we mention the recent book of Maeder (2009)
that covers many aspects of the physical structure and evolution of rotating stars, and also
provides a large (and still non-exhaustive) number of references on this subject.

In most stars, any perturbation on their physical structure is compensated in a dynamical
(free-fall) timescale,

⇥dyn ⇤

⇤
R3

GM
, (2.3)

where G is the gravitation constant, and R and M are the stellar radius and mass. Depending
on the spectral type and evolutionary status of the star, ⇥dyn varies from ⇤ 1 s (white dwarfs)
to ⇤ 10 d (red supergiants), which is in any case much shorter than the stellar lifetime. Most
stars are thus in steady-state, hydrostatic equilibrium, which allows to rewrite the Navier-Stokes
equation (Eq. 2.2) in a simpler form,

⇤⌅P

�
= ⇤g �

�
⇤v · ⇤⌅

⇥
⇤v ⇥ ⇤ge� , (2.4)

where viscosity is assumed to be negligible. The effective gravity ⇤ge� is composed by the stellar
gravity ⇤g (only external force considered here) and the centrifugal acceleration from the fluid
velocity field ⇤v. Depending on ⇤v, it is possible to express ⇤ge� as the gradient of a potential ⇥
(conservative forces), so that,

⇤⌅P

�
= ⇤ge� = �⇤⌅⇥ . (2.5)

The identity above implies that P = P (⇥) and � = �(⇥), i.e., the isobars, isodensities, and
equipotentials coincide. If the equation of state of the stellar gas follows the relation P = P (�, T )
(as an ideal gas for instance), then the isobars, isodensities, isothermals, and equipotentials are
identical. P , �, and T are functions of ⇥ only and the star is said to be barotropic. Although this
is a good approximation in general, the "iso" surfaces do not coincide exactly in reality, and the
stars are baroclinic.

2.2.1 Roche model

Several works on rotating stars, in particular those based on stellar interferometry, show that
the Roche model provides a realistic representation of the distribution of mass and angular
momentum throughout the massive stars (> a few M�).

The Roche model is based on two main approximations: (1) uniform rotation with constant
angular velocity � and (2) all mass M concentrated in the stellar center. The term Roche model
is sometimes used when differential rotation is considered, where only the second assumption is
adopted. A third, implicit assumption, is that the star is in a steady-state, hydrostatic equilibrium
configuration.
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Fig. 2.1 Some geometrical parameters in a rotating star. The angle ε is the angle between the
vector radius and the normal �geff to an equipotential

The components of g are (�g, 0, 0) and g = ∂Φ
∂ r (cf. 1.35). If Ω is constant or

has a cylindrical symmetry, the centrifugal acceleration can also be derived from a
potential, say V . One has

�∇∇∇V = Ω 2 ϖϖϖ and thus V = �1
2

Ω 2 ϖ2 . (2.3)

The total potential Ψ is

Ψ = Φ +V , (2.4)

and with (1.44) one has

∇2Ψ = ∇2Φ +∇2V with ∇2Φ = 4π Gϱ . (2.5)

In cylindrical coordinates, one can write

(∇2V )ϖ =
1
ϖ

∂
∂ϖ

�
�ϖ2Ω 2⇥ = �2Ω 2 (2.6)

and thus the Poisson equation with rotation becomes

∇2Ψ = 4π Gϱ�2Ω 2 . (2.7)

Barotropic star: the equation of hydrostatic equilibrium becomes

1
ϱ

∇∇∇P = �∇∇∇Ψ = geff. (2.8)

Figure 2.1 – Reference frame and some parameters of the Roche model (details in the text). Figure
from Maeder (2009).

Roche’s effective gravity and potential

Under the Roche approximation the stellar particles are subject to a radial (direction r̂) inward
point-like gravitational acceleration ⌅g and to a centrifugal acceleration ⌅acent perpendicular to the
rotation axis (direction ⇤̂). In this case, the effective gravity defined in Eq. 2.4 can now be
explicitly expressed as,

⌅ge� = ⌅g + ⌅acent

= �GM

r2 r̂ + �2⇤⇤̂

= �GM

r2 r̂ + �2r sin �⇤̂

= �GM

r2 r̂ +
v2

�

⇤
⇤̂ ,

(2.6)

or, in spherical coordinates (unit vectors r̂, �̂, ⇥̂),

⌅ge�(r, �) =
�

�GM

r2 + �2r sin2 �, �2r sin � cos �, 0
⇥

, (2.7)

where ⇤(= r sin �) is the distance to the rotation axis, and v�(= �⇤) is the azimuthal (⇥) com-
ponent of the velocity, which is the total rotation velocity in this case. Figure 2.1 illustrates the
adopted reference frame, and some of the parameters and physical quantities of the Roche
model.

For uniform rotation (or differential rotation with � = �(⇤)), we have the conservative case
of Eq. 2.5, where ⌅ge� can be expressed as the gradient of a potential,

⌅ge� = �⌅⇥⇥ , (2.8)

where ⇥ is now the Roche potential, which is given explicitly by the sum of the point-like gravi-
tational potential and the centrifugal potential for uniform rotation,

⇥(r, �) = ⇥grav(r) + ⇥cent(r, �)

= �GM

r
� �2

2 (r sin �)2 .
(2.9)
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2.2.4 Eddington limit and anisotropic CSE

In the next sections we consider the anisotropic (latitudinal-dependent) circumstellar environ-
ment (CSE) of the fast-rotating Be and supergiant B[e] stars (described in Sects. 2.3 and 2.4).
The anisotropic CSE is a direct result of mass ejections from the luminous, hot, and massive
central star. Although the mechanism(s) leading to these mass ejections is(are) still not com-
pletely understood, fast-rotation of the central star certainly provides a large amount of the
energy required for the material to overcome the stellar gravity and to be ejected into the CSE.
In addition to rotation, radiation pressure Prad can also contribute to the formation of the CSE
around massive stars.

We shortly present in this section some basic concepts providing clues to understand the
link between the strong radiation from the photosphere of massive, fast-rotating stars and the
mass and angular momentum losses events. Important recent references on this topic are, for
example, Lamers & Pauldrach (1991), Langer (1997), Glatzel (1998), Maeder (1999), Maeder &
Meynet (2000a), Maeder (2009), among others.

In a luminous star, where photon density and radiation pressure are important, the total
acceleration ⌅gtot at the photosphere is the result of the sum of the effective ⌅ge� and radiation ⌅arad
accelerations,

⌅gtot = ⌅ge� + ⌅arad = ⌅g + ⌅acent + ⌅arad . (2.36)

The outward radiative acceleration ⌅arad is the result of the inward gradient of the radiative
pressure ⌅⇤Prad. At the same time, radiative transfer relates ⌅⇤Prad to the radiative flux ⌅F , so that
one has

⌅arad = �
⌅⇤Prad

⇤
= ⇥(�) ⌅F

c
, (2.37)

where c is the vacuum light speed, ⇤ is the local mass density, and ⇥(�) is local total mean
opacity, which in general depends on the co-latitude � in rotating stars because of geometrical
deformation and gravity darkening.

Let us assume that ⌅F is related to ⌅ge� as in Eq. 2.33. As discussed in Sec. 2.2.2, this
assumption is more general than the original one from von Zeipel (Eq. 2.23) and is adopted in
more recent studies of gravity darkening (e.g. Espinosa Lara & Rieutord, 2011; Maeder, 1999).

These equations show that ⌅F , ⌅ge� , and ⌅arad have all the same direction and are functions of
the co-latitude � over the stellar surface. This allows to express the total surface acceleration
⌅gtot as a function of ⌅ge� only,

⌅gtot = �
⌅F

f
+ ⇥ ⌅F

c

= ⌅ge�

�
1 � ⇥f

c

⇥

⇥ ⌅ge� (1 � �(�)) ,

(2.38)

where �(�)(= ⇥(�)f/c) is the local Eddington factor (ranging from 0 to 1), which depends on
the choice of the proportionality function f in Eq. 2.33. Explicit expressions for f are given
for example by (1) Espinosa Lara & Rieutord (2011) for the ELR gravity-darkening model, and
by (2) Maeder (1999) for "shellular" differential rotation (cf. Zahn, 1992); we note that in these
examples f is a function of � over the stellar surface. In any case, the main contribution to �(�)
comes from the proportionality constant from the von Zeipel theorem (Eq. 2.24), so that �(�) is
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M,	  veq,	  Req,	  
<T>	  (ou	  L),	  
i,	  d,	  β	  

	  

CHARRON	  
Code	  for	  High	  Angular	  Resolu+on	  of	  	  

Rota+ng	  Objects	  in	  Nature	  
Domiciano	  de	  Souza	  et	  al.	  2002,	  2012	  

Surface potential Ψ
(e.g. Roche potential) 
è geff = |-grad Ψ|   
è Teff = C geff

β ; 

     C = C(M, <T>, veq)   
 

At each surface 
grid element:  
θ, φ,	  µ,	  Teff,	  geff	  
vproj,dSproj	  

	  

Specific	  intensities	  	  
Iλ=Iλ(µ,	  Teff,	  geff)	  
from	  stellar	  
atmosphere	  models	  	  
(e.g.	  Kurucz	  or	  
TLUSTY	  +	  Synspec)	  	  

	  

Intensity maps Iλ(θ, φ) 
of stellar photosphere 
 
(computation time ~10-30s) 

2.2. Equilibrium structure of fast-rotating stars
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Figure 2.3 – Specific intensity I⁄ (V, H, and K photometric bands starting from the left column) and
Te� (right column) maps for a fast-rotating B type star computed with CHARRON (Sect. 2.5.1).
Models were created for � = 0.20 and veq = 290 km s�1 = 0.929vc at different inclinations
i = 0⇥, 45⇥, 60⇥, 90⇥, plotted in each row. Horizontal and vertical spatial scales are normalized
by the equatorial radius Req. Further parameters of the models are given in Table 2.1.
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CHARRON: ancien métier; 
spécialiste du bois, maître de 
tout ce qui tourne et roule. 



Paramètres	  physiques	  et	  	  
grille	  numérique	  

Teff 
log g 
vproj 
dSproj 
µ
x,y 
. . . 



Synthèse	  de	  profils	  spectraux	  



Ques+ons	  

Comment	  associer	  des	  modèles	  d’atmosphère	  plan-‐parallèles	  (e.g.	  
Kurucz,	  TLUSTY)	  et	  des	  spectres	  (e.g.	  SYSNPEC,	  PHOENIX,	  MARCS)	  à	  
ESTER	  ?	  
	  
Quelle	  «	  profondeur	  »	  prendre	  dans	  les	  modèles	  ESTER	  pour	  
associer	  un	  spectre	  synthé+que	  ?	  
	  
Ce	  problème	  ne	  se	  pose	  pas	  dans	  un	  modèle	  de	  Roche,	  et	  plusieurs	  
personnes	  l’ont	  fait	  (e.g.	  Domiciano	  de	  Souza	  et	  al.	  Papers).	  Il	  y	  a	  
aussi	  un	  papier	  de	  Kurucz	  de	  2014	  qui	  traite	  cede	  ques+on.	  



Observa+ons	  interférométriques	  
d’étoiles	  en	  rota+on	  rapide	  



Intensity map I(y,z,λ) 

Spectro-‐interferometry	  

Interference fringes è 
complex visibility V  

(Fourier trasnform of I): 
V(u,v,λ)= 
FT[I(y,z,λ)](u,v)/FT[I(y,z,λ)](0,0) 8	  



Spectro-‐interferometry	  
     CHARRON                             HDUST                                FRACS 
                                                          
 

Integrate	  or	  
Fourier	  

transform	  

Spectro-interferometric observables: fluxes (spectra), SED, photometry, 
absolute and differential visibilities (amplitudes and phases), closure phases.  

A. Domiciano de Souza et al.: FRACS modelling - disc parameters of CPD-57◦ 2874 from VLTI/MIDI.II.

same spectral sampling (nλ = 10 wavelengths points) was
adopted for the VLTI/MIDI visibilities and spectrum. This
choice also provides faster calculations because it is not nec-
essary to compute model images at too many wavelengths.

We have performed a χ2 minimisation simultaneously on the
VLTI/MIDI visibilities and fluxes using a Levenberg-Marquardt
(LM) algorithm (Markwardt 2008). In order to treat the visi-
bilities and fluxes on the same level (similar weights) we have
minimised a χ2 like quantity defined as (see further details in
Paper I):

χ2 =

nλ∑

j=1

nB∑

k=1

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

⎛
⎜⎜⎜⎜⎜⎝

Vobs
j,k − V j,k

σV, j,k

⎞
⎟⎟⎟⎟⎟⎠

2

+

⎛
⎜⎜⎜⎜⎜⎝

Fobs
j − F j

σF, j

⎞
⎟⎟⎟⎟⎟⎠

2⎤⎥⎥⎥⎥⎥⎥⎥⎦ , (6)

where Vobs
j,k and V j,k are the observed and modelled visibility

modulus wavelength index j and for baseline index k, Fobs
j and

F j are the observed and modelled mid-IR fluxes. σV, j,k and σF, j
are the estimated errors on the visibilities and fluxes.

The starting parameter values for the fit were determined
from physical considerations of the CSE and from the previous
results from DS07. Below we consider the reduced χ2 defined
by χ2

r = χ
2/(2nBnλ − nfree), where nfree = 10. The LM algorithm

stops when the relative decrease in χ2
r is less then 10−3. For the

CPD-57◦ 2874 data, the LM algorithm reaches the χ2
r minimum

(χ2
min,r) in a few hours (≃2–3 h) on a single CPU.

Figure 2 shows the intensity map of the model correspond-
ing to χ2

min,r (best-fit model) for our distance estimate of 1.7 kpc,
which also corresponds to the lowest χ2

min,r. The visibilities and
fluxes for the best-fit model are shown, together with the obser-
vations, in Figs. 3 and 4. These plots show that the model well
reproduces most observations within their uncertainties for both
adopted distances (1.7 and 2.5 kpc). In particular the slightly
curved shape of the visibilities is well reproduced by FRACS.
The models indicate that this curved shape is probably caused
by the combined fact (1) that the intensity maps have different
relative contributions from the central source and from the dusty
CSE at different wavelengths, (2) that the optical properties of
the adopted dust grains are wavelength-dependent even if there
is no strong silicate feature seen in the spectrum, and (3) that
the angular resolution significantly changes along the observed
wavelengths.

The model parameters at χ2
min,r and their uncertainties are

listed in Table 4. The derived parameters are almost indepen-
dent of the adopted distance, except of course for those scaling
with the distance. The uncertainties of the parameters have been
estimated from χ2

r maps calculated with 21 × 21 points for each
pair of free parameters (45 pairs) and centred on the χ2

min,r po-
sition. All 45 χ2

r maps are shown in Fig. 5 for d = 1.7 kpc.
These maps show that the χ2

r space presents a well defined χ2
min,r,

without showing several local minima in the parameter domain
explored. Additionally, they provide visual and direct informa-
tion on the behaviour of the model parameters in the vicinity
of χ2

min,r, revealing, for instance, potential correlations between
certain parameters.

We have estimated the parameter uncertainties in a conser-
vative way by searching for the maximum parameter extension
in all χ2

r maps corresponding to χ2
min,r+∆χ

2, where ∆χ2 = 1 (see
contours in Fig. 5). This choice of ∆χ2 sets a lower limit confi-
dence region of ≃60% to the parameter uncertainties. This limit
results from two extreme assumptions about the data:

– data points per baseline are completely dependent (corre-
lated): because the same set of stars is used to calibrate all

Fig. 2. Intensity map of CPD-57◦ 2874 at 10 µm for the best-fit
FRACS model obtained for a distance d = 1.7 kpc (see Table 4). The
image scale is in log of the specific intensity Is

λ.

visibilities of a given baseline, we can consider a limiting
case where all these visibilities are correlated. This assump-
tion implies that only 10 independent visibility observations
are available (this corresponds to the number of baselines).
The flux at each spectral channel can still be considered to be
independent. This pessimistic assumption leads to the lower
limit of ≃60% to the formal confidence level for ∆χ2 = 1,
corresponding to only 20 independent observations (10 base-
lines and 10 fluxes),

– all data points are completely independent (uncorrelated): an
upper limit of ≃100% of formal confidence level is obtained
if we assume that all data points are independent. Then the
uncertainties derived from ∆χ2 = 1 are very conservative
(overestimated).

Hence the parameter uncertainties given in Table 4 correspond
to a confidence level of at least 60%, but most probably they are
somewhat overestimated.

In the next section we present a physically motivated discus-
sion of the derived model parameters of CPD-57◦ 2874.

6. Discussion

6.1. Geometrical parameters (PAd , Rin, and i)

Let us first compare the derived geometrical parameters (PAd,
Rin, and i) with those previously obtained by DS07 from ellipti-
cal Gaussian models fitted on a sub-set of the VLTI/MIDI data
used here.

The geometrical parameter PAd can be directly compared
with the major-axis position angle of the ellipse previously deter-
mined by DS07 (≃143◦−145◦). As expected, the two estimates
of PAd are identical within their error bars.

Because the bulk of the thermal IR emission comes from
the internal regions of the disc, one can expect the inner dust
angular radius (Rin/d) to be comparable to (or slightly smaller
than) the major-axis half width at half maximum (HWHM) of
an elliptical Gaussian. Indeed, the Rin/d derived here agrees with
the major-axis HWHM (=0.5FWHM) given by DS07: 4.5 <
HWHM (mas) < 8.0.

Domiciano de Souza et al. (2007) estimated a CSE view-
ing angle i ∼ 30◦−60◦ from the minor- to major-axis ratio of
the fitted elliptical Gaussian model. This estimate agrees fairly
well with the more precise determination of this parameter given
here.

A22, page 5 of 11

2.2. Equilibrium structure of fast-rotating stars
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Figure 2.3 – Specific intensity I⁄ (V, H, and K photometric bands starting from the left column) and
Te� (right column) maps for a fast-rotating B type star computed with CHARRON (Sect. 2.5.1).
Models were created for � = 0.20 and veq = 290 km s�1 = 0.929vc at different inclinations
i = 0⇥, 45⇥, 60⇥, 90⇥, plotted in each row. Horizontal and vertical spatial scales are normalized
by the equatorial radius Req. Further parameters of the models are given in Table 2.1.
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2.4. Gas and dust CSE of supergiant B[e] stars

Figure 2.12 – Examples of model intensity maps of sgB[e] stars computed with the Monte Carlo
radiative transfer code HDUST developed by A. Carciofi (Sect. 2.5.3). The models include a
hot central B type star (Te� = 20 000 K) surrounded by a non-spherical CSE composed by gas
(hydrogen) and dust (silicates with a power law distribution of sizes ranging from 1 to 50 µm).
The intensity maps are given for two inclinations (i = 60� and 85�) both in the visible/near IR
(0.6 to 1.2 µm) and in thermal IR (10 to 11 µm) spectral domains. Spatial scales (horizontal
and vertical) are given in solar radii. The differences in the images are due to effects of
projection (distinct i) as well as physical effects governed by the relative contributions from
the central B star, the continuum emission from ionized gas in the central parts (free-free,
free-bound), and from the continuum emission from dust. Gas contribution is important in
the visible and close to the central star while the dust, concentrated in the equatorial region,
dominates the thermal IR emission. As seen in the images, dust particles can survive only
beyond the sublimation radius defined by the distance where the temperature of dust particles
is equal to the sublimation temperature (� 1500 K in this case). Sect. 2.4.1 gives further details
on the central star, gas and dust CSE, dust composition and distribution.
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Intensity maps from physical models 
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Achernar:	  ideal	  fast-‐rotator	  target	  for	  HRA	  

Some information on Achernar: 
² B3-6Vpe star 
² V=0.5 (brightest Be star) 
² M ~ 6 Msun 

² d=42.7 pc (closest Be star) 
² Mean Teff~15000K 
² v sini i ~260 km/s (wide range of 
values in the literature) 
² Strong rotation flattening (beyond 
Roche limit) 

L48 A. Domiciano de Souza et al.: The spinning-top Be star Achernar from VLTI-VINCI

Fig. 1. VLTI ground baselines for Achernar observations and their
corresponding projections onto the sky at di�erent observing times.
Left: Aerial view of VLTI ground baselines for the two pairs of 40 cm
siderostats used for Achernar observations. Color magenta represents
the 66 m (E0-G1; azimuth 147⌅, counted from North to East) and
green the 140 m (B3-M0; 58⌅). Right: Corresponding baseline pro-
jections onto the sky (Bproj) as seen from the star. Note the very e⇥-
cient Earth-rotation synthesis resulting in a nearly complete coverage
in azimuth angles.

detection of stellar asymmetries. Moreover, Earth-rotation has
produced an e⇥cient baseline synthesis e�ect (Fig. 1, right).
A total of more than 20 000 interferograms were recorded on
Achernar, and approximately as many on its calibrators, cor-
responding to more than 20 hours of integration. From these
data, we obtained 60 individual V2 estimates, at an e�ective
wavelength of ⇥e� = 2.175 ± 0.003 µm.

3. Results
The determination of the shape of Achernar from our set of V2
is not a straightforward task so that some prior assumptions
need to be made in order to construct an initial solution for
our observations. A convenient first approximation is to de-
rive from each V2 an equivalent uniform disc (UD) angu-
lar diameter ⇥UD from the relation V2 = |2J1(z)/z|2. Here,
z = ⇤ ⇥UD (�) Bproj (�) ⇥⇤1e� , J1 is the Bessel function of the
first kind and of first order, and � is the azimuth angle of Bproj
at di�erent observing times due to Earth-rotation. The appli-
cation of this simple procedure reveals the extremely oblate
shape of Achernar from the distribution of ⇥UD(�) on an el-
lipse (Fig. 2). Since �, Bproj(�), and ⇥e� are known much bet-
ter than 1%, the measured errors in V2 are associated only to
the uncertainties in ⇥UD. We performed a non-linear regres-
sion fit using the equation of an ellipse in polar coordinates.
Although this equation can be linearized in Cartesian coor-
dinates, such a procedure was preferred to preserve the orig-
inal, and supposedly Gaussian, residuals distribution as well
as to correctly determine the parameters and their expected
errors. We find a major axis 2a = 2.53 ± 0.06 milliarcsec
(mas), a minor axis 2b = 1.62 ± 0.01 mas, and a minor-
axis orientation �0 = 39⌅ ± 1⌅. Note that the correspond-
ing ratio 2a/2b = 1.56 ± 0.05 determines the equivalent star

Fig. 2. Fit of an ellipse over the observed squared visibilities V2 trans-
lated to equivalent uniform disc angular diameters. Each V2 is plotted
together with its symmetrical value in azimuth. Magenta points are
for the 66 m baseline and green points are for the 140 m baseline.
The fitted ellipse results in major axis 2a = 2.53 ± 0.06 milliarcsec,
minor axis 2b = 1.62 ± 0.01 milliarcsec, and minor axis orientation
�0 = 39⌅±1⌅ (from North to East). The points distribution reveals an
extremely oblate shape with a ratio 2a/2b = 1.56 ± 0.05.

oblateness only in a first-order UD approximation. To interpret
our data in terms of physical parameters of Achernar, a consis-
tent scenario must be tailored from its basic known properties,
so that we can safely establish the conditions where a coherent
model can be built and discussed.

4. Discussion
Achernar’s pronounced apparent asymmetry obtained in this
first approximation, together with the fact that it is a Be star,
raises the question of whether we observe the stellar photo-
sphere with or without an additional contribution from a CSE.

For example, a flattened envelope in the equatorial plane
would increase the apparent oblateness of the star if it were
to introduce a significant infrared (IR) excess with respect
to the photospheric continuum. Theoretical models (Poeckert
& Marlborough 1978) predict a rather low CSE contribution
in the K band especially for a star tilted at higher inclina-
tions, which should be our case as discussed below. Indeed,
Yudin (2001) reported a near IR excess (di�erence between
observed and standard color indices in visible and L band
centered at 3.6 µm) to be E(V ⇤ L) = 0.m2, with the same
level of uncertainty. Moreover, this author reports a zero in-
trinsic polarization (p�). These values are significantly smaller
than mean values for Be stars earlier than B3 (E(V ⇤ L) >
0.m5 and p� > 0.6%), meaning that the Achernar’s CSE is
weaker than in other known Be stars. Further, an intermediate

Domiciano de Souza, Kervella et al. 2003 
(VLTI/VINCI Sep-Nov/2002 data) 
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Fig. 9. Top: squared visibilities V2 observed on Achernar (filled circles and error bars) and computed (opened squares) from the best-fit CHARRON
model (Table 6) as a function of spatial frequency (left column) and baseline PA (right column). Bottom: V2 residuals from observations relative
to the best-fit model in units of corresponding uncertainties. Vertical solid lines indicate the position angles of the visible (216.9⇤ ⌅ �143.1⇤) and
hidden (16.9⇤ = 216.9⇤�180⇤) stellar poles. The horizontal dotted lines delimit the ±3� region around zero (dashed line).

in this work is smaller than the previous results derived from
VLTI/VINCI observations, obtained in an epoch with a small,
but non-negligible influence of a residual disk (Domiciano de
Souza et al. 2003; Kervella & Domiciano de Souza 2006;
Carciofi et al. 2008).

We discuss the stellar size derived from the VLTI/AMBER
observations by Domiciano de Souza et al. (2012a), we postpone
the discussion to Sect. 5.5, where we consider the whole set of
model parameters.

Considering the stellar size derived from the VLTI/AMBER
observations by Domiciano de Souza et al. (2012a) in Sect. 5.5,
where we consider the whole set of model parameters.

5.2. Photometry and effective temperature

The photometric magnitudes in the UBVJHK bands and the
bolometric flux derived from the CHARRON best-fit model
are compared with measurements reported in the literature in
Table 7. We first note form the table that these observed magni-
tudes and bolometric fluxes show uncertainties and/or a disper-
sion of measured values of about 10%�20%, which are at least
partially caused by a combination of instrumental and intrinsic
e�ects from the star. Indeed, Achernar is known to present mul-
tiple flux variabilities at time scales from hours to years, which
are caused, for example, by pulsations (Goss et al. 2011), bina-
rity (Kervella & Domiciano de Souza 2007), and the B�Be cy-
cle (e.g., Vinicius et al. 2006). Thus, the observed magnitudes
and bolometric flux should not be considered as tight constraints
to the model-fitting, although they provide an important consis-
tency check on the best-fit model parameters. Indeed, the mod-
eled magnitudes and bolometric flux given in Table 7 agree with
the observations within their uncertainties and/or dispersion of
measured values.

By using Eq. (5) we can cross-check the consistency between
the adopted mean e�ective temperature T e� , the measured bolo-
metric flux Fbol, and the mean angular diameter /⇥ reported in
Tables 6 and 7. From the Fbol provided by Code et al. (1976) and
Nazé (2009) one thus obtains T e� = 15 094 K and 14 703 K. We
note that the temperature of 14 510 K estimated by Code et al.
(1976) is somewhat lower than the value estimated here because
they considered the higher angular diameter (1.92 mas) reported
by Hanbury Brown et al. (1974), based on intensity interferom-
etry observations at the Narrabri Observatory. As expected, this
diameter is between the major and minor diameters derived in
the present work. However, the measurements from Hanbury
Brown did not allow taking into account the angular size vari-
ation with the baseline position angle caused by the rotational
flattening of Achernar. Thus, recalling that the average e�ective
temperature of ⌃15 000 K reported by Vinicius et al. (2006) was
derived from di�erent methods, the adopted T e� = 15 000 K
agrees well with several independent measurements (bolometric
fluxes, photometry, spectroscopy, and interferometry).

5.3. Inclination and rotation velocity

The inclination angle i (=60.6+7.1
�3.9) measured in this work is com-

patible (within ⌃1.5�) with the values (i ⇧ 65�70⇤) estimated
by Vinicius et al. (2006) and Carciofi et al. (2007).

Di�erent values have been previously reported on the pro-
jected rotation velocity Veq sin i of Achernar, with mainly three
distinct range of values: Veq sin i ⇧ 223�235 km s�1 (e.g.,
Slettebak 1982; Chauville et al. 2001; Vinicius et al. 2006),
Veq sin i = 292 ± 10 km s�1 (Domiciano de Souza et al. 2012a),
and Veq sin i ⇧ 410 km s�1 (e.g., Hutchings & Stoeckley 1977;
Jaschek & Egret 1982).
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Table 7. Observed and modeled UBVJHK photometry and bolometric flux Fbol of Achernar.

Catalogue or reference U B V J H K Fbol (10�9 W m�2)
2MASSa 0.815 ± 0.254 0.865 ± 0.320 0.880 ± 0.330

NOMAD Tycho-2b 0.473 0.527
Johnson et al. (1966) 0.32 0.47

Code et al. (1976) 54.4 ± 4.3
Jaschek & Egret (1982) �0.36 0.30 0.46

Nazé (2009) 48.98
CHARRON RVZ model �0.279 0.339 0.472 0.783 0.828 0.886 53.05

Model in 2012 paper �0.387 0.215 0.333 0.596 0.631 0.684 62.90

Notes. The model values are based on the parameters given in Table 6 for the best emcee fit of CHARRON RVZ model to PIONIER data. For
comparison, we also show the values derived from the model given by Domiciano de Souza et al. (2012a), based on the AMBER di�erential
phases. (a) Cutri et al. (2003); Skrutskie et al. (2006). (b) Hog et al. (2000); Zacharias et al. (2005).

Fig. 10. Top: closure phases (CP) observed on Achernar and computed
from the best-fit CHARRON model (Table 6) as a function of the spatial
frequency (for the longest projected baseline Bmax

proj in the corresponding
triangle configuration). Bottom: CP residuals from observations relative
to the best-fit model in units of corresponding uncertainties. The hor-
izontal dotted lines delimit the ±3⇥ region around zero (dashed line).
Since the photosphere is only partially resolved, the CP signatures of
fast rotation are weak (within ⌅±1⇤).

In this work we determine Veq sin i = 260.3+19
�12 km s�1, where

these uncertainties were computed by properly adding the in-
dividual uncertainties estimated on i and Veq (cf. Table 6 and
Fig. 8). This estimated Veq sin i lies between the lower and inter-
mediate values found in the literature, as mentioned above, and
it is compatible with them within 2⇥ to 3⇥, i.e., ⇧30�40 km s�1.

Some clues for explaining the discrepancies in the measured
Veq sin i may be given by the fact that di�erent methods for esti-
mating this quantity can lead to di�erent results depending on
their sensitivity to the nonuniform photospheric intensity dis-
tribution caused by the gravity darkening. For example, it is
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Fig. 11. Intensity map of Achernar corresponding to the best-fit of the
CHARRON RVZ model to the VLTI/PIONIER H band observations.
The spatial coordinates indicated in angular milliarcseconds (mas) units
and also normalized to the equatorial radius Req = 9.16 R⇥. The com-
plete list of the measured stellar parameters is given in Table 6.

known that because of gravity darkening, the Veq sin i obtained
from visible/IR spectroscopy are generally underestimated in
fast-rotating stars (Townsend et al. 2004; Frémat et al. 2005).
Moreover, the actual Veq sin i of Achernar seems to significantly
vary in time, as recently shown by Rivinius et al. (2013), who
reported Veq sin i variations with amplitudes .35 km s�1 that are
correlated to the B⌧Be phase transitions. Interestingly, this am-
plitude of Veq sin i variations is on the same order of the dif-
ferences between the Veq sin i values measured in this work and
those reported by several other authors, as discussed above.

Finally, Goss et al. (2011) identified a low-amplitude fre-
quency of 0.68037 ± 0.00003 d�1 from time-series analysis of
photometric light-curves of Achernar. We note that this fre-
quency is relatively close (but still ⌅2.5⇥ above) to the rota-
tion frequency �rot = 0.644 ± 0.015 d�1 derived in the present
work (uncertainty estimated by properly adding quadratically
the relative maximum individual uncertainties on Req and Veq).
Whether or not the measured frequency is related to the rotation
of Achernar remains to be further investigated.
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Fig. 9. Top: squared visibilities V2 observed on Achernar (filled circles and error bars) and computed (opened squares) from the best-fit CHARRON
model (Table 6) as a function of spatial frequency (left column) and baseline PA (right column). Bottom: V2 residuals from observations relative
to the best-fit model in units of corresponding uncertainties. Vertical solid lines indicate the position angles of the visible (216.9⇤ ⌅ �143.1⇤) and
hidden (16.9⇤ = 216.9⇤�180⇤) stellar poles. The horizontal dotted lines delimit the ±3� region around zero (dashed line).

in this work is smaller than the previous results derived from
VLTI/VINCI observations, obtained in an epoch with a small,
but non-negligible influence of a residual disk (Domiciano de
Souza et al. 2003; Kervella & Domiciano de Souza 2006;
Carciofi et al. 2008).

We discuss the stellar size derived from the VLTI/AMBER
observations by Domiciano de Souza et al. (2012a), we postpone
the discussion to Sect. 5.5, where we consider the whole set of
model parameters.

Considering the stellar size derived from the VLTI/AMBER
observations by Domiciano de Souza et al. (2012a) in Sect. 5.5,
where we consider the whole set of model parameters.

5.2. Photometry and effective temperature

The photometric magnitudes in the UBVJHK bands and the
bolometric flux derived from the CHARRON best-fit model
are compared with measurements reported in the literature in
Table 7. We first note form the table that these observed magni-
tudes and bolometric fluxes show uncertainties and/or a disper-
sion of measured values of about 10%�20%, which are at least
partially caused by a combination of instrumental and intrinsic
e�ects from the star. Indeed, Achernar is known to present mul-
tiple flux variabilities at time scales from hours to years, which
are caused, for example, by pulsations (Goss et al. 2011), bina-
rity (Kervella & Domiciano de Souza 2007), and the B�Be cy-
cle (e.g., Vinicius et al. 2006). Thus, the observed magnitudes
and bolometric flux should not be considered as tight constraints
to the model-fitting, although they provide an important consis-
tency check on the best-fit model parameters. Indeed, the mod-
eled magnitudes and bolometric flux given in Table 7 agree with
the observations within their uncertainties and/or dispersion of
measured values.

By using Eq. (5) we can cross-check the consistency between
the adopted mean e�ective temperature T e� , the measured bolo-
metric flux Fbol, and the mean angular diameter /⇥ reported in
Tables 6 and 7. From the Fbol provided by Code et al. (1976) and
Nazé (2009) one thus obtains T e� = 15 094 K and 14 703 K. We
note that the temperature of 14 510 K estimated by Code et al.
(1976) is somewhat lower than the value estimated here because
they considered the higher angular diameter (1.92 mas) reported
by Hanbury Brown et al. (1974), based on intensity interferom-
etry observations at the Narrabri Observatory. As expected, this
diameter is between the major and minor diameters derived in
the present work. However, the measurements from Hanbury
Brown did not allow taking into account the angular size vari-
ation with the baseline position angle caused by the rotational
flattening of Achernar. Thus, recalling that the average e�ective
temperature of ⌃15 000 K reported by Vinicius et al. (2006) was
derived from di�erent methods, the adopted T e� = 15 000 K
agrees well with several independent measurements (bolometric
fluxes, photometry, spectroscopy, and interferometry).

5.3. Inclination and rotation velocity

The inclination angle i (=60.6+7.1
�3.9) measured in this work is com-

patible (within ⌃1.5�) with the values (i ⇧ 65�70⇤) estimated
by Vinicius et al. (2006) and Carciofi et al. (2007).

Di�erent values have been previously reported on the pro-
jected rotation velocity Veq sin i of Achernar, with mainly three
distinct range of values: Veq sin i ⇧ 223�235 km s�1 (e.g.,
Slettebak 1982; Chauville et al. 2001; Vinicius et al. 2006),
Veq sin i = 292 ± 10 km s�1 (Domiciano de Souza et al. 2012a),
and Veq sin i ⇧ 410 km s�1 (e.g., Hutchings & Stoeckley 1977;
Jaschek & Egret 1982).
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Fig. 8. Histogram distributions and two-by-two correlations for the free parameters (Req, Veq, i, �, and PArot) of the best-fit CHARRON RVZ model
determined with the emcee code (800 walkers). The mean values and associated uncertainties obtained from these histograms are given in Table 6.
The parameters do not show strong correlations in the region defined by the uncertainty around the mean values. The stronger correlation is shown
by Veq and i, which roughly follow a curve of constant Veq sin i (=260.3 km s�1), represented by the solid lines, with the circles indicating the mean
values in the histograms. The rectangles cover the corresponding uncertainty ranges on Veq and i.

decrease of visibility contrast and should in principle be consid-
ered. However, we checked that the bandwidth-smearing e↵ect
does not need to be considered in the present analysis because
(1) the squared visibilities are higher than 0.3�0.4, which min-
imizes this e↵ect (Kervella et al. 2003); and (2) the data span a
few wavelength bins over the H band so that the range of spa-
tial frequencies mixed is narrow. Based on results from previous
works, M, T e↵ , and d were fixed to the following values:

– M = 6.1 M�. Value from Harmanec (1988), previ-
ously adopted by Domiciano de Souza et al. (2012a).
This mass also agrees (1) with the estimate from

Jerzykiewicz & Molenda-Zakowicz (2000) (M = 6.22 ±
0.16 M�) based on evolutionary tracks; and (2) with the mass
estimate from an on-going work on Achernar’s binary sys-
tem (Kervella et al., in prep.);

– T e↵ = 15 000 K. Value adopted by Domiciano de Souza et al.
(2012a) following Vinicius et al. (2006). A critical discus-
sion on this value and comparisons with other works are pre-
sented in Sect. 5;

– d = 42.75 pc. We adopted the updated distance derived from
the new reduction of the Hipparcos astrometric data and pro-
vided by van Leeuwen (2007).
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7. Description of the proposed programme and attachments

Description of the proposed programme (continued)

B – Immediate Objective: The main objective of this proposal is to obtain PIONIER interferometric
data (visibilities and closure phases) of two selected fast-rotating stars in order to measure several physical
parameters, in particular the gravity darkening parameter �, allowing us to test and further constrain di↵erent
models of gravity darkening. The two chosen targets are ✓ Sco (F1II; angular diameter ⇠ 2.6 mas) and ✏ Sgr
(B9.5III-A0V; angular diameter ⇠ 1.4 mas), a cold and hot star with similar flattening, so that di↵erent models
of gravity darkening predict rather di↵erent gravity darkening � coe�cients, as shown in Fig. 1.
The model to be used to interpret the PIONIER observations is the numerical program CHARRON (Code
for High Angular Resolution of Rotating Objects in Nature), developed by one of us (Domiciano de Souza et
al. 2002, 2012b). This code is dedicated to study high angular and high spectral resolution observations of
fast rotating stars from modern spectro-interferometers. CHARRON has already been used to measure the
rotational parameters (gravity darkening included) of the fast-rotator Achernar from PIONIER observations
(Domiciano de Souza et al. 2014; see also Fig. 1).
To achieve this objective it is important to have a good Fourier frequency coverage (uv plane coverage) with
as precise as possible values of visibilities and closure phases allowing to constrain the physical parameters of
the targets. Precise observations are needed to achieve uncertainties in the measured parameters at least of
the order of those shown in Fig. 1. We thus ask for the 3 o↵ered AT configurations o↵ered by PIONIER (4
simultaneous telescopes) in the CAL-SCI-CAL-SCI-CAL observing mode.

Attachments (Figures)
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Fig. 1 - (Left:) Example of intensity map in the H band of a fast-rotating star (Achernar). The rotational
flattening and gravity darkening, which are clearly seen, can be directly measured by stellar interferometry. This
intensity map corresponds to the best-fit model obtained from VLTI/PIONIER data fitted with the CHARRON
model. (Right:) Gravity darkening parameter � versus flattening ✏ = 1 � R

pol

/R
eq

for 6 fast rotating stars
measured by OLBI. The rectangles correspond to expected values of ✏ and specially of � for di↵erent gravity
darkening models for the proposed targets; their sizes roughly correspond to expected uncertainties on � and
✏ from observations and model fitting. The ELR model (solid curve) explains most of the OLBI observations
(see text) and the predicted � for both targets (✓ Sco and ✏ Sgr) lye on this curve. Other models predict rather
di↵erent values of �, specially for the colder star ✓ Sco. The observations required here will put these models
into test by a straightforward comparison with measured �. Figures adapted from Domiciano de Souza et al.
(2014).
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