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Geophysical and Astrophysical Magnetism:  
The Earth 

Earth has magnetic field! 

Paleomagnetism: around for long time 
Largely Dipolar 

Reverses every million or so years 



Geophysical and Astrophysical Magnetism:  
Solar System Planets 

These tend to have magnetic fields 



Geophysical and Astrophysical Magnetism:  
The Sun and Stars 

These tend to have magnetic fields (more on this later) 



Geophysical and Astrophysical Magnetism:  
Galaxies 

These tend to have magnetic fields 

M51 Spiral Galaxy 



Geophysical and Astrophysical Magnetism: 
Experiments 

These tend not to have magnetic fields 

VKS dynamo experiment 

See Jean-Francois and Cary’s talks 



A brief introduction to dynamos 

“In mathematics the art of proposing 
a question must be held of higher 

value than solving it”  
Georg Cantor 

“There are more questions than 
answers…” 

 Johnny Nash 



A brief introduction to dynamos 
Review of basics of dynamo theory: 

C.A. Jones “Dynamo Theory” (Les Houches Lectures)  
http://www-lgit.obs.ujf-grenoble.fr/houches/ 

 H.K. Moffatt “Magnetic Field Generation in Electrically 
Conducting Fluids”, 1978, CUP. 

Turbulent small-scale dynamos (and MHD turbulence): 
“MHD Dynamos and Turbulence”, Tobias, S.M., Cattaneo, F. 

& Boldyrev, S. in “Ten Chapters on Turbulence” eds 
Davidson, Kaneda and Sreenivasan CUP (2013) 
http://www1.maths.leeds.ac.uk/~smt/tcb_review13.pdf 



The Induction Equation 

For what choices of u does B remain for large times? 
Clearly if u=0 then the field will decay away on 
 diffusive timescale. 

stretching 



Magnetic Reynolds Number Rm 
For geophysical and astrophysical flows Rm is 
large enough that stretching wins. In fact 
theoretical problems can arise because Rm is so 
large (see later) 

Earth’s Core                        
Jupiter 
Solar Convection Zone 
Galaxy 

Experiments 
(though see Cary’s talk for plasma Rm!) 



Stretching vs Diffusion 

The induction equation is a linear problem in B. 

For a given u solutions for the field either grow or 
decay exponentially (on average) with (average)  
growth-rate  
Categorise flows into  
those for which              (kinematic dynamos) 
Or...                               (non-dynamos)    
… sounds easy. 



Antidynamo Theorems 
Cowling’s Theorem (1934) 

• An axisymmetric magnetic field can not be 
generated via dynamo action. 
• Field must be inherently 3D for 

Zel’dovich Theorem (1958) 

•  A planar velocity field is not capable of sustaining 
dynamo action 

All calculations and numerics will have to be 3D. 



Bounds on Rm 
Backus (1958) 

•  Demonstrated that in a sphere that for dynamo 
action to occur  

 (Rm calculated on rate of strain) 

Childress (1969) 

• Need enough stretching to overcome the diffusion 



Numerical Spherical Dynamos 
Bullard & Gellman (1954) 

•  Found numerical evidence of dynamos with a non-
axisymmetric velocity 
• Higher resolution calculations proved these not 
to be dynamos 
• Under-resolving dynamos can seriously damage 
your health!  
•  Give dynamos where none exists.  



Spherical Dynamos 
Dudley & James (1989) 

Kumar & Roberts 



Cellular Dynamos 
G.O. Roberts(1970,1972) 

2.5 dimensional integrable flow 
Can solve for monochromatic solutions in z. 
Essentially a 2D-problem 



Cellular Dynamos 
G.O. Roberts(1970) 

Good dynamo at low to moderate Rm. 



Fast Dynamos 
Vainshtein & Zel’dovich (1978) Childress & Gilbert (1995) 

•  Easy to get dynamos now 
•  The “Fast Dynamo problem” is can flows be 
found for which  

•  Growth-rate independent of diffusivity as the 
diffusivity becomes small. 
•  Clearly important for some astrophysical flows 
•  In order for this to occur the flow must have 
chaotic particle paths  



Numerical Fast Dynamos 
Otani (1993) Galloway & Proctor (1992) 

•  Can get chaos by making flows three-
dimensional or time-dependent 



Numerical Fast Dynamos 
Galloway & Proctor (1992) 

•  Can get chaos by making flows three-
dimensional or time-dependent 

Here stretching beats the small diffusion and 
field is generated on a small scale  



Numerical Fast Dynamos 
Galloway & Proctor (1992) 

•  Growth rate rapidly becomes independent of 
Rm 

•  and appears to stay independent of Rm as Rm 
gets large. 



Turbulent Dynamos 
•  In astrophysics, geophysics and experiments 
the flow is not usually at one scale! 
•  Usually high Re and turbulent. Many scales in 
the flow and the field. 
•  Two important cases: high and low Pm 

High  
Pm 

Low  
Pm 

Galaxies/clusters Planets/Stars/Metal Experiments 



Low Pm Dynamos 
•  For high Pm dynamos there is no problem 
(except field is generated on very small scales) 
•  For low Pm dynamos the magnetic field 
dissipates in the inertial range of the turbulence. 
•  This may (and does) lead to an inhibition of 
dynamo action so the critical Rm goes up as Pm 
goes down. 
•  Eventually (though possibly not soon enough 
for the experiments) the critical Rm becomes 
independent of Pm. 
• Short correlation time (Kazantsev) flows 
(Boldyrev & Cattaneo 2004) 



Low Pm Dynamos 
•  Numerical Demonstration 

• Schekochihin et al. (2007) 
• Also shown for turbulent dynamos with coherent 
structures by Tobias & Cattaneo (2008) 



Dynamo Saturation 

•  Eventually the magnetic field will grow to a 
level where it is large enough to modify the flow 
that is generating it. 
•  Good question is when this happens 

•  At this point the dynamo will saturate and the 
exponential growth will stop. 
•  How this is achieved is an open question and 
may be different in different situations 



Dynamo Saturation 

•  Possible Mechanisms include 
•  Scale-by scale suppression of the flows 
•  Renormalisation of the flow to its marginal state 
•  Modification of the chaotic properties of the flow 
•  Back-reaction on the driving mechanisms 

•  None of these seem to work in all cases (see e.g. 
Cattaneo & Tobias 2009 who showed that the 
exponential growth only stops for a set of vector fields 
of measure zero.) 



Systematic “Large-Scale Dynamos” 

•  So far… 
•  can we get dynamos, growth of magnetic 
energy for a given flow. 

• Astrophysics/Geophysics 
•  We want to get a large-scale systematic 
dynamo, with a significant fraction of the 
energy on scales comparable with the size of 
the astrophysical object. 

• Use as a paradigm the solar dynamo… 



A brief introduction to dynamos 
Review of basics of dynamo theory: 

C.A. Jones “Dynamo Theory” (Les Houches Lectures)  
http://www-lgit.obs.ujf-grenoble.fr/houches/ 

 H.K. Moffatt “Magnetic Field Generation in Electrically 
Conducting Fluids”, 1978, CUP. 

Turbulent small-scale dynamos (and MHD turbulence): 
“MHD Dynamos and Turbulence”, Tobias, S.M., Cattaneo, F. 

& Boldyrev, S. in “Ten Chapters on Turbulence” eds 
Davidson, Kaneda and Sreenivasan CUP (2013) 
http://www1.maths.leeds.ac.uk/~smt/tcb_review13.pdf 



Solar and Stellar Dynamos 

Steve Tobias (Leeds) 

5th Potsdam Thinkshop, 2007 



Talk Plan 

•  Observations 
•  Modelling 
•  Mean-Field Electrodynamics 

– Basic theory 
– Problems 

•  Dynamo Scenarios and Computations 



Reviews 

•  Ossendrijver (2003) 
•  Charbonneau (Living Reviews in Solar 

Physics) 
•  Tobias & Weiss (2007) in "Mathematical 

Aspects of Natural Dynamos”, 



Observations: Solar 
Magnetogram of solar surface  
shows radial component of the 
Sun’s magnetic field. 

Active regions: Sunspot pairs 
and sunspot groups. 
Strong magnetic fields seen  
in an equatorial band (within 
30o of equator). 

Rotate with sun differentially. 

Each individual sunspot lives 
~ 1 month. 
As “cycle progresses” appear  
closer to the equator. 



Observations Solar (a bit of theory) 
Sunspot pairs are believed to be 
formed by the instability of a 
magnetic field generated deep 
within the Sun. 

Flux tube rises and breaks through  
the solar surface forming active 
regions. 

This instability is known as 
 Magnetic Buoyancy. 

It is also important in Galaxies and 
Accretion Disks and Other Stars. 

Wissink et al (2000) 



Observations: Solar 

BUTTERFLY DIAGRAM: last 130 years 
Migration of dynamo activity from mid-latitudes to equator 

Polarity of sunspots opposite in each 
hemisphere (Hale’s polarity law). 
Tend to arise in “active longitudes” 
DIPOLAR MAGNETIC FIELD 
Polarity of magnetic field reverses 
every 11 years. 
22 year magnetic cycle. 



Observations: Solar 
SUNSPOT NUMBER: 
 last 400 years 

Modulation of basic cycle amplitude (some modulation of frequency) 
Gleissberg Cycle: ~80 year modulation 
MAUNDER MINIMUM: Very Few Spots , Lasted a few cycles 
                                           Coincided with little Ice Age on Earth 
Abraham Hondius (1684) 

Maunder  
Minimum 



Observations: Solar 

BUTTERFLY DIAGRAM: as Sun emerged from minimum  

Sunspots only seen in Southern Hemisphere 
                    Asymmetry; Symmetry soon re-established. 
                    No Longer Dipolar? 
Hence: (Anti)-Symmetric modulation when field is STRONG 
              Asymmetric modulation when field is weak                 

RIBES & NESME-RIBES  
(1994) 



Observations: Solar (Proxy) 

   SOLAR MAGNETIC FIELD MODULATES AMOUNT OF 
        COSMIC RAYS REACHING EARTH 
        responsible for production of terrestrial isotopes 

PROXY DATA OF SOLAR MAGNETIC ACTIVITY AVAILABLE 

      : stored in ice cores after 2 years in atmosphere 
      : stored in tree rings after ~30 yrs in atmosphere 

10 Be C 14 

10 Be 
C 14 

BEER 
(2000) 



Observations: Solar (Proxy) 
  Cycle persists through Maunder Minimum (Beer et al 1998) 

DATA SHOWS RECURRENT GRAND 
 MINIMA WITH A WELL DEFINED  
PERIOD OF ~ 208 YEARS 

Wagner et al (2001) 



Solar Structure 
Solar Interior 

1.  Core 
2.  Radiative Interior 
3.  (Tachocline) 
4.  Convection Zone 

Visible Sun 

1.  Photosphere 
2.  Chromosphere 
3.  Transition Region 
4.  Corona 
5.  (Solar Wind) 



The Large-Scale Solar Dynamo 
•  Helioseismology shows the 

internal structure of the 
Sun. 

•  Surface Differential 
Rotation is maintained 
throughout the Convection 
zone 

•  Solid body rotation in the 
radiative interior 

•  Thin matching zone of 
shear known as the 
tachocline at the base of the 
solar convection zone (just 
in the stable region). 



Observations: Stellar (Solar-Type Stars) 

     Stellar Magnetic Activity can be inferred by amount of  
     Chromospheric Ca H and K emission 
     Mount Wilson Survey (see e.g. Baliunas ) 
            Solar-Type Stars show a variety of activity. 

Cyclic, Aperiodic, Modulated, 
Grand Minima 



     Activity is a function of spectral type/rotation rate of star 
     As rotation increases: activity increases 
                                           modulation increases 
     Activity measured by the relative Ca II HK flux density  

                                                                                                                 (Noyes et al 1994) 
      But filling factor of magnetic fields also changes 
                                                                              (Montesinos & Jordan 1993) 

      Cycle period 
– Detected in old slowly-rotating G-K stars. 
– 2 branches (I and A) (Brandenburg et al 1998) 

                         ΩI ~ 6 ΩA  (including Sun)	


                        Ωcyc/Ωrot  ~ Ro-0.5   (Saar & Brandenburg 1999) 

Observations: Stellar (Solar-Type Stars) 



Rapidly Rotating Stars 
•  Young stars are rapid-

rotators (some have rotation 
rates ~6hrs) 

•  Magnetically active 
•  Usually have strong polar 

star-spots although spots 
may appear at latitudes 
>15degrees 

AB Doradus pre main sequence Trinary star 
(Collier Cameron & Donati 1997) 

UZ Lin (binary) 
Oláh,Strassmeier&Weber 2002 



Rapidly Rotating Stars 
•  Young stars are rapid-

rotators (some have rotation 
rates ~6hrs) 

•  Can measure latitudinal 
differential rotation by 
tracking starspots 

•  Hence differential rotation 
only weakly dependent on 
rotation 

•  Equator faster than poles 
(e.g. AB Doradus) – but not 
much (1 part in 220) 

•  Some temporal evolution 



Small-Scale dynamo action – the 
magnetic carpet 



Small-Scale dynamo action – the 
magnetic carpet 



Large and Small-scale dynamos 



Modelling for the Sun 

Equations and Parameters 



Basics for the Sun 
Dynamics in the solar interior is governed by  
the following equations of MHD 

INDUCTION 

MOMENTUM 

CONTINUITY 

ENERGY 

GAS LAW 



Basics for the Sun 
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(Ossendrijver 2003) 



Modelling Approaches 
•  Because of the extreme nature of the parameters in the Sun 

and other stars there is no obvious way to proceed. 
•  Modelling of dynamo processes has typically used 

–  Mean Field Models (~50%) 
•  Derive equations for the evolution of the mean magnetic field (and perhaps 

velocity field) by parametrising the effects of the small scale motions. 
•  The role of the small-scales can be investigated by employing local 

computational models 
–  Global Computations DNS (~45%) 

•  Solve the relevant equations on a massively-parallel machine. 
•  Either accept that we are at the wrong parameter values or claim that 

parameters invoked are representative of their turbulent values. 
–  Low-order models (~4.9%)  

•  Try to understand the basic properties of the equations with reference to 
simpler systems (cf Lorenz equations and weather prediction) 

–  Direct Statistical Simulation 
•  Integrate equations for the statistics of the flow directly 
•  So far only used for model instability problems 



Mean-field electrodynamics  

Some basics 



Mean-field electrodynamics  
A basic physical picture 

Ω-effect – poloidal  toroidal 



Mean-field electrodynamics  
A basic physical picture 

α-effect – toroidal  poloidal 
                poloidal  toroidal 



Mean-field theory 

Derivation of the mean-field 
equations 



Starting point is the magnetic induction equation of MHD: 

where B is the magnetic field, u is the fluid velocity and η is the  
magnetic diffusivity (assumed constant for simplicity). 

Assume scale separation between large- and small-scale field 
and flow: 

where B and U vary on some large length scale L, and u and b 
vary on a much smaller scale l. 

where averages are taken over some intermediate scale l « a « L. 

Kinematic Mean Field Theory 



For simplicity, ignore large-scale flow, for the moment. 
Induction equation for mean field: 

where mean emf is 

This equation is exact, but is only useful if we can relate to 

Where                                  “pain in the neck term” 

Consider the induction equation for the fluctuating field: 

∂B0

∂t
= ∇× E + η∇2B0

E = �u× b�



Traditional approach is to assume that the fluctuating field is driven solely by 
the large-scale magnetic field. 

i.e. in the absence of B0 the fluctuating field decays. 

i.e. No small-scale dynamo (not really appropriate for high Rm turbulent fluids) 

Under this assumption, the relation between  and (and hence between 

and ) is linear and homogeneous. E



Postulate an expansion of the form: 

where αij and βijk are pseudo-tensors, determined by the statistics of the turbulence. 

Simplest case is that of isotropic turbulence, for which αij = αδij and βijk = βεijk. 
Then mean induction equation becomes:  

α: regenerative term, responsible for large-scale dynamo action.  
     Since     is a polar vector whereas B is an axial vector then α can 
     be non-zero only for turbulence lacking reflexional symmetry  
    (i.e. possessing handedness).  

β: turbulent diffusivity. 

BUT WHAT ARE α and β ? MORE LATER	



Ei = αijB0j + βijk
∂B0j

∂xk
+ . . .



Mean-field theory 

Revision: Basic properties of the 
kinematic mean field equations 



BASIC PROPERTIES OF THE MEAN FIELD EQUATIONS 

Add back in the mean flow U0 and the mean field equation becomes 

Now consider simplest case where α = α0 cos θ and U0 = U0 sin θ eφ	



In contrast to the induction equation, this can be solved for axisymmetric 
mean fields of the form  



•  Linear growth-rate of B0 depends on dimensionless 
combination of parameters. 

•  Critical parameter given by 

•  If |D| > Dc then exponentially growing solutions are found – 
dynamo action. 

•  Estimates suggest |Dα| ~ 2, |DΩ| ~ 103 for the Sun and hence 
one can make the αΩ-approximation where the α-effect is 
ignored in generating the toroidal field. 

•  Can also have α2Ω and α2 dynamos – may be of relevance 
for fully convective or more rapidly rotating stars. 

BASIC PROPERTIES OF THE MEAN FIELD EQUATIONS 



•  In general B0 takes the form of an exponentially growing 
dynamo wave that propagates. 

•  Direction of propagation depends on sign of dynamo 
number D. 
–  If D > 0 waves propagate towards the poles, 
–  If D < 0  waves propagate towards the equator. 

•  In this linear regime the frequency of the magnetic cycle 
Ωcyc is proportional to |D|1/2 

•  Solutions can be either  
    dipolar or quadrupolar 

BASIC PROPERTIES OF THE MEAN FIELD EQUATIONS 



Mean-field theory 

Some fundamental and rather nasty 
questions 



                             Crucial questions 

 Mean field electrodynamics therefore seems to work very well -  
 but there are some very obvious questions to ask 

1.  How can we calculate α and β? What will these be in the Sun.  
      Can we relate them to the properties of the flow in the  
      kinematic regime? 

2. Even if we know how α and β behave kinematically, what is the 
     role of the Lorentz force on the transport coefficients α and β?  

3. How weak must the large-scale field be in order for it to be  
    dynamically insignificant? Dependence on Rm? 

4. Even if we can get all of this to work, does the large-scale dynamo  
    ever win out over the dynamo’s natural instinct to generate field 
    on small scales at high Rm? 



•  Of course α and β can only really be calculated by determining  

•  But we can only know b if we solve the fluctuating field equation. 
•  Analytic progress can be made by making one of two 

approximations 
•  Either Rm or the correlation time of the turbulence τcorr is small. 
•  Then can ignore “pain in the neck” G term in fluctuating field 

equation. 
•  Get famous results that α is related to the helicity of the flow with 

a constant of proportionality given by the small parameter e.g. 

1. How can we calculate α and β? Can we relate them to the  
      properties of the flow in the kinematic regime? 

•  Note we have parameterised correlations between u and b by 
correlations between u and ω -- is this sensible, or even helpful?	





•  We could do some numerical experiments and simply measure α  
•  The best way to do this is to impose a known weak mean field  B 

and then calculate numerically  
•  Example: Choose a flow with Rm not small and not at short 

correlation time and simply evaluate α.  
•  So we solve the kinematic induction equation  

      With an applied mean field to calculate E. 
      Here we choose u to be the famous G-P flow  

1. How can we calculate α and β? Can we relate them to the  
      properties of the flow in the kinematic regime? 



1. How can we calculate α and β? Problems with 
Rm 

α	



Rm 
Courvoisier et al 2006 

•  For this flow the α term is a tensor. 
•  The α-effect is a very sensitive function of Rm. 
•  It even changes sign. 
•  It can in no way be related in a simple manner to the helicity of 

the flow (bit of a strange flow as it has infinite correlation time) 
•  Neither of the approximations work very well at high Rm 



1. How can we calculate α and β? Calculating β 

•  Calculating the turbulent diffusivity is more challenging. 
•  In numerical experiments either use 
•  The Test Field Method (Schrinner et al 2005) 

–  Impose a fictitious “test field” that grows exponentially 
–  Relate the emf generated by this growing solution to the imposed field. 

•  The Turbulent Ångström method or The Method of Oscillatory 
Sines (Tobias & Cattaneo 2012, C&T 2013) 
–  Use variations of the method proposed by Ångström (1843) to measure 

thermal conductivity of a metal rod. 
–  Impose an oscillatory magnetic field and measure response 



1. How can we calculate α and β? Calculating β 

•  In a computation very hard to get to high 
Rm 

•  Get your favourite plasma experimentalist 
to do it for you… 



2. Large-scale vs Small-Scale 
•  Ingredients for large-scale mean field dynamo 

–  Turbulence with lack of reflexional symmetry 
–  Low/moderate Rm? 

•  Ingredients for small-scale dynamo 
–  Chaotic stretching, not too much cancellation 

•  Problem is that small-scale dynamos seem to win as Rm 
is increased… 

•  Possible Solutions 
–  Boost large-scale EMF by adding in a systematic large-scale 

flow (e.g. shear; see Yousef et al 2008, Kapyla & Brandenburg 2009, Sridhar 
& Singh 2010, Hughes & Proctor 2012) 

–  Somehow suppress the small-scale dynamo (see Tobias & Cattaneo 
2008, 2013; Courvoisier & Kim 2009) 

•  Decreasing stretching or increasing cancellation? 



•  This is a CRUCIAL question. 
•  Assume kinematic theory is OK (hmm) 
•  The mean field <B> will act back on the 

turbulence so as to switch off the generation 
mechanism via the Lorentz Force. 

•  When does this happen? 
•  Traditional argument… 

– This occurs when mean field reaches 
equipartition with the turbulence so 

2. How are α and β modified by the mean field in the 
Nonlinear Regime?  



•  But… 
•  It is the small scale magnetic field that will act 

back on the small-scale turbulence. 
•  The dynamo will switch off when the small-scale 

magnetic energy becomes comparable with the 
small-scale kinetic energy of the flow. 

•  There are many different possibilities, but it seems 
clear that due to amplification by the turbulence 
the small scale magnetic field is much bigger than 
the mean magnetic field 

2. How are α and β modified by the mean field in the 
Nonlinear Regime?  

From a simple scaling it follows that: 

where p is a flow and geometry dependent coefficient (p>0)  



•  This poses a major problem for mean field theory (see 
Proctor 2003;Diamond et al 2004 for an erudite discussion) 

•  If true then this implies that the α-effect (and probably the 
β-effect) is switched off when the mean magnetic field is 
small (i.e. when 

•  Hence the source term (α) will be catastrophically 
quenched when the mean field is very small. 

•  Is this correct? 
•  Two ways of checking 

– Analytical results based on approximations 
– Numerical results at moderate Rm 

2. How are α and β modified by the mean field in the 
Nonlinear Regime?  



α versus B0
2 

(Cattaneo & Hughes 1996) 

α versus Rm 

(C, H & Thelen 2002) 

Suggestive of the formula: 

for γ = O(1). 



Other Possibilities 

Given the problems with mean-field 
theory, what other mechanisms are 
there for producing poloidal field? 



Other Possible Mechanisms for 
Producing Poloidal Field 

•  In addition to the conventional turbulent driven 
α-effect, there have been other mechanisms 
suggested for generating a large scale poloidal 
field 

•  Most of these are dynamic and rely on the 
presence of a large-scale toroidal field. 



Other Possible Mechanisms for 
Producing Poloidal Field 

•  Poloidal field generated by magnetic buoyancy 
instability in connection with rotation or shear 
– Either the instability of (thin) magnetic flux tubes 
– Or more likely the instability of a layer of magnetic 

field  
–  Joint Instability of field and differential rotation in the 

tachocline (Gilman, Dikpati etc) 
– Produces a mean flow with a net helicity 

•  Decay and dispersion of tilted active regions at the 
solar surface (Babcock-Leighton mechanism) 



Buoyancy and rotation 
•  Strong toroidal magnetic fields may be unstable to a 

magnetic buoyancy instability (contribution of magnetic 
field to total pressure reduces density). 

•  The field becomes buoyant and can rise to form coherent 
magnetic structures (see e.g. Kersalé et al 2007). 

•  These structures can rise and interact with the rotation, 
twisting to form a poloidal field. 

•  In its most extreme form only those fields that make it to 
the surface contribute to the dynamo (Babcock-Leighton 
mechanism) 



A buoyancy driven dynamo 

Kline et al 2005 

Shear +Magnetic Buoyancy 
No turbulence 
No alpha effect 
No problem… 



A buoyancy driven dynamo 

Kline et al 2005 Reversals of field in box 
Periods of reduced activity 

Questions: how does this work at higher Rm? 
Can this survive the presence of turbulence? 



Some solar dynamo scenarios 

Distributed, Deep-seated, Flux Transport, 
Interface, Near-Surface. 

This is simply a matter of choosing plausible 
profiles for α and β depending on your 

prejudices or how many of the objections to 
mean field theory you take seriously! 



Distributed Dynamo Scenario 
•  Here the poloidal field is 

generated throughout the 
convection zone by the 
action of cyclonic 
turbulence. 

•  Toroidal field is generated 
by the latitudinal 
distribution of differential 
rotation. 

•  No role is envisaged for 
the tachocline 

•  Angular momentum 
transport would 
presumably be most 
effective by Reynolds and 
Maxwell stresses 



Distributed Dynamo Scenario 
•  PROS 

–  Scenario is “possible” 
wherever convection and 
rotation take place together 

•  CONS 
–  Computations show that it 

is hard to get a large-scale 
field 

–  Mean-field theory shows 
that it is hard to get a large-
scale field (catastrophic α-
quenching) 

–  Buoyancy removes field 
before it can get too large 



Near-surface Dynamo Scenario 
•  This is essentially a 

distributed dynamo 
scenario. 

•  The near-surface radial 
shear plays a key role. 

•  Magnetic features tend to 
move with rotation rate at 
the bottom of the near 
surface shear layer. 

•  Same pros and cons as 
before. 

•  Brandenburg (2006) 



Flux Transport Scenario 
•  Here the poloidal field is 

generated at the surface of the 
Sun via the decay of active 
regions with a systematic tilt 
(Babcock-Leighton Scenario)  
and transported towards the 
poles by the observed 
meridional flow 

•  The flux is then transported by 
a conveyor belt meridional flow 
to the tachocline where it is 
sheared into the sunspot 
toroidal field 

•  No role is envisaged for the 
turbulent convection in the 
bulk of the convection zone. 



Flux Transport Scenario 
•  PROS 

–  Does not rely on turbulent α-
effect therefore all the 
problems of α-quenching are 
not a problem 

–  Sunspot field is intimately 
linked to polar field 
immediately before. 

•  CONS 
–  Requires strong meridional 

flow at base of CZ of exactly 
the right form 

–  Ignores all poloidal flux 
returned to tachocline via the 
convection 

–  Effect will probably be 
swamped by “α-effects” closer 
to the tachocline 

–  Relies on existence of sunspots 
for dynamo to work (cf 
Maunder Minimum) 



Modified Flux Transport Scenario 
•  In addition to the poloidal flux 

generated at the surface, 
poloidal field is also generated 
in the tachocline due to an 
MHD instability. 

•  No role is envisaged for the 
turbulent convection in the 
bulk of the convection zone in 
generating field 

•  Turbulent diffusion still acts 
throughout the convection 
zone. 



Interface/Deep-Seated Dynamo 
•  The dynamo is thought to 

work at the interface of 
the convection zone and 
the tachocline. 

•  The mean toroidal 
(sunspot field) is created 
by the radial diffential 
rotation and stored in the  
tachocline. 

•  And the mean poloidal 
field (coronal field) is 
created by turbulence (or 
perhaps by a dynamic α-
effect) in the lower 
reaches of the convection 
zone 



•  PROS 
–  The radial shear provides a 

natural mechanism for generating 
a strong toroidal field 

–  The stable stratification enables 
the field to be stored and 
stretched to a large value. 

–  As the mean magnetic field is 
stored away from the convection 
zone, the α-effect is not 
suppressed 

–  Separation of large and small-
scale magnetic helicity 

•  CONS 
–  Relies on transport of flux to and 

from tachocline – how is this 
achieved? 

–  Delicate balance between 
turbulent transport and fields. 

–  “Painting ourselves into a corner” 

Interface/Deep-Seated Dynamo 



Conclusions/Speculations and Annoying Questions 
•  Why does mean-field theory work so well? 

–  Input parameters need to be constrained 
•  Requires a full understanding of MHD turbulence 

–  Turbulent α-effect 
–  Turbulent diffusion 

•  Measurement of mean flows. 

•  What can serious(?) computations teach us 
–  Small scale (parts of the jigsaw) 
–  Large scale (global dynamics) 

•  We can learn a lot from the mathematical structure of the 
equations. 


