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See § 2.5 ”What is new in SparSpec 1.4 ?” to see the improvements from SparSpec 1.2

An html version of this document is available at http://www.ast.obs-mip.fr/SparSpec

SparSpec proposes an alternate approach to estimate frequencies in time series. Indeed, classical sequential
methods, that iteratively deconvolve the Fourier spectrum from the effect of the spectral window, can be
very sensitive to sampling artifacts and may lead to erroneous results. The approach used here addresses the
problem of fitting multiple sinusoids as the sparse representation of the data in an overcomplete dictionary of
pure frequencies. In the signal processing terminology, the latter refers to Basis Pursuit De-Noising while the
former sequential approach corresponds to some Matching Pursuit strategy.

Keywords: time series analysis, spectrum estimation, irregular sampling, sparse representations, ℓ1 penali-
sation.

SparSpec propose une nouvelle approche pour l’estimation de fréquences à partir de séries temporelles. En
effet, les méthodes classiques, basées sur la déconvolution itérative du spectre de Fourier, peuvent être très
sensibles à la présence d’artéfacts dûs à l’échantillonnage, et peuvent alors déboucher sur des résultats erronés.
L’approche mise en œuvre ici considère le problème de l’estimation de sinusoides comme la représentation
parcimonieuse des données dans un dictionnaire redondant de fréquences pures. Dans le domaine du traitement
du signal, cette méthodologie s’inscrit dans les techniques de type Basis Pursuit De-Noising, alors que les
approches habituelles séquentielles s’apparentent à des stratégies de type Matching Pursuit.

Mots-clés: analyse de séries temporelles, estimation spectrale, échantillonnage irrégulier, représentations
parcimonieuses, pénalisation ℓ1.

Please acknowledge the use of this software in any publication: ”The SparSpec software is
available at http://www.ast.obs-mip.fr/Softwares” and cite the reference S. Bourguignon, H. Car-
fantan and T. Boehm, SparSpec: a new method for fitting multiple sinusoids with irregularly sampled data,
Astronomy and Astrophysics, vol. 462, pp. 379-387, Jan 2007 Please send a copy of such publication to
SparSpecATast.obs-mip.fr.
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1 Overview

Let (tn, yn)n=1...N be N samples of available data: the physical quantity yn is obtained at instant tn. Let
{xk}k=−P ... P denote the complex-valued amplitude spectrum discretised on a frequency grid of the form
{ k

P
f

max
}k=−P ... P , with arbitrarily small frequency step f

max
/P , i.e., arbitrarily large P .

The idea is to find the vector of complex-valued spectral amplitudes that correctly fits the data with the
fewest number of non-zero entries: the sparsest spectrum that models the data. A classical approach to do this
is to solve the following optimisation problem:

x = arg min ||y − Wx||
2

+ λ
∑

k

|xk|

where vectors y and x collect the available data and the unknown spectral amplitudes, respectively, and W is the

complex exponential matrix: W =
{

e2iπ k

P
fmaxtn

}

k=−P ... P,N=1 ... N
. For a correct value of parameter λ > 0,

a sparse vector x is obtained, which locates the frequencies at the corresponding non-zero values: frequencies
fJ =

{

j
P

f
max

}

j∈J
are extracted from the data, where J collects the indexes of the non-zero values of x. As the

estimation of the corresponding amplitudes are generally biased (due to the ||x||1 penalisation term), a posterior
step is performed to correctly re-estimate the amplitudes for frequencies fJ using least-squares (recall that for
a given set of frequencies fJ estimating the best amplitudes turns to a linear problem which is over-determined
if #J ≤ N , so least-squares perform well).

More details about the method can be found in S. Bourguignon et al., SparSpec: a new method for fitting
multiple sinusoids with irregularly sampled data, Astronomy and Astrophysics, vol. 462, pp. 379-387, Jan 2007.

New: SparSpec 1.4 is able to take into account various noise levels in the data. See example
of § 4.2 for more details.

2 How to use SparSpec

Important: the SparSpec project is still in its infancy! In particular, depending on your platform, the selected
parameters... and on your data, it still may fail, crash or provide inaccurate results. In this case, please, do
not resign! Send your comments and/or bug reports to SparSpecATast.obs-mip.fr and we will do our best to
help you.

2.1 Download

The SparSpec package gives the sources and executables for Linux (tested with Linux Fedora Core 4 and Ubuntu
Dapper) and Windows (tested with Windows XP and Windows 2000).

SparSpec is written in C using GTK+-2.0 for the graphical user interface (GUI). This program is under the
GPL license so you can download the sources and modify them under the terms of this license.

2.2 Graphical mode

An example of data analysis with SparSpec is given in Section 4.

The Graphical User Interface is divided into four main menus:

• Data: here you can load the time series you want to analyse, as well as display and plot the corresponding
curve. The time series should be a two-column (tn and yn) ascii file MYFILE.dat.
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• Parameters: this section allows to select the upper frequency limit f
max

and the number of discretised
frequencies P (the higher P , the higher the frequency precision... but the longer will be the computation
time and the more RAM is required !)

If the data are irregularly sampled, aliasing is pushed at much higher frequencies than for regular sampling
and there is no more Nyquist limit. So, select f

max
according to some physical knowledge about what you

are searching if you can. In this menu, you can plot the spectral window |W (f)| = |
∑

n e−2iπftn | between
−f

max
and f

max
and the Fourier Spectrum of the data |Y (f)| = |

∑

n yne−2iπftn |. Both may help you to
select a reasonable value: in particular |W (f)| should be free from any periodicity or pseudo-periodicity
(i.e., f

max
not too high), but it should also show sidelobes. If not, f

max
may not be in adequation with the

sampling scheme of your data. The unit of f
max

is the inverse of the unit of the instants tn.

• Computation: this is the core of SparSpec. Select a value for parameter λ and start the computation.

Selecting a correct value for λ is still not an automatic issue. However, reasonable bounds can be obtained:
if λ is too high, x is identically zero; if λ is too small, then x is not sparse any more. Parameter λ also has
a physical interpretation: for the estimated amplitude spectrum x, λ is the upper bound of the Fourier
spectrum of the residual y−Wx. See the above referenced paper for more details. In SparSpec, you enter
the normalised value for λ/λ

max
∈ [0, 1], where λ

max
= maxk |(W

†y)k|. (For λ ≥ λ
max

one has x = 0). In
practice, set λ/λ

max
to a few percent, e.g., 10%, decrease the value and stop before under-regularisation

is reached, that is, when the solution shows many spurious peaks.

After optimisation succeeds, extracted components can be displayed as a table and plotted in the frequency
domain, jointly to the initial and residual Fourier spectra. Frequencies are also saved in ascii format in
file MYFILE.spec, where MYFILE.dat is the ascii file containing the time series.

• Help: displays a reduced version of this document.

2.3 Console mode

If you do not want to use the GTK-based Graphical User Interface or want to include SparSpec results in an
automated procedure, a console mode is also available. To start in console mode, type at the command line:
./SparSpec nogtk MYFILE.dat

where MYFILE.dat contains the data. This option requires adequate values for parameters P , f
max

and λ/λ
max

have been stored in configuration file MYFILE.conf. Otherwise, default parameters are used, that may be not
optimal. After optimisation succeeds, extracted components are saved in ascii format in file MYFILE.spec.

2.4 Advanced options

After the first utilisation with a given time series (stored in a file MYFILE.dat), SparSpec generates a configu-
ration file named MYFILE.conf in ascii format, storing the last set of parameters that were used (f

max
, P and

normalised λ/λ
max

). Additional technical parameters are also stored:

• threshold is a numerical threshold under which complex amplitudes |xk| are considered zero. Its default
value is 10−6.

• nitmax is the maximum number of iterations authorised by the optimisation procedure. Its default value
is 50000.

• L fixes the frequency the zero values of the iterates are visited in the optimisation procedure. Setting
L > 1 allows to save up computational time. Its default value is 100.

• relax is a relaxation parameter in the range ]0, 2[ used by the Iterative Coordinate Descent procedure,
that allows to speed up the optimisation. Its default value is 1.5.

• weight is a binary value parameter which indicates if the various noise levels in the data are taken into
account (weight=1) or not (weight=0). See § 2.5 for more details and § 4.2 for an example.

All these parameters can be modified by editing file MYFILE.conf (see Table 2 for an example of .conf file).
Beware: just change the parameter values without modifying the structure of the file.
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2.5 What is new in SparSpec 1.4 ?

SparSpec 1.4 is an improved version of SparSpec 1.2.

• A bug was fixed (when then number of unknown was less than the number of data, SparSpec 1.2 did not
converge).

• Initialisation : The optimisation algorithm is initialised with a previous result, if exists. This considerably
saves up computational time.

• Graphical display : It is now possible to zoom inside graphical windows using the mouse: zoom in an
area by clicking the left button and dragging to draw a rectangle; zoom out with a single left or right
click.

• Accounting for various noise levels in the data: a proper noise variance σ2

n associated to data yn can be
given in the data file as a third column. In such a case, each line of the data file is made of tn, yn and
σ2

n. Such information is taken into account to compute the solution from these weighted data in the least
square sense.

If the weighted option is selected, the solution is defined as

x = arg min(y − Wx)†D2(y − Wx) + λ
∑

k

|xk|

where D is a diagonal matrix with 1

σn

as nth element and the Fourier spectra are computed using the
weighted data :

Y(f) =
1

(
∑

1/σ2
n)

N
∑

n=1

(yn/σ2

n)e−2iπftn .

It is still possible to draw the classically defined spectra by selecting the Unweighted option (in Parameters
or Computation menus). It is also possible to compute the solution without accounting for the noise
variance (select the Unweighted option before computing the solution). The use of the Unweighted option
can also be specified in the .conf file.
See example of § 4.2 for more details on estimating frequencies accounting for various noise levels in the
data.

2.6 To-do list

Many things have to be done to improve SparSpec, such as:

• Display a progression bar during computation.

• Display the L-curve to help to choose parameter λ (or any other parameter tuning rule).

• Improve graphical display (print graphs. . . )

• Monte-Carlo simulations to derive confidence levels on the estimated parameters.

3 Links

3.1 Bibliography

• The paper by Gray and Desikachary (1973) may be the first paper on sequential methods to estimate mul-
tiple sinusoids: D.F. Gray and K. Desikachary, A new approach to periodogram analyses, The Astrophysical
Journal, April 1973, vol. 181, pp. 523–530.

• The cleanest methodology was described by G. Foster (1995). Data in this paper were used in the test
example provided in Section 4: G. Foster, The Cleanest Fourier spectrum, The Astronomical Journal,
April 1995, vol. 109, pp. 1889–1902.
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• The first paper by S.S. Chen et al. (1998) introducing the Basis Pursuit De-Noising : S.S. Chen,
D.L. Donoho and M.A. Saunders, Atomic decomposition by basis pursuit, SIAM Journal on Scientific
Computing, 20(1):33–61, 1998.

• The description of SparSpec, applying this methodology to the spectral analysis problem with an own-
developed optimisation algorithm: S. Bourguignon, H. Carfantan and T. Boehm, SparSpec: a new method
for fitting multiple sinusoids with irregularly sampled data, Astronomy and Astrophysics, vol. 462, pp. 379-
387, Jan 2007.

3.2 Online stuff

• Period04 is a software implementing a sequential algorithm that also aims at fitting multiple sinusoids.
It can be viewed as an implementation of the cleanest strategy, as explained in G. Foster, The Cleanest
Fourier spectrum, The Astronomical Journal, 109(4):1889–1902, April 1995.

3.3 Contact us

SparSpec is currently maintained by Hervé CARFANTAN and Sébastien BOURGUIGNON. Many thanks to
Ali KHAAZAL and Abdelouahed LASFAR, who contributed to the implementation of this project.

Send any comment, bug report or improvement suggestion at:

SparSpecATast.obs-mip.fr

4 Examples

4.1 First example

The artificial data set of our first example is similar to the data proposed by Foster (1995, data set A), which
consist in three sinusoids with periods 370, 230 and 100 days and amplitudes 3, 2.828 and 3, respectively. A
constant value of 10 is added. An initial data set was generated with 200 points sampled every 10 days. The
final data sets shows gaps of 100 days every 365 days and gaps of 10 days every 30 days. To make the problem
a bit trickier, a fourth sinusoid was added with period 122.5 days and amplitude 3, such that the sidelobes
caused by the annual gaps (for periods 370 and 122.5 day) superimpose at a period of 184 days (1/122.5 - 1/365
= 1/370 + 1/365 = 1/184), generating a high false peak in the Fourier spectrum. White Gaussian noise with
standard deviation of 0.3 was also added. Data are stored in the test.dat file given with the SparSpec package.

To analyse these data with SparSpec, first call SparSpec and load the data with the load button in the Data
menu (see Fig. 1.a). To verify the data are correctly loaded, you can plot them (see Fig. 1.b): the annual gaps
can be seen easily.

In the Parameters menu, you now have to set the analysis parameters f
max

and P. The mean sampling period
of the data is around 13 days so a maximal frequency of 0.5 ∗ 1

13
= 3.810−2 cycle per day (c/d) is a reasonable

first guess. Note that, for these data, sampling instants were extracted from a regular sampling scheme, so f
max

should be set theoretically to less than 0.5 ∗ 1

10
= 5.10−2 c/d to avoid aliasing. For P = 1000, you can verify in

the Fourier Spectrum of the data (see Fig. 2.a) that most energy is concentrated under 2.10−2 c/d (for clarity,
the mean value of the data was subtracted to plot the spectrum). You can also check the shape of the spectral
window (see Fig. 2.b), with its secondary lobes around the frequency 3.10−3 c/d (period 1/365 day).

In the Computation menu, you have to choose for parameter λ/λ
max

∈ [0, 1]. Remember that this parameter
can be viewed as an upper bound of the Fourier spectrum of the residual, so 10% (relatively to the maximum
of the Fourier spectrum of the data) is a realistic first choice. SparSpec results can be displayed as a Table
(see Fig. 3.a), a frequency domain plot (see Fig. 3.b) or a time domain plot (see Fig. 3.c). You can verify that
SparSpec correctly estimates the four frequencies and amplitudes, as well as the data mean. A fifth frequency is
also estimated, but with an amplitude negligible compared to others. Note that during computation, the shell
window displays the state of the optimisation algorithm.

Finally, SparSpec saves results (frequencies, amplitudes and phases) in file test.spec (see table 1) and
produces the configuration file test.conf (see table 2) with the parameters used for the computation.
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a) b)

Figure 1: Load the data and plot the time series.

a) b)

Figure 2: Fourier Spectrum of the data and spectral window.

SparSpec results on /tmp/SparSpec/test.dat

for Fmax=0,050000, P=1000 and Lambda/Lambda_max=0,100000

Frequ. Ampl. Phase.

4,773959e-18 9,996442e+00 -1,577745e-11

2,700000e-03 2,974487e+00 1,862453e+00

4,345023e-03 2,808216e+00 -1,570961e+00

5,450000e-03 2,179553e-02 3,772596e-01

8,152573e-03 2,986128e+00 -2,249254e+00

1,000746e-02 2,994560e+00 -1,192582e+00

Table 1: test.spec results file

6



a) b)

c) d)

Figure 3: SparSpec results a) list of estimated parameters, b) spectrum of the data and estimated frequencies,
c) zoom on the spectrum, d) time representation of the estimated model.
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P = 1000

fmax = 0,050000000000

Lambda/Lambda_max = 0,100000000000

threshold = 1,000000000000e-06

nitmax = 50000

L = 100

relax = 1,500000000000

###################################################################

# CAUTION !!! #

# This configuration file is generated automatically by SparSpec. #

# You can modify the parameter values. #

# Do not modify neither the parameters name nor their order. #

###################################################################

Table 2: test.conf configuration file

4.2 Second example

SparSpec 1.4 is able to account for various noise levels in the data: a proper noise variance σ2

n associated to
data yn can be given in the data file as a third column. The objective of this second example is to illustrate
the use of SparSpec 1.4 in such a case.

4.2.1 Maximum likelihood/least squares amplitude estimation

If the data have the same noise level (supposed additive Gaussian), it is well known that the maximum of the
Fourier spectrum corresponds to the maximum likelihood estimation of a single frequency model. This result
can be generalized to various noise levels in the data.

For a given set of frequencies fk, k = −K . . . K, the amplitude estimation in the least square sense (or in
the maximum likelihood sense if noise is considered additive Gaussian) leads to the minimization of criterion

JLS(x) = (y − Wx)†Γ−1(y − Wx),

where W is a Fourier-like matrix: Wn,k = exp(2jπfktn) and the noise covariance matrix is diagonal:
Γ =E{bb†} =diag{σ2

n}, with σ2

n as nth diagonal element. Let D =diag{ 1

σn

}, then

JLS(x) = (y − Wx)†D2(y − Wx),= ||Dy − DWx||2 = ||z − Mx||2,

with weighted data zn = yn

σn

and weighted matrix: Mn,k = 1

σn

exp(2jπfktn). For a single frequency fk, the
amplitude can be computed as

xk = (M(fk)†M(fk))−1M(fk)†z =
1

∑

1/σ2
n

N
∑

n=1

yn/σ2

ne−2jπfktn ,

where W(fk) is the column vector Wn(fk) = exp(2jπfktn). This is a weighted version of the Fourier Transform,
the unweighted version is retrieved for σ2

n = σ2,∀n.
One can easily show that this weighted Fourier Transform have similar properties than the classical one

(linearity, translation, modulation, convolution. . . ) In particular, if a signal is composed of a sum of complex
sinusoids with frequencies fk and amplitudes ak, then the weighted Fourier Transform of this signal is the sum
of spectral windows W (f) shifted at frequencies fk with amplitudes ak, where:

W (f) =
1

∑

1/σ2
n

N
∑

n=1

1

σ2
n

e−2jπfktn .
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4.2.2 Accounting for various noise levels in SparSpec 1.4

In SparSpec 1.4, the noise variance is taken into account: if the weighted option is selected in the Parameters
or Computation menus, the solution is defined, as explained above, as

x = arg min ||Dy − DWx||
2

+ λ
∑

k

|xk|

and the Fourier spectra are computed using the weighted data:

Y(f) =
1

∑

1/σ2
n

N
∑

n=1

(yn/σ2

n)e−2iπftn .

However, it is possible to draw the classically defined spectra by selecting the Unweighted option. It is also
possible to compute the solution without accounting for the noise variance (select the Unweighted option before
computing the solution).

4.2.3 An example

The data given in file test sigma.dat correspond to 3 sinusoids (of frequencies f1 = 0.1001 c/h (cycle per
hour), f2 = 0.12222 c/h and f3 = 0.15555 c/h, off the frequency grid of SparSpec, with respective amplitudes 1,
0.75, and 0.5). The signal is irregularly sampled to simulate observations during 8 days with two instruments,
the first one observing 8 hours every day, the second one observing 8 hours every two days (observing periods
between the two instruments are shifted by 8 hours). Gaussian noise was added to the signal, with fixed variance
for each instrument, but the noise variance (σ2

n) of the first instrument is 100 times larger than that of the second
one. Each line of the data file test sigma.dat is made of tn, yn and σ2

n. Data are presented in Fig 4.

a) b)

Figure 4: Data of file test sigma.dat: a) table of values and b) time graph (with error bars at ±σn).

It can be seen in Fig. 5 a) and b) that the spectral window, which already has high secondary lobes in
the unweighted case due to the periodicity of sampling, is highly modified in the weighted case, for which
the secondary lobes are more numerous and of larger amplitude. Thus, the use of weights highly modify the
spectrum of the data as can be seen in Fig. 5 c) and d). In the unweighted case, the Fourier spectrum shows
high peaks at frequencies f1 and f2 and the peak at f3 is totally hidden, due to the sidelobes of the spectral
window. In the weighted case, it is very difficult to analyse the spectrum, although it is statistically more
coherent.

Frequency estimation with SparSpec, with λ/λmax = 30% (the Fourier spectrum of the residual is required
to be smaller than 30% of the maximum of the data spectrum), shows similar results in both unweighted and
weighted cases, as the three frequencies are correctly estimated, see Fig. 6 a) and b). However, for λ/λmax = 5%,
one can see in Fig. 6 c) and d) that the three frequencies are still correctly estimated in the weighted case, while
in the unweighted case the number of detected frequencies is much larger than 3.
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a) b)

c) d)

Figure 5: Top: spectral windows; bottom: spectrum of the data. Left: unweighted case; right: weighted case.
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a) b)

c) d)

Figure 6: Spectrum of the data and frequencies estimated with SparSpec. Top: λ/λmax = 30%; bottom: λ/λmax

= 5%. Left: unweighted case; right: weighted case.
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To understand such results, one can compare in Fig. 7 the time representation of the estimated models. For
λ/λmax = 30%, the 3 frequencies are correctly estimated, both in the unweighted and weighted cases. However,
the estimated values ar not strictly identical and the estimated models have different behaviors. Indeed, in the
weighted case, the model perfectly fits the data with low noise variance, while the distance between the model
and the data with larger variance can be greater. In the unweighted case, the whole data are treated the same
way, independently of their noise variance. Thus, one can easily understand that, in order to reduce the residual
in the unweighted case (e.g. for λ/λmax = 5%), a greater number of sinusoids is necessary to perfectly fit the
model to the data, whatever is their proper noise variance.

This shows the significant improvement that can be reached by accounting for various noise levels in the
data.

a) b)

c) d)

Figure 7: Time representation of the model estimated with SparSpec. Top: λ/λmax = 30%; bottom: for λ/λmax

= 5%. Left: unweighted case; right: weighted case.

Finally, SparSpec saves results (frequencies, amplitudes and phases) in file test sigma.spec (see table 3) and
produces the configuration file test sigma.conf (see table 4) with the parameters used for the computation.
Note that the parameter weight indicates if the computation accounted for the weights in the data (weight=1)
or not (weight=0).
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SparSpec results on test_sigma.dat with weight=1

for Fmax=0,500000, P=1000 and Lambda/Lambda_max=0,300000

Frequ. Ampl. Phase.

-2,053913e-17 1,159257e-01 -3,141593e+00

1,005000e-01 9,578401e-01 -1,755813e-01

1,215000e-01 7,814625e-01 -2,684308e-01

1,560000e-01 4,837438e-01 1,168614e+00

Table 3: test sigma.spec results file

P = 1000

fmax = 0,500000000000

Lambda/Lambda_max = 0,300000000000

threshold = 1,000000000000e-06

nitmax = 50000

L = 100

relax = 1,500000000000

weight = 1

###################################################################

# CAUTION !!! #

# This configuration file is generated automatically by SparSpec. #

# You can modify the parameter values. #

# Do not modify neither the parameters name nor their order. #

###################################################################

Table 4: test sigma.conf configuration file
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