IPIM
 All Classes Files Functions Variables Pages
Collision terms for ionic parallel energy

From Blelly and Schunk (1993), the 13-moment equation set gives:

\[ \frac{\delta T^{\parallel}_i}{\delta t} = \sum_t \frac{\nu_{it}}{m_i+m_t}\left[2m_i(T^{\parallel}_t-T^{\parallel}_i) + \frac{4}{5}m_t(T^{\perp}_i-T^{\parallel}_i) + \frac{4}{5}m_i(T^{\perp}_t-T^{\parallel}_t)\right] + \frac{4}{5}\nu_{ii}(T^{\perp}_i-T^{\parallel}_i) \]

\begin{eqnarray} \frac{\delta T^{\parallel}_i}{\delta t} &=& \sum_n \frac{\nu_{in}}{m_i+m_n}\left[2m_i(T^{\parallel}_n-T^{\parallel}_i) + \frac{4}{5}m_n(T^{\perp}_i-T^{\parallel}_i) + \frac{4}{5}m_i(T^{\perp}_n-T^{\parallel}_n)\right] \\ &+&\sum_{j \ne i} \frac{\nu_{ij}}{m_i+m_j}\left[2m_i(T^{\parallel}_j-T^{\parallel}_i) + \frac{4}{5}m_j(T^{\perp}_i-T^{\parallel}_i) + \frac{4}{5}m_i(T^{\perp}_j-T^{\parallel}_j)\right] \\ &+& \frac{\nu_{ie}}{m_i+m_e}\left[2m_i(T^{\parallel}_e-T^{\parallel}_i) + \frac{4}{5}m_e(T^{\perp}_i-T^{\parallel}_i) + \frac{4}{5}m_i(T^{\perp}_e-T^{\parallel}_e)\right] \\ &+& \frac{4}{5}\nu_{ii}(T^{\perp}_i-T^{\parallel}_i) \end{eqnarray}

Contribution $T^{\parallel}_i \rightarrow T^{\parallel}_i$:

\[ \left.\begin{aligned} -2\sum_n \nu_{in}\frac{m_i}{m_i+m_n}T^{\parallel}_i - \frac{4}{5}\sum_n \nu_{in}\frac{m_n}{m_i+m_n}T^{\parallel}_i &=& -\sum_n \nu_{in}\underbrace{\frac{2m_i-\frac{4}{5}m_n}{m_i+m_n}}_{B^{m0}_{in}}T^{\parallel}_i\\ \end{aligned}\right\} -\text{thermpi}.T^{\parallel}_i \]

\[ \left.\begin{aligned} -2\sum_{j \ne i}\nu_{ij}\frac{m_i}{m_i+m_j}T^{\parallel}_i - \frac{4}{5}\sum_{j \ne i} \nu_{ij}\frac{m_j}{m_i+m_j}T^{\parallel}_i &=& -\sum_{j \ne i} \nu_{ij}\underbrace{\frac{2m_i-\frac{4}{5}m_j}{m_i+m_j}}_{B^{c0}_{ij}}T^{\parallel}_i\\ -2 \nu_{ie}\frac{m_i}{m_i+m_e}T^{\parallel}_i - \frac{4}{5} \nu_{ie}\frac{m_e}{m_i+m_e}T^{\parallel}_i &=& - \nu_{ie}\underbrace{\frac{2m_i-\frac{4}{5}m_e}{m_i+m_e}}_{B^{c0}_{ie}}T^{\parallel}_i \end{aligned}\right\} -\text{nui2}.T^{\parallel}_i \]

\begin{eqnarray} - \frac{4}{5}\nu_{ii}T^{\parallel}_i && \end{eqnarray}

Contribution $T^{\perp}_i \rightarrow T^{\parallel}_i$:

\[ \underbrace{ \frac{4}{5}\sum_n \nu_{in}\frac{m_n}{m_i+m_n}T^{\perp}_i }_{\frac{4}{5} \text{thermti}.T^{\perp}_i} + \underbrace{ \frac{4}{5}\sum_{j \ne i} \nu_{ij}\frac{m_j}{m_i+m_j}T^{\perp}_i + \frac{4}{5} \nu_{ie}\frac{m_e}{m_i+m_e}T^{\perp}_i }_{\frac{4}{5} \text{nui1}.T^{\perp}_i} + \frac{4}{5} \nu_{ii}T^{\perp}_i \]

\begin{eqnarray} \sum_n (2-\frac{4}{5})\underbrace{\nu_{in}\frac{m_i}{m_i+m_n}}_{\text{coefin}}T^{\parallel}_n & \text{ Contribution } T^{\parallel}_n \rightarrow T^{\parallel}_i\\ \sum_{j \ne i} (2-\frac{4}{5})\underbrace{\nu_{ij}\frac{m_i}{m_i+m_j}}_{\text{coefij}}T^{\parallel}_j & \text{ Contribution } T^{\parallel}_j \rightarrow T^{\parallel}_i\\ (2-\frac{4}{5})\underbrace{\nu_{ie}\frac{m_i}{m_i+m_e}}_{\text{coefie}}T^{\parallel}_e & \text{ Contribution } T^{\parallel}_e \rightarrow T^{\parallel}_i\\ \sum_n \frac{4}{5}\underbrace{\nu_{in}\frac{m_i}{m_i+m_n}}_{\text{coefin}}T^{\perp}_n & \text{ Contribution } T^{\perp}_n \rightarrow T^{\parallel}_i\\ \sum_{j \ne i} \frac{4}{5}\underbrace{\nu_{ij}\frac{m_i}{m_i+m_j}}_{\text{coefij}}T^{\perp}_j & \text{ Contribution } T^{\perp}_j \rightarrow T^{\parallel}_i\\ \frac{4}{5}\underbrace{\nu_{ie}\frac{m_i}{m_i+m_e}}_{\text{coefie}}T^{\perp}_e & \text{ Contribution } T^{\perp}_e \rightarrow T^{\parallel}_i \end{eqnarray}