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1 First step with ctools

We start by importing the gammalib, ctools, and cscripts Python packages. We will also import
the plotting library matplotlib to visualize the result. If you run ctools from the command line
there is no need to go through this step.

In [1]: import gammalib
import ctools
import cscripts
import matplotlib.pyplot as plt
# add the following line to display matplotlidb inline in a motebook
Jmatplotlib inline

1.1 Simulating event data

CTA does not exist yet. We will simulate event data to learn how to use the tools. We will simulate
a short observation of the Crab nebula pointing at a slight offset from the source. We will use a
simple model dispatched with the tools that contains the Crab nebula as pointlike source with
a power-law spectrum, and the instrumental background modeled based on the IRFs. We will
enable energy dispersion, that, by default, is not taken into account for the sake of computing
speed.

In [2]: sim = ctools.ctobssim()
sim['inmodel'] = '${CTOOLS}/share/models/crab.xml'
sim['outevents'] = 'events.fits'
sim['caldb'] = 'prod3b-v2'
sim['irf'] = 'South_z40 0.5h'
sim['ra'] = 83.5
sim['dec'] = 22.8
sim['rad'] = 5.0
sim['tmin'] = '2020-01-01T00:00:00"'
sim['tmax'] '2020-01-01T01:00:00"'
sim['emin'] 0.03 # energies as user parameters are always in Tel
sim['emax"'] 150.0
sim['edisp'] = True
sim.execute()



The first line generates an instance of the ctobssim tool as a Python class. User parameters are
then set using the [ ] operator. You can consult the manual of each tool to find out how it works
and to discover all the input parameters that you can set.

In [3]: !'ctobssim --help

ctobssim

This tool simulates event list(s) using the instrument characteristics
specified by the instrument response function(s) and an input model. The
simulation includes photon events from astrophysical sources and background
events from an instrumental background model.

By default, ctobssim creates a single event list. ctobssim queries a pointing
direction, the radius of the simulation region, a time interval, an energy
interval, an instrumental response function, and an input model. ctobssim uses
a numerical random number generator for the simulations with a seed value
provided by the hidden seed parameter. Changing this parameter for

subsequent runs will lead to different event samples.

ctobssim performs a safety check on the maximum photon rate for all model
components to avoid that the tool locks up and requests huge memory

resources, which may happen if a mistake was made in setting up the input
model (for example if an error in the flux units is made). The maximum allowed
photon rate is controlled by the hidden maxrate parameter, which by default

is set to 1le6.

ctobssim can also generate multiple event lists if an observation definition
file is specified on input using the hidden inobs parameter. In that

case, simulation information will be gathered from the file, and for each
observation an event list will be created.

For each event file, the simulation parameters will be written as data
selection keywords to the FITS header. These keywords are mandatory for any
unbinned maximum likelihood analysis of the event data.

General parameters



inobs [file]
Input event list or observation definition XML file. If provided (i.e. the
parameter is not blank or NONE), the pointing definition and eventually the
response information will be extracted from the input file for event
simulation.

inmodel [file]
Input model XML file.

caldb [string]
Calibration database.

irf [string]
Instrumental response function.

(edisp = no) [boolean]
Apply energy dispersion?

outevents [filel
Output event list or observation definition XML file.

(prefix = sim_events_) [string]
Prefix for event list in observation definition XML file.

(startindex = 1) [integer]
Start index of event list in observation definition XML file.

(seed = 1) [integer]
Integer seed value to be used for Monte Carlo simulations. Keep this
parameter at the same value for repeatable simulations, or increment
this value for subsequent runs if non-repeatable simulations are
required.

ra [reall
Right Ascension of CTA pointing (J2000, in degrees).

dec [reall
Declination of CTA pointing (J2000, in degrees).

rad [reall
Radius of CTA field of view (simulation cone radius) (in degrees).

tmin [time]
Start time (UTC string, JD, MJD or MET in seconds).

tmax [time]
Stop time (UTC string, JD, MJD or MET in seconds).



(mjdref = 51544.5) [reall
Reference Modified Julian Day (MJD) for simulated events. The times in
seconds for each event are counted from this reference time on.

emin [reall
Lower energy limit of simulated events (in TeV).

emax [reall
Upper energy limit of simulated events (in TeV).

(deadc = 0.95) [reall
Average deadtime correction factor.

(maxrate = 1.0e6) [real]
Maximum photon rate for source models. Source models that exceed this
maximum photon rate will lead to an exception as very likely the
specified model normalisation is too large (probably due to the
a misinterpretation of units). Note that ctools specifies intensity
units per MeV.

Standard parameters

(nthreads = 0) [integer]
Number of parallel processes (O=use all available CPUs).

(publish = no) [boolean]
Specifies whether the event list(s) should be published on VO Hub.

(chatter = 2) [integer]
Verbosity of the executable:
chatter = 0: no information will be logged

chatter = 1: only errors will be logged

chatter = 2: errors and actions will be logged
chatter = 3: report about the task execution

chatter = 4: detailed report about the task execution

(clobber = yes) [boolean]
Specifies whether existing files should be overwritten.

(debug = no) [boolean]
Enables debug mode. In debug mode the executable will dump any log file output to the cons



(mode = ql) [string]
Mode of automatic parameters (default is ql, i.e. "query and learn").

(logfile = ctobssim.log) [string]
Name of log file.

Related tools or scripts

csobsdef

If you run a tool from the command line you will be asked directly for all the relevant param-
eters, and you will be offered a default choice. This is also a great way to discover how to use the
tools. After setting all parameters the execute() method is called to execute the ctobssim tool. On
output the events.fits FITS file is created.

From Python alternatively you can use the run() method, that will run the task without writ-
ing any output to disk. The output will be accessible from Python, and can be used to build in
memory-pipelines to implement complex analysis workflows. The key object in memory after the
simulation is a container of simulated observations, that we will now inspect.

In [4]: print(sim.obs())
print(sim.obs () [0])

=== GObservations ===

Number of observations ...: 1
Number of models ...: 2

Number of observed events .: 801933
Number of predicted events : O

=== GCTAObservation ===

Name ...:

Identifier ...: 000001

Instrument ...: CTA

Event file ...: events.fits

Event type ...: Eventlist
Statistic ...: cstat

Ontime ...: 3599.99999976158 s
Livetime ...: 3527.99999976635 s
Deadtime correction ...: 0.98
User energy range ...: undefined
=== GCTAPointing ===

Pointing direction ...: (RA,Dec)=(83.5,22.8)
=== GCTAResponselrf ===

Caldb mission ...: cta

Caldb instrument ...: prod3b-v2
Response name ...: South_z40_0.5h
Energy dispersion ...: Not used



Safe energy range ...: undefined

=== GCTAEventList ===

Number of events ...: 801933 (disposed in "events.fits")
Time interval ...: 58849.0008007407 - 58849.0424674074 days
Energy interval ...: 0.03 - 150 TeV

Region of interest ...: RA=83.5, DEC=22.8 [0,0] Radius=5 deg
=== GSkyRegions ===

Number of regions ...: O

There is only one CTA observation in the container. The observation contains a CTA event list.
We can therefore inspect some of the event properties, for example look at their energy spectrum.

In [5]: events = sim.obs() [0].events()

ax = plt.subplot()
ax.set_yscale('log')
ax.set_xlabel('LoglO(Energy [TeV])')

energies = []
for event in events:

energies.append(event.energy () .1ogl0TeV())

n, bins, patches = plt.hist(energies)
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1.2 Selecting event data

As next step you may want to select some events from the simulated event data. For example,
let’s say that you want to restrict the events to a region of interest (ROI) of 3 degrees around the
pointing direction, you want to extract a 30 minutes time slice from the data, and you want to
limit the energy range of the events to 0.1 - 100 TeV.

In [6]: sel = ctools.ctselect()
sel['inobs'] = 'events.fits'
sel['rad'] = 3.
sel['tmin'] '2020-01-01T00:00:00"
sel['tmax'] '2020-01-01T00:30:00"
sel['emin'] 0.1
sel['emax"'] 100.
sel.run()

If you want to skip selection in a given dimension you can pass 'INDEF for one/several selec-
tion parameters. Otherwise, we can verify that the cuts reduced largely the number of events.

In [7]: print(sel.obs())
print(sel.obs() [0])

=== GObservations ===

Number of observations ...: 1
Number of models ...: O

Number of observed events .: 143635
Number of predicted events : O

=== GCTAObservation ===

Name ...:

Identifier ...: 000001

Instrument ...: CTA

Event file ...: events.fits

Event type ...: Eventlist

Statistic ...: cstat

Ontime ...: 1800.00000017881 s

Livetime ...: 1764.00000017324 s

Deadtime correction ...: 0.979999999998889
User energy range ...: undefined

=== GCTAPointing ===

Pointing direction ...: (RA,Dec)=(83.5,22.8)
Response function ...: undefined

=== GCTAEventList ===

Number of events ...: 143635 (loaded)

Time interval ...: 58849.0008007407 - 58849.0216340741 days
Energy interval ...: 0.1 - 100 TeV

Region of interest ...: RA=83.5, DEC=22.8 [0,0] Radius=3 deg
=== GSkyRegions ===

Number of regions ...: O



Note that we have loaded the events from disk. From Python you can also get the events by
passing to the tool constructor the observation container from a previous tool.

In [8]: sel = ctools.ctselect(sim.obs())
sel['rad'] = 3.
sel['tmin'] '2020-01-01T00:00:00"
sel['tmax'] '2020-01-01T00:30:00"'
sel['emin'] 0.1
sel['emax'] 100.
sel.run()

Note that observation containers can have models attached. In this case we carry the informa-
tion of the model used for the simulation.

In [9]: print(sel.obs().models())

=== (GModels ===

Number of models ...: 2

Number of parameters ...: 10

=== GModelSky ===

Name ...: Crab

Instruments ...: all

Observation identifiers ...: all

Model type ...: PointSource

Model components ...: "PointSource" * "PowerLaw" * "Constant"

Number of parameters ...: 6

Number of spatial par's ...: 2

RA ...: 83.6331 [-360,360] deg (fixed,scale=1)

DEC ...: 22.0145 [-90,90] deg (fixed,scale=1)

Number of spectral par's ..: 3

Prefactor ...: 5.7e-16 +/- 0 [1le-23,1e-13] ph/cm2/s/MeV (free,scale=le-16,gradient)

Index ...: -2.48 +/- 0 [-0,-5] (free,scale=-1,gradient)

PivotEnergy ...: 300000 [10000,1000000000] MeV (fixed,scale=1000000,gradient)
Number of temporal par's ..: 1

Normalization ...: 1 (relative value) (fixed,scale=1,gradient)

Number of scale par's ...: 0
=== GCTAModelIrfBackground ===

Name ...: CTABackgroundModel

Instruments ...: CTA

Observation identifiers ...: all

Model type ...: "PowerLaw" * "Constant"

Number of parameters ...: 4

Number of spectral par's ..: 3

Prefactor ...: 1 +/- 0 [0.001,1000] ph/cm2/s/MeV (free,scale=1,gradient)

Index ...: 0 +/- 0 [-5,5] (free,scale=1,gradient)

PivotEnergy ...: 1000000 [10000,1000000000] MeV (fixed,scale=1000000,gradient)
Number of temporal par's ..: 1

Normalization ...: 1 (relative value) (fixed,scale=1,gradient)



1.3 Generating a skymap

It’s ofter useful to look at your data as sky map. The skymap is generated via the ctskymap tool.

In [10]: skymap = ctools.ctskymap(sel.obs())
skymap['coordsys'] = 'CEL'
skymap['proj'] 'CAR'
skymap['xref'] = 83.63
skymap['yref'] = 22.01
skymap['binsz'] = 0.02
skymap [ 'nxpix'] = 150
skymap['nypix'] = 150
skymap['emin'] = 0.1
skymap['emax'] 100.
skymap [ 'bkgsubtract'] = 'NONE'
skymap.run()

We can now inspect the event map.

In [11]: # Slightly smooth the map for display to suppress statistical fluctuations
#skymap . skymap () . smooth ('GAUSSIAN',0.02)

from matplotlib.colors import LogNorm

ax = plt.subplot()

plt.imshow(skymap.skymap() .array() ,origin="'lower',
extent=[83.63+0.02%150,83.63-0.02%150,22.01-0.02*150,22.01+0.02%150],
# boundaries of the coord grid
norm=LogNorm(vmin=0.1))

ax.set_xlabel('R.A. (deg)')

ax.set_ylabel('Dec (deg)')

cbar = plt.colorbar()

cbar.set_label('Counts')
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You can see that there is a background that is appreciable even compared to a bright source
as the Crab nebula. We can produce a background-subtracted skymap. For this there are several
options. We may use the background model in the IRF. We will test here the RING method, which
is a classical method in which the Off /background region has the shape of a ring.

In [13]: skymap = ctools.ctskymap(sel.obs())
skymap['coordsys'] = 'CEL'

skymap['proj'] = 'CAR'
skymap['xref'] = 83.63
skymap['yref'] = 22.01
skymap['binsz'] = 0.02
skymap [ 'nxpix'] = 150
skymap['nypix'] = 150

skymap['emin'] = 0.1

skymap['emax'] = 100.

skymap [ 'bkgsubtract'] = 'RING'

skymap['roiradius'] = 0.1 #0On/source region radius
skymap['inradius'] = 0.3 #0ff/background ring inner radius
skymap['outradius'] = 0.5 #0ff/background ring outer radius
skymap['iterations'] = 3

skymap.run()

Note that to be sure to exclude regions with significant gamma-ray emission from the
Off/background estimation regions we have used an iterative procedure with 3 iterations.

In [14]: ax = plt.subplot()
plt.imshow(skymap.skymap() .array() ,origin="'1lower"',

10



extent=[83.63+0.02%150,83.63-0.02%150,22.01-0.02*150,22.01+0.02%150],
# boundaries of the coord grid
norm=LogNorm(vmin=0.1))

ax.set_xlabel('R.A. (deg)')

ax.set_ylabel('Dec (deg)"')

cbar = plt.colorbar()

cbar.set_label('Counts')
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As expected the background has been suppressed. Note that in this case the image in intrinsi-
cally smoothed to the scale of the On region chosen.

1.4 Unbinned analysis

An unbinned 3D analysis is the simplest option, since we just need to pass the simulated /selected
event list to the tool ctlike. Note that our event list has already a sky model attached that we
can therefore use for the fit. You can reset the model or change it before passing the observations
to ctlike if you need to. If you run ctlike from the command line you will need to pass a model
independently. Note that we ignore energy dispersion in the fit for the sake of computing speed.

In [15]: like = ctools.ctlike(sel.obs())
like.run()

We can check the status of the likelihood optimisation.

In [16]: print(like.opt())

11



=== GOptimizerLM ===

Optimized function value ..: 719960.296
Absolute precision ...: 0.005
Acceptable value decrease .: 2
Optimization status ...: converged
Number of parameters ...: 10

Number of free parameters .: 4

Number of iterations ...: 2

Lambda ...: 1e-05

Let’s look at the fitted model.
In [17]: print(like.obs() .models())

=== GModels ===

Number of models ...: 2

Number of parameters ...: 10
=== GModelSky ===

Name ...: Crab

Instruments ...: all

Observation identifiers ...: all

Model type ...: PointSource

Model components ...: "PointSource" * "PowerLaw" * "Constant"

Number of parameters ...: 6

Number of spatial par's ...: 2

RA ...: 83.6331 [-360,360] deg (fixed,scale=1)

DEC ...: 22.0145 [-90,90] deg (fixed,scale=1)

Number of spectral par's ..: 3

Prefactor ...: 5.78700392009128e-16 +/- 8.19496046111996e-18 [1e-23,1e-13] ph/cm2/s/MeV (fre

Index ...: -2.47440817790876 +/- 0.0122563594809813 [-0,-5] (free,scale=-1,gradient)

PivotEnergy ...: 300000 [10000,1000000000] MeV (fixed,scale=1000000,gradient)

Number of temporal par's ..: 1

Normalization ...: 1 (relative value) (fixed,scale=1,gradient)

Number of scale par's ...: O

=== GCTAModelIrfBackground ===

Name ...: CTABackgroundModel

Instruments ...: CTA

Observation identifiers ...: all

Model type ...: "PowerLaw" * "Constant"

Number of parameters ...: 4

Number of spectral par's ..: 3

Prefactor ...: 1.00010974533329 +/- 0.00517346502054174 [0.001,1000] ph/cm2/s/MeV (free,scal

Index ...: 0.000736147285176287 +/- 0.00307607601825231 [-5,5] (free,scale=1,gradient)

PivotEnergy ...: 1000000 [10000,1000000000] MeV (fixed,scale=1000000,gradient)

Number of temporal par's ..: 1

Normalization ...: 1 (relative value) (fixed,scale=1,gradient)
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As you can see al the free parameters are compatible with the true Mote Carlo values. Note
that we have adjusted also the background model by means of a power-law correction.

1.5 Inspecting the fit residuals

After having done a maximum likelihood fit it is good practice to inspect the fit residuals. You can
inspect the spectral residuals, and, if you have run a 3D fit, also the spatial residuals. Let’s start
with the spectral residuals, for which we use the csresspec tool.

In [18]: resspec = cscripts.csresspec(like.obs())
resspec['algorithm'] = 'SIGNIFICANCE'
resspec['mask'] = False
resspec['components'] = True
resspec['outfile'] = 'resid_spectrum.fits'
resspec.execute()

We have chosen to compute the residuals as number of Gaussian sigma’s based on the calcu-
lation of significance from the likelihood ratio test for Poisson statistics. We have set the ‘'mask’
parameter to False, that is, we are integrating the residuals over the whole area covered by the
events. We have also set the ‘components” parameter to True to that we will see the contribution
of the different components to the model. We can visualize the residuals using an example script
provided with the ctools installation

In [19]: import sys
import os
sys.path.append(os.environ['CTOOLS']+'/share/examples/python/")

from show_residuals import plot_residuals
plot_residuals('resid_spectrum.fits','',0)
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Over the whole field of view the data are largely dominated by background events. What
we care mostly about, however, is how good our model is in the region of the source. We will
therefore use the mask to only look at the residuals in a 0.2 deg region around the Crab nebula.

In [20]: resspec = cscripts.csresspec(like.obs())
resspec['algorithm'] = 'SIGNIFICANCE'
resspec['mask'] = True
resspec['ra'] = 83.63

resspec['dec'] = 22.01

resspec['rad'] = 0.2

resspec['components'] = True

resspec['outfile'] = 'resid_Op2deg_spectrum.fits'

resspec.execute()

plot_residuals('resid_Op2deg_spectrum.fits','',0)
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You can appreciate that the models provides a good spectral description of the data both
around the source and over the entire field of view.

Next we will look at the spatial residuals by creating a map of residuals using the csresmap
tool.

In [21]: resmap = cscripts.csresmap(like.obs())
resmap['algorithm'] = 'SUBDIV'
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resmap['coordsys'] = 'CEL'
resmap['proj']l = 'CAR'
resmap['xref'] = 83.63
resmap['yref'] = 22.01
resmap['binsz'] = 0.02
resmap[ 'nxpix'] 150
resmap['nypix'] = 150
resmap['emin'] = 0.1
resmap['emax'] 100.
resmap.run()

Here we have chosen the SUBDIV algorithm, that is, we will be looking as residuals as a
fraction of the total events number.

We can now inspect the residual map, again with a slight smoothing to suppress statistical
fluctuations.

In [22]: resmap._resmap.smooth('GAUSSIAN',0.05)

ax = plt.subplot()

plt.imshow(resmap._resmap.array(),origin="'lower',
cmap='bwr',vmin=-0.5,vmax=0.5,
extent=[83.63+0.02%150,83.63-0.02%150,22.01-0.02%150,22.01+0.02%150])
# Boundaries of the coord grid

ax.set_xlabel('R.A. (deg)')

ax.set_ylabel('Dec (deg)')

cbar = plt.colorbar()

cbar.set_label('Residuals/Total Counts')
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Also the spatial residuals are flat over the field of view.

1.6  On/Off spectral analysis

In classical IACT analyses the background is normally derived from the data, by defining On
(source) and Off (background) regions. An On/Off analysis is recommended if you want to assure
minimal dependency on the Monte Carlo background model.

For an On/Off spectral analysis you need first to identify the On and Off regions, and to build
binned count spectra for them. This is accomplished via the csphagen tool (the count spectra are
stored in a format from X-ray analysis called PHA).

By default, csphagen calculates the background counts using the REFLECTED algorithm, in
which, for each individual observation the background regions have the same shape as the source
region, and are rotated around the center of the camera keeping the same offset. As many re-
flected regions as possible are used, excluding the area of the camera near the source position.
Since the background rates are expected to be approximately radially symmetric in camera coor-
dinates, this method minimizes the impact of the background rate modeling from Monte Carlo.
An optional exclusion map (in FITS WCS format) can be provided as input through the hidden
inexclusion parameter if other regions of significant gamma-ray emission ought to be excluded
from the background computation.

In [23]: phagen = cscripts.csphagen(sel.obs())
phagen['ebinalg'] = 'LOG'
phagen['emin'] = 0.1
phagen['emax'] 100.0
phagen['enumbins'] = 30
phagen['coordsys'] = 'CEL'

phagen['srcname'] = 'Crab'
phagen['ra'] = 83.63
phagen['dec'] = 22.01
phagen['rad'] = 0.2
phagen['bkgmethod'] = 'REFLECTED'
phagen['use_model_bkg'] = False

phagen.run()

Note that we have used the "use_model_bkg’ parameter to ignore the input background model
and derive all background information from the data (assuming that the background event rate
per solid angle unit as a function fo energy is the same in the On and Off regions). On the other
hand we have specified the source name, Crab, to ensure to properly account for the PSF in the
evaluation of the On/Off response. If you set this parameter to NONE a pointlike source at the
center of the On region will be considered.

Let’s peek at the resulting observations and models.

In [24]: print(phagen.obs() [0])
print (phagen.obs() .models())

=== GCTAOnOffObservation ===
Name ...:
Identifier ...: 000001
Instrument ...: CTAOnOff
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Statistic ...: wstat

Ontime ...: 1800.00000017881 s
Livetime ...: 1764.00000017324 s
Deadtime correction ...: 0.979999999998889
=== GPha ===
Exposure ...: 1764.00000017324 s
Number of bins ...: 30
Energy range ...: 100 GeV - 100 TeV
Observation energy range ..: 100 GeV - 100 TeV
Total number of counts ...: 6390
Underflow counts ...: O
Overflow counts ...: O
Outflow counts ...: O
=== GPha ===
Exposure ...: 1764.00000017324 s
Number of bins ...: 30
Energy range ...: 100 GeV - 100 TeV
Observation energy range ..: 100 GeV - 100 TeV
Total number of counts ...: 5360
Underflow counts ...: O
Overflow counts ...: O
Outflow counts ...: O
=== GArf ===
Number of bins ...: 101
Energy range ...: 50 GeV - 120 TeV
=== GRmf ===
Number of true energy bins : 101
Number of measured bins ...: 30
True energy range ...: 50 GeV - 120 TeV
Measured energy range ...: 100 GeV - 100 TeV
=== GModels ===
Number of models ...: 1
Number of parameters ...: 6
=== GModelSky ===
Name ...: Crab
Instruments ...: all
Observation identifiers ...: all
Model type ...: PointSource
Model components ...: "PointSource" * "PowerLaw" * "Constant"
Number of parameters ...: 6
Number of spatial par's ...: 2
RA ...: 83.6331 [-360,360] deg (fixed,scale=1)
DEC ...: 22.0145 [-90,90] deg (fixed,scale=1)
Number of spectral par's ..: 3
Prefactor ...: 5.7e-16 +/- 0 [1le-23,1e-13] ph/cm2/s/MeV (free,scale=le-16,gradient)
Index ...: -2.48 +/- 0 [-0,-5] (free,scale=-1,gradient)
PivotEnergy ...: 300000 [10000,1000000000] MeV (fixed,scale=1000000,gradient)
Number of temporal par's ..: 1
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Normalization ...: 1 (relative value) (fixed,scale=1,gradient)
Number of scale par's ...: 0

The observation entails four objects, two GPha objects for the On and Off spectra, respectively
with ancillary information, notably the scaling factor to be applied to the background spectrum
and the boundaries of the nergy bins. The GArf object contains the spectral response of the instru-
ment extracted from the instrument response functions, including effective area for gamma-ray
detection and background rates. The GRmf object contains the remaining part of the instrument
response, i.e., an energy redistribution matrix. Note that we are performing a 1D analysis: the
effect of the PSF is already folded into the spectral response computation taking into account the
morphology of the source as specified in the input model. Note that the fit statistic is set to wstat,
that is, we are not using a background model and the background rates will be treated in a fit as
nuisance parameters.

We are now ready to run the On/Off fit. For this it’s sufficient to pass to ctlike the On/Off
observations container.

In [25]: like = ctools.ctlike(phagen.obs())
like.run()

And we can look at the results.

In [26]: print(like.opt())
print(like.obs() .models())

=== GOptimizerLM ===
Optimized function value ..: 17.318
Absolute precision ...: 0.005
Acceptable value decrease .: 2
Optimization status ...: converged
Number of parameters ...: 6
Number of free parameters .: 2
Number of iterations ...: 2
Lambda ...: 1e-05
=== GModels ===
Number of models ...: 1
Number of parameters ...: 6
=== GModelSky ===
Name ...: Crab
Instruments ...: all
Observation identifiers ...: all
Model type ...: PointSource
Model components ...: "PointSource" * "PowerLaw" * "Constant"
Number of parameters ...: 6
Number of spatial par's ...: 2
RA ...: 83.6331 [-360,360] deg (fixed,scale=1)
DEC ...: 22.0145 [-90,90] deg (fixed,scale=1)
Number of spectral par's ..: 3
Prefactor ...: 5.65475655212032e-16 +/- 8.13522205014716e-18 [1e-23,1e-13] ph/cm2/s/MeV (fre
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Index ...: -2.47165180054983 +/- 0.0124181735856028 [-0,-5] (free,scale=-1,gradient)

PivotEnergy ...: 300000 [10000,1000000000] MeV (fixed,scale=1000000,gradient)
Number of temporal par's ..: 1

Normalization ...: 1 (relative value) (fixed,scale=1,gradient)

Number of scale par's ...: O

The source model spectral parameters are compatible with the true Monte Carlo values and
the results from the unbinned 3D analysis.
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