IPIM
 All Classes Files Functions Variables Pages
Collision terms for neutral velocity

For neutrals $n$:

\begin{eqnarray*} \frac{\delta u_n}{\delta t} &=& \sum_{m \ne n} \nu_{nm}(u_m\frac{C_m}{C_n}-u_n)\\ &+& \sum_j \nu_{nj}(u_j\frac{C_j}{C_n}-u_n)\\ &+& \nu_{ne}(U_e\frac{1 }{C_n}-u_n)\\ &+& \sum_{m \ne n} \frac{\nu_{nm}z_{nm}}{t_{nm}(m_n+m_m)} \left( \frac{1}{2} m_m t_n^{\parallel \frac{3}{2}}\gamma_n^{\parallel } + m_m t_n^{\perp \frac{3}{2}}\gamma_n^{\perp } -\frac{1}{2} m_n \frac{C_m}{C_n} t_m^{\parallel \frac{3}{2}}\gamma_m^{\parallel } - m_n \frac{C_m}{C_n} t_m^{\perp \frac{3}{2}}\gamma_m^{\perp } \right)\\ &+& \sum_j \frac{\nu_{nj}z_{nj}}{t_{nj}(m_n+m_j)} \left( \frac{1}{2} m_j t_n^{\parallel \frac{3}{2}}\gamma_n^{\parallel } + m_j t_n^{\perp \frac{3}{2}}\gamma_n^{\perp } -\frac{1}{2} m_n \frac{C_j}{C_n} t_j^{\parallel \frac{3}{2}}\gamma_j^{\parallel } - m_n \frac{C_j}{C_n} t_j^{\perp \frac{3}{2}}\gamma_j^{\perp } \right)\\ &+& \frac{\nu_{ne}z_{ne}}{t_{ne}(m_n+m_e)} \left( \frac{1}{2} m_e t_n^{\parallel \frac{3}{2}}\gamma_e^{\parallel } + m_e t_n^{\perp \frac{3}{2}}\gamma_e^{\perp } -\frac{1}{2} m_n \frac{C_e}{C_n} t_e^{\parallel \frac{3}{2}}\gamma_e^{\parallel } - m_n \frac{C_e}{C_n} t_e^{\perp \frac{3}{2}}\gamma_e^{\perp } \right)\\ \end{eqnarray*}

\begin{eqnarray*} \underbrace{-\sum_{m \ne n} \nu_{nm}}_{\text{-nunm}} \underbrace{-\sum_j \nu_{nj} - \nu_{ne}}_{\text{-nuni}} & \text{ Contribution } u_n \rightarrow u_n\\ \nu_{nm}u_m\frac{C_m}{C_n} & \text{ Contribution } u_m \rightarrow u_n\\ \nu_{nj}u_j\frac{C_j}{C_n} & \text{ Contribution } u_j \rightarrow u_n\\ \nu_{ne}U_e\frac{1 }{C_n} = \nu_{ne}\sum_j compo_j u_j\frac{C_j}{C_n} & \text{ Contribution } u_e \rightarrow u_n\\ -\frac{1}{2}\sum_{m \ne n} z_{nm}\frac{m_n}{m_n+m_m}\nu_{nm}\frac{1}{t_{nm}}\frac{C_m}{C_n}t_m^{\parallel\frac{3}{2}}\gamma_m^{\parallel} = -\frac{1}{2}\sum_{m \ne n} \underbrace{D^{no}_{mn}\nu_{nm}\frac{1}{t_{nm}}}_{\text{coefnm}}\frac{C_m}{C_n}t_m^{\parallel\frac{3}{2}}\gamma_m^{\parallel} &\text{ Contribution }\gamma_m^{\parallel}\rightarrow u_n\\ -\frac{1}{2}\sum_j z_{nj}\frac{m_n}{m_n+m_j}\nu_{nj}\frac{1}{t_{nj}}\frac{C_j}{C_n}t_j^{\parallel\frac{3}{2}}\gamma_j^{\parallel} = -\frac{1}{2}\sum_j \underbrace{D^{po}_{jn}\nu_{nj}\frac{1}{t_{nj}}}_{\text{coefnj}}\frac{C_j}{C_n}t_j^{\parallel\frac{3}{2}}\gamma_j^{\parallel} &\text{ Contribution }\gamma_j^{\parallel}\rightarrow u_n\\ -\frac{1}{2} z_{ne}\frac{m_n}{m_n+m_e}\nu_{ne}\frac{1}{t_{ne}}\frac{C_e}{C_n}t_e^{\parallel\frac{3}{2}}\gamma_e^{\parallel} = -\frac{1}{2} \underbrace{D^{po}_{en}\nu_{ne}\frac{1}{t_{ne}}}_{\text{coefne}}\frac{C_e}{C_n}t_e^{\parallel\frac{3}{2}}\gamma_e^{\parallel} &\text{ Contribution }\gamma_e^{\parallel}\rightarrow u_n\\ -\sum_{m \ne n} z_{nm}\frac{m_n}{m_n+m_m}\nu_{nm}\frac{1}{t_{nm}}\frac{C_m}{C_n}t_m^{\perp\frac{3}{2}}\gamma_m^{\perp} = -\sum_{m \ne n} \underbrace{D^{no}_{mn}\nu_{nm}\frac{1}{t_{nm}}}_{\text{coefnm}}\frac{C_m}{C_n}t_m^{\parallel\frac{3}{2}}\gamma_m^{\perp} &\text{ Contribution }\gamma_m^{\perp}\rightarrow u_n\\ -\sum_j z_{nj}\frac{m_n}{m_n+m_j}\nu_{nj}\frac{1}{t_{nj}}\frac{C_j}{C_n}t_j^{\perp\frac{3}{2}}\gamma_j^{\perp} = -\sum_j \underbrace{D^{po}_{jn}\nu_{nj}\frac{1}{t_{nj}}}_{\text{coefnj}}\frac{C_j}{C_n}t_j^{\parallel\frac{3}{2}}\gamma_j^{\perp} &\text{ Contribution }\gamma_j^{\perp}\rightarrow u_n\\ - z_{ne}\frac{m_n}{m_n+m_e}\nu_{ne}\frac{1}{t_{ne}}\frac{C_e}{C_n}t_e^{\perp\frac{3}{2}}\gamma_e^{\perp} = - \underbrace{D^{po}_{en}\nu_{ne}\frac{1}{t_{ne}}}_{\text{coefne}}\frac{C_e}{C_n}t_e^{\parallel\frac{3}{2}}\gamma_e^{\perp} &\text{ Contribution }\gamma_e^{\perp}\rightarrow u_n\\ \end{eqnarray*}

Contribution $\gamma^{\parallel}_n \rightarrow u_n$:

\[ \left.\begin{aligned} \frac{1}{2}\sum_{m \ne n} z_{nm}\frac{m_m}{m_n+m_m}\nu_{nm}\frac{1}{t_{nm}}t_n^{\parallel\frac{3}{2}} &=& \frac{1}{2}\left(\sum_{m \ne n} D^{no}_{nm}\nu_{nm}\frac{1}{t_{nm}}\right)t_n^{\parallel\frac{3}{2}} \end{aligned}\right\} \frac{1}{2}\text{Dnnun.}t_n^{\parallel\frac{3}{2}} \]

\[ \left.\begin{aligned} \frac{1}{2}\sum_j z_{nj}\frac{m_j}{m_n+m_j}\nu_{nj}\frac{1}{t_{nj}}t_n^{\parallel\frac{3}{2}} &=& \frac{1}{2}\left(\sum_j D^{po}_{nj}\nu_{nj}\frac{1}{t_{nj}}\right)t_n^{\parallel\frac{3}{2}}\\ \frac{1}{2} z_{ne}\frac{m_e}{m_n+m_e}\nu_{ne}\frac{1}{t_{ne}}t_n^{\parallel\frac{3}{2}} &=& \frac{1}{2}\left( D^{po}_{ne}\nu_{ne}\frac{1}{t_{ne}}\right)t_n^{\parallel\frac{3}{2}}\\ \end{aligned}\right\} \frac{1}{2}\text{Dpnun.}t_n^{\parallel\frac{3}{2}} \]

Contribution $\gamma^{\perp}_n \rightarrow u_n$:

\[ \left.\begin{aligned} \sum_{m \ne n} z_{nm}\frac{m_m}{m_n+m_m}\nu_{nm}\frac{1}{t_{nm}}t_n^{\perp\frac{3}{2}} &=& \sum_{m \ne n} D^{no}_{nm}\nu_{nm}\frac{1}{t_{nm}}t_n^{\perp\frac{3}{2}}\\ \end{aligned}\right\} \text{Dnnun.}t_n^{\perp\frac{3}{2}} \]

\[ \left.\begin{aligned} \sum_j z_{nj}\frac{m_j}{m_n+m_j}\nu_{nj}\frac{1}{t_{nj}}t_n^{\perp\frac{3}{2}} &=& \sum_j D^{po}_{nj}\nu_{nj}\frac{1}{t_{nj}}t_n^{\perp\frac{3}{2}}\\ z_{ne}\frac{m_e}{m_n+m_e}\nu_{ne}\frac{1}{t_{ne}}t_n^{\perp\frac{3}{2}} &=& D^{po}_{ne}\nu_{ne}\frac{1}{t_{ne}}t_n^{\perp\frac{3}{2}}\\ \end{aligned}\right\} \text{Dpnun.}t_n^{\perp\frac{3}{2}} \]