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Anisotropic plasmas refer to situations where the velocity distribution functions of the
various particle species are non isotropic (in particular non Maxwellian).

Such a regime requires Coulomb collisions to be sufficiently weak.
Many astrophysical plasmas are magnetized and weakly or even almost non collisional.

Characterized by:

Collision frequency << cyclotron frequency
Larmor radius << mean free path

Examples include
e Galaxy cluster plasmas Schekochihin et al. ApJ 629, 139 (2005)

e Solar wind Marsch , Space Sc. Rev. 172, 22, (2012)

* Planet magnetospheres Blanc et al. Space Sci. Rev. 116, 227 (2005)



In situ observations in the solar wind

Velocity distribution functions exhibit large departures from isotropic (Maxwellian)
distribution functions:

0 Different parallel and perpendicular temperatures with respect to the ambient
magnetic field.

0 The proton distribution function often exhibit a core and a magnetic field-aligned
beam with

 anumber density of the order of tenths of the core density

* the beam/core relative velocity of the order of the local Alfvén velocity
(Marsch et al., JGR 87, 35, 1982).



In magnetized collisionless (or
weakly collisional) plasmas, the
velocity distribution function of
each particle species is not
Maxwellian.

Anisotropy of the proton distribution
function of slow (left), intermediate
speed (middle) and fast solar wind at
increasing distances from the sun.

----- : direction of the magnetic field

Marsch , Space Sc. Rev. 172, 22, 2012
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Fig. 1 Proton velocily distribution functions for three types of solar wind: Slow (fefi colwmn). intermedi-
ate-speed (middle), and fast (rghr). The heliocentric distance decreases from top to bottom as indicated in
the respective frames. Increasingly strong deviations from a Maxwellian occur at smaller distances from the
Sun, with proton beams along the field (dashed lines) and large anisotropies perpendicular to the field in the

core



In this talk,

| concentrate on the effect of temperature anisotropy
(assuming an equilibrium bi-Maxwellian velocity distribution function)
and will not address the effect of beams.

| concentrate on instabilities that require the presence of an ambient magnetic field
and will thus not discuss instabilities such as the Weibel instability (driven by an
anisotropic electron distribution in the presence of immobile neutralizing ions; enhances initial
magnetic fluctuations).



Pressure tensor of a magnetized collisionless plasmas

The pressure of each particle species r (of mass 1,
P2, L) =, / (v —u,) ®(V—1u,) fr(Z,0,1)dU

is a full tensor.

il
Here, u,.(7.t) = — / Ufr(Z, 0, t)dv s the corresponding hydrodynamic velocity.
?FT L

Rl 1) = / f+(Z, U, t)dv is the number density of particles of species r

Pressure anisotropy is a source of free energy (energy that can be transformed into work).
The system will tend to relax or to reduce this anisotropy via collisions or, if they are

too weak to act efficiently, by developing instabilities which push the system towards
equilibrium.



It is often convenient to separate the gyrotropic part of the pressure tensor
(characterized by the perpendicular and parallel pressures)
from the non-gyrotropic part (also called finite Larmor radius or FLR corrections)

Pr = pirn+p),7+ 1L,

n=1- b 0% b =0 “_\“JE b= B |§ |
At scales large compared with the Larmor radius, the non-gyrotropic part is subdominant.

From the perpendicular and parallel pressures,
1

sprin PIr=PriT

Plr =
one defines the perpendicular and parallel temperatures
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The perpendicular and parallel pressures of each species r obey equations
derived from the Vlasov equation
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g, : heat flux tensor

In the absence of collisions, pressure and temperature anisotropies can develop
even if the plasma is initially isotropic.



Example: Expanding plasma (solar wind)

Simple model:

e Consider the dynamics at scales large compared to the ion Larmor radius
(FLR contributions and Hall term negligible)
 Neglect heat fluxes

Combining the equations for the perpendicular and parallel ion pressures with the
density and induction equations (where Hall effect is neglected),

| - Pl
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Double adiabatic approximation
(Chew,Goldberg & Low, 1956)
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For a spherical expansion, in the presence of a strictly radial magnetic field and
a constant solar wind velocity where
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Matteini et al., Space Sci. Rev. 172, 373, 2011

The observed anticorrelation By, 1,1 /T, departs from the CGL prediction.

Suggests perpendicular heating by turbulence (not addressed here).
Parallel cooling may also be required (Hellinger et al. JGR, in press).

For Bpl > 1, data show departure from the empirical correlation observed at lower By .
Related to the fact that for By > 1, anisotropic plasmas with 7e1 > 7o can develop a
fire-hose instability.



Statistical study of temperature anisotropies in the slow solar wind

Solar wind expansion and turbulence generate temperature anisotropy
This anisotropy is limited by micro-instabilities: mirror and oblique firehose instabilities.

Much better fits
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Figure 1. A color scale plot of the relative frequency of EEﬁrehose
(Byps T1p/T)p) in the WIND/SWE data (1995-2001) for the 0.1 i . L . 0.01
S(:ila]‘ wind with 1’5‘.,_§ G.OO km/s {Cf. Kﬂsp(’!—' et al., ZF}OE, 0.001 0.010 0.100 1.000 10.000 100.000
Figure 2]. The (logarithmic) color scale is show on the right. B
The over plotted curves show the contours of the maximum
growth rate (in units of w,,) in the corresponding bi- Bale et al. PRL 103, 21101 (2009)

Maxwellian plasma (left) for the proton cyclotron instability
(solid curves) and the parallel fire hose (dashed curves) and
(right) for the mirror instability (dotted curves) and the )
oblique fire hose (dash-dotted curves). color: magnitude of 6B; enhanced 6B also corresponds
to enhanced proton heating.

Hellinger et al. ,GRL 33, L09101 (2006)



Kasper et al., Solar Wind 10, 2003
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FIGURE 1. Solar wind observations by the Wind spacecraft
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and may be neglected. Note that the predicted value of T is
very high and off the scale of the plot for 0500-1500 UT.



Plasmas instabilities

* macroscopic (configurational) instabilities: can be described by macroscopic
equations in configuration space.

* microinstabilities instabilities : depend on the actual shape of the distribution function.

For a detailed study of the microinstabilities based on a fully kinetic description:

0 S.P. Gary, Theory of Space Plasma Microinstabilities , Cambridge Univ. Press, 1993
(reprinted 2005).

0 Schlickeiser, Lazar & Skoda, Phys. Plasmas 18, 012103, 2011 (and references therein)

0 R.A.Treumann & W.B. Baumjohann, Advanced Space Plasma Physics, Imperial
College Press, 1997.



Instabilities do not arise without free energy.

Free energy may come from the magnetic configuration (stored e.g. in the Harris
current sheet) , anisotropic plasma pressure, streaming of plasma particles with
respect to each other, etc.

Main microinstabilities due to anisotropic ion pressure in a magnetized plasma

T < TH

e Parallel (or whistler) fire-hose instability whistler waves

* Oblique (or Alfvén) fire-hose instability oblique (or kinetic) Alfvén waves
I >T,

e Mirror instability mirror modes

e Proton cyclotron instability ion-cyclotron waves

The presence of a small density of helium ions can significantly reduce the proton
cyclotron instability growth rate, making the mirror instability dominant
(Price et al., JGR, 91, 101, 1986).

Analogous instabilities can be driven by anisotropic electron pressure
(Gary & Karimabadi, JGR 111, A11224, 2006, Steverak et al. JGR 113, A03103, 2008)



The parallel (or whistler) fire-hose instability

This instability can be correctly analyzed within a fluid description (outside ion-cyclotron
resonance).

Consider a plasma at equilibrium, with anisotropic pressure, subject to an ambient
magnetic field in the z direction. We first consider the large-scale dynamics.

Linearize the induction equation (neglecting Hall effect)
B=DByz+ B

——> B =V x (£ x By?)

8:B' =V x (@i x Bo?)
Define the displacement vector U= 0
For a mode with wavevector k = (k..0, k.)

>/ ; . . .
B" = By(ik.&; , ik £y , —ikzEx)

B = By(ik.&; ,ik.&, ,1 — ik.&;)
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Pressure fluctuations:
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Substituting in the linearized velocity equation
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gives
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When assuming purely longitudinal perturbations (k,=0)

—ﬁ[}w Sz + “F/z{ pDH — PoL) ‘i =Sz +

}/H

Afg,y —i()

_ B 5s
—pow &y — (Po| — PoL)kzEy + -

—pgwgiz -+ *e'.f;zp” — 8

—

the dynamics of the transverse field components decouples
it is not necessary to specify the pressure field: no kinetic physics is required
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The instability condition can be written in several forms :

B
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The instability survives in weakly oblique directions in a cone whose angle increases with

beta, but is maximal in the parallel direction
(Gary et al., JGR, 103, 14574, 1998 where a kinetic approach is presented)



Physical interpretation of the parallel fire-hose instability

Fig. 3.7. Mechanism of the firehose instability.

(from Treumann & Baumjohann

Advanced Space Plasma Physics, 1997)

Instability sets in if

FH>Fp,L+FB

’

i.e.

Consider a magnetic flux tube.

The plasma flows along the magnetic field
with the typical velocity v,

Whenever a flux tube is slightly bent,
the plasma exerts a centrifugal force

92
Fp= nzin(,z*{“hwfl?
Two forces resist to this centrifugal force:

The thermal pressure force in the plane
perpendicular to the flux tube

FpJ_ — I}J_/R

The magnetic stresses of the flux tube

Fp = B2/(47R)

9
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or p|=>pL-—+



Growth rate

Within this (large-scale) description, the instability growth rate increases linearly
with the perturbation wavenumber.

The instability is in fact arrested at small scales by the Hall term and the pressure
FLR corrections.

These effects are to be retained for the initial value problem to be well-posed.



Hall term (neglect contribution of electron pressure gradient)
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Large-scale pressure FLR corrections (after linearization)

/

M, — I, — m_

I*’UJ_
L= Tl — )}/

1
2 [2pg|| LUz + POL rJ'/ O0,ty) + O J_}

1 : -
L = Is0— o [Eg_rgnri?z Uy + jJUL{%z — 64k —|—%ﬂ :
1

sz:D

Gyrotropic pressure fluctuations (linearized form)
Pgyro = P1LI+ (P — P1L)Z® Z+ (pyy ~pol )Y ®FZ+Z®Y)
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For parallel perturbations ¥V = =0,
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Lorentz force "

J{_(V x B') x ByZ = ——2% X (ik,Z X B
B
= —Zik,(B.z- B
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Substitute in the velocity equation
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where the velocity is expressed from the induction equation




After substitution,
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Dispersive effects (Hall effect and pressure FLR corrections)

e induce areal part to the frequency (thus a velocity of propagation)
e arrest the instability at small scales

TR

0 07 1 k/ky

Fig. 3.8. Dependence of the firehose growth rate on wavenumber.

Influence of electron temperature anisotropy (arising in the generalized Ohm’s low)

can easily be taken into account
(Schekochihin et al., Mon. Not. R. Astron. Soc. 405, 291, 2010).



Nonlinear saturation of the parallel (or whistler) fire-hose instability

Hybrid PIC simulations indicate a non-linear saturation in a quasi-linear manner
(Quest and Shapiro, JGR 101, 24457, 1996; Gary et al. JGR 103, 14567, 1998).
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Figure 1. Simulation results for initial conditions 3, = 2.8

aud Tp1 /T, = 0.4: Evolution of (left) temperature anisotropy

Ap = Tp1 /T, and (right) magnetic fluctuation 8B? for the
1a]ustl:er ﬁJE hose (solid curve) at 8, p = 0° and the Alfveén fire

hose (dashed curve) at . p = 53°.

Hellinger & Matsumoto,
JGR 105, 10519, 2000

Figure 1 1llustrates the fact that the whistler fire hose has a quasi-
linear evolution (right panel): Magnetic fluctuation saturates at a
certain level and stays at about this level after the saturation. The
anisotropy slightly decreases to a level where the destabilized wa-
ves are marginally stable.



Nonlinear saturation of the
parallel fire-hose instability
(PIC simulations)

Matteini et al. JGR 111, A 10101, 2006.
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anisotropy 1 — T ,/T|,: (center) (3, (solid line) and (3,
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After the parallel fire hose has saturated, the system is
In a condition of marginal stability. Note that in the final

state (3, —

B1,<2;as| 3|!P B iy = 2 1s the saturation value

prLdlctcd by the fluid-CGL nonresonant description, this
confirms a resonant behavior durmg the stabilization.




The fluid theory is valid only very close to the instability threshold.
It requires that for the most unstable mode,
w Q E-'B[}

|g | = > 1 2=
P V 2k v mpc

lon gyrofrequency

Resonances affects the instability threshold

Yl 2= 0.001———_—=o o The right-handed polarized whistler mode is

or g destabilized.
It [ 0.01 1 Under resonant conditions, the linear threshold
wl dition for a fixed value of the di ionl
e onant 1 condition for a fixed value of the dimensionless
o1 | maximum growth rate v, / €2, of the proton
— firehose instability in an electron-proton plasma
resonant .
can be written for y,,/ 0, <0.10 as
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Figure 2. Linear theory results: the proton cyclotron OVEr 1<B, <10.
resonance factor at the wavenumber of maximum growth of _ _ _ _
the proton firchose instability as a function of the parallel ~ Sp is @ dimensionless number of order unity

proton (3 for three values of the maximum growth rate. determined by the choice of the maximum growth
Gary et al. JGR, 103, 14574, 1998 rate, but o, . 0.7, relatively independent of
/ 7 7 ’Ym/Qp.

From kinetic theory Resonances enlarge the instability region
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The grey encodes the maximum instability growth rate: the
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Resonances enlarge the instability region
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Quasi-linear saturation of the fire-hose instability:

Theory in the non-resonant regime: Shapiro & Shevchenko, JETP 18, 1109, 1964.

Predict asymptotic relaxation to the marginal equilibrium condition given by the

fluid theory.

Effect of weak collisions and also of turbulence: Rosin et al., MNRAS 413, 7, 2011.

Effect of the resonances: Seough & Yoon, JGR 117, A08101, 2012.



A flavor of quasi-linear theory (see e.g. Diamond, Itoh & Itoh, Modern Plasma Physics: Vol. 1,
Physical Kinetics of Turbulent Plasmas, Cambridge Univ. Press 2010).

Ouf +v0.f +=-E0,f =0
Separate space-averaged contributions from fluctuations (taken in the linear approximation)
f={f+df
B (f) + %U.l,(E(_if) =
S f + v0ed f + %Eé)l.(f) i)

B = LS (B 4 e

2
k
O (f) +—() Z(EA(H‘A—I—( ) =1

Assuming that the fluctuations evolve much faster than the electric field and the
space-averaged distribution function,

; T q - .
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Here w = wp + 17 is viewed as the (complex) frequency of the considered kind
of waves, given by the dispersion relation based on the instantaneous particle
distribution function (f).

fi}[;L — —'.i:—

I f) = 9u[D(v)0u(f)]

D(v) < g S i Bl
'T — - (-'I
| m? — Wk — kv + i|y|

(f)t\Ek|2 _ 27,.k]Ek|2 (growth rate calculated from <f(x,t)>)

The absolute value is aimed to cope with the case of damped modes.
This formula is valid in the limit Y, - 0, but additional terms arise otherwise
(Hellinger & Travnicek, PoP 19, 062307, 2012).



The oblique or Alfvén fire-hose instability
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See also Wang & Hau, JGR 108, 1463, 2003; Hau and Wang, NPG 14, 557, 2007



The oblique or Alfvén fire-hose instability

(Empirical) threshold: 3, (1 =T, /T,

) ~ 1.4 for 2 < Jp” ey

Zero-frequency mode (purely growing)

Resonant instability (Hellinger & Travnicek, JGR 113, 10109, 2008)

Maximum growth rate at oblique propagation
Linear polarization: §B = §Bn

Compressible mode:

JJ” — b =~ I |

(where n 1s a unit vector parallel to k x By)

(dn/n)/(|6B|/Bg) ~ 0.1

Anti-correlated density and magnetic field fluctuations

I|SI!PIJ

40
35 _ }I{." i
25 _ r,l,-"'l : A
2.0 [ B 3

01 02 03 04 05 06

T,/ T
Plate 3.
{Tpl KITPII

0.20
0.15¢

010}

0.05¢

0.00

01 02 03 04 05 06
T Ty

Limear theory: (left) Blue area shows a region in

3,|) space where the maximum growth rate of the
Alfvén fire hose YAF,m 18 greater than the maximum growth
rate of the whistler fire hose yw rm.
the relations 3, (1 —

Overlain curves denote
T, /Ty ) equal to 2 (dash-dotted curve)
and 1.5 (dotted curve). (right) Maximum growth rates yw pm
(black curve) and yw prn (blue curve) as a function of 75,
fOl’ .1’3?_-,” =28

1/Ty



Hellinger &Travnicek, JGR 113, A10109, 2008

No quasi-linear relaxation to
marginal equilibrium, but
Alfvén wave damping and
heating of the protons.

Figure 1. Evolution in run 1 (see Table 1): (left top) Gray scale
plot of B. as a function of time and x (only a part of the simula-
tion box 1s shown). (right top) The fluctuating magnetic energy
§B? /B2 as function of time. (left bottom) The proton temper-
ature anisotropy 171 ,/T),, as a function of time. (bottom right)
The parallel proton beta /3, a function of time.

Table 1. Initial conditions for the set of 1-D standard hybrnd simulations
Run# v/ Bip T1p/Tjp kmc/wp Om
1 1.5 0.134 0.714 56.1°




Mirror instability

Return to the case of arbitrary perturbations (concentrate on largest scales)

—pow?&e + ikap) — (poy — PoL)k2Ee +

D N 2 ¢
1 —pow &y — (po) — poL)k;Ey

Bj 5
f — ()
* A y

—pow?&, + -.r'kzp’h — (poj — poL)kzk & =0

B“(k + k3¢, =0

Simplest closure: double adiabatic (or CGL) approximation: prescribes zero heat fluxes.

This leads to prescribe the equations of state:

pL pr_ B qu Bf
~—— = cst S T B
pB PoL 20 0
pB* > Pi .0 B
p 3 = cst j-}DH 00 B[l
Op' + ik (pdp€) =0 8ives
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Solvability:

!

D . " ]
I—_L — _2“El:.:‘£1‘ = 5;‘::5&::
PoL
f-’h T o
}’.J[}H

B2 B}

[ — ﬁﬂwg =+ 231*‘ (PDJ_ & 8_) =13 L:f (P[U_ — Po|| + 4—32)} Ex Thzpk.po1 &, =0
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F}GLJ.-"LI = f}gs.,a.,’ {j)m_(?ﬁi’i i i3 }1'2) 00 —D (!1 + k ) =T Qpl:iﬂ LE‘

. B‘i‘ . BE
3oy k2 { 2k2 | 22 k2 —
TRl z{ {8 ﬂm( BI*DII)] e <5

=0

For quasi —transverse directions

- B2
w0 if poL (1 _ Dol ) + =2 <0
6po)| 8

which differs from the

PoL 4 _ 1 =0 kinetic prediction by the
Gpy) B1 factor 6.

Instability condition:




The correct stability threshold

can be obtained by performing a quasi-normal (QN) closure of the fluid hierarchy

(i.e. retaining heat fluxes but neglecting fourth rank cumulants)
(Passot, Ruban & Sulem, PoP 13, 102310 2006;
Dzhalilov, V.D. Kuznetsov & J. Staude, Contrib. Plasma Phys. 51, 621, 2010).

This QN closure may be suitable for analyzing stationary solutions but
cannot correctly reproduce the time dynamics.

In fact, advection terms are negligible (pressure equilibrium), with time dependency
originating from Landau damping.



. . . epe (from Treumann & Baumjohann
The phy5|cs of the mirror mStablhty Advanced Space Plasma Physics, 1997)

The particles become trapped in the
magnetic configurations whenever,
under the action of large perpendicular
e pressure, the magnetic field locally
inflates over one wavelength.

In this bottle, the particle perform a
mirror motion between the knots of
the wave.

Particles stream into the mirror during
the instability.

The whole region consists of magnetic

an mirrors which, when crossed by a

|B] spacescraft, are recorded as pulsation

- of oscillations of the magnetic field and
Satellite Path out-of-phase oscillations of the density.

Fig. 3.9, Satellite measurements across a mirror-unstable region.

See also Southwood & Kivelson, JGR 98, 9181, 1993
Kivelson & Southwood, JGR 101, 17365, 1996



A kinetic approach is required for a quantitative analysis of the mirror instability,
but a mixed description is in fact convenient to evaluate the various contributions.

Assume cold electrons

d u;
)
_pr

IBIZ)

i

:—rf}j[(pL—l— 03 —

| 2

PL—p|+ b? ‘|‘sz
03

dji | B|? Amr " \B-VB
e~ _v(“+ m)*(lﬂ |2(f"—'_*””}) Am

BQ
ikl {Iu—ﬁHJ) ~ V1L

4

47

B P

C V)(1+

: L ; :
Scaling: V| ~ 23, 0, ~ ¢, 0; ~ =2, where € measures the distance to threshold.

The advection term is subdominant: pressure balance equilibrium

Project on the plane perpendicular to the local magnetic field and linearize.
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Time dependence will arise, through the perpendicular pressure, from Landau damping.

Kinetic theory | j, = 0| or VLxﬁL:U or VJ_}{(VJ_XEJ_):U

Vi(Vi-B)—-A,B, =0
Using V - B =0

Bl =(-A1)"'V.0.B.




Linear kinetic theory near a bi-Maxwellian equilibrium : Califano et al., JGR 113, A08219, 2008

.. 31\ BoB; 5% ByB,
=0 (1-55) 2+ Yoo o) B

17 Utk || _,-_fH 47
9 B. N

—po.L i fLrL&' Z time derivative
3 51 B.
1), =—3(1- 5 muria
(V =1 5, poiri ALV =" Bo
Hilbert operator
b w1 (2T,
Fourier{—H} = | | "= oV m
T ion Larmor radius

signature of Landau resonance

To be substituted in the pressure balance equation.



After substitution in the pressure balance equation,

O¢B. (K, t) = 7z B. (k. 1)

Bl B , 1 1 BL—Bi\ k2 _ 3 ;25
o — A"__, 2, I [ _:]____— ]- T FII. :
% | z | Uth { ﬁ.?jJ_ D)H _.'ZfJ_ / fJ_ ( + b, ﬁ?_ 4;‘5 1. L,

Instability condition:

The arrest of the instability at small scales originates from FLR corrections
* Non-gyrotropic pressure:

3 5] 5 3 .
4 (1 B i)i-}ﬂﬂt‘i»’% ~ ———poLkiri
13,

4 b I \

- In fact a
PoLTT, ;f_ destabilizing effect

e FLR contribution to the perpendicular (gyrotropic) pressure:
9

45
This approach can easily be extended to retain nonlinear contributions
(which at this order of expansion are purely hydrodynamic, with no FLR contributions).




General case of hot electrons:
Linear instability more easily studied in a fully kinetic framework, using
Electric quasi-neutrality: n; — ne = 0

Linearized Ampere equation: j = eng(i; — )

. engVi X (i — e, ) =Vi XjL = 4’_;_&(3;2?)

. il =—ViXer+ V1 X (Xsr2) r=140r e

4dmeng
I:> .ﬂ.hz: ; AJ_(\LSE’_\SEJ
B

Kuznetsov, Passot, & Sulem, PoP 19, 092116, 2012



Need kinetic expressions for 7,., s and Xzr.

The computations are strongly simplified in prescribing a priori a low-frequency,
guasi-transverse asymptotics (instead of deriving general formulas and taking
limits afterwards, e.g. Pokhotelov et al., Adv. Space Res. 37, 1550, 2006).

The various quantities are expressed in term of the parallel magnetic field perturbation
b. and of the potentials ‘@ and  defined by

4?|' L
20 _ = v
(- =37
E. = —ik W
h.
XNy ==
1 BU
—_ ;{g




After multiplying the 2" line by £, /w

Ts
Tnz

+(To(be) — T1(be)) ( 7 £ R — 1)

gy — <[0TEY—T4 bz))( R(G) — 1)

Mg = Fg(bz) — 1+

| o L
Mg = — {Fo(bi)ﬂ(gg‘) T T, il FO(bi))]

Tle . Tjji
= [Foa R + 7, 2(1 = Tobe) | 7

In the special case of isotropic equilibrium temperatures, the matrix
reduces to that derived from the gyrokinetic theory by Howes et al.
ApJ 651, 590, 2006 for computing KAW'’s dispersion relation.

Myt = Bu(To(k) - D1 (5) (FR(G) — 1)

Ly
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e
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—(T1(b.) — To(be)) Tﬁ R(C.) Low-frequency dynamics
1 T j;rLE vh 9 Retaining the first (second) order leads to
Mz = 2.2 K Ty 1)(1 Lo(b:)) + Ty _i;"l a dispersion relation in the form of a first
iz s T 1 Tis (second) degree polynomial.
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lle Modified Bessel function of order v



When the instability is confined at large scale:

* Neglect electron Landau damping R() =1

* Neglect electron FLR corrections Lo(be) =1
* Expand the ion quantities: 9
3 9 2] (J b 3
To(b)=1—-0+ 1[’:} + O(b7) I'1(b) = 5 5 + O(b7)
R(G) = 1 +iv7mG +O(¢)
o2 i W
Solvability condition: A +Ay—5 +A3———+Agb=0
I'!"J_ Uth u'z|

1 T i 1 (T‘i —T“)Z
Ay = Bl [,‘;:U_f( J_? — 1) -+ ..'.fle( = - 1) —1—= T”_i Tli }

d T 1 (T.J‘*' — TJ"S)E
Threshold: _,{ﬁf.( 1% 1) 4 .Dle( le 1) 1 AT Te) _




Growth rate:
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Remark:

. 2 T|3 ;1"2 “i‘h”:ﬂ'
" mTy,; D
1 ¢ 1 1 B1 — B\ k2
ol 4 z
{'Tnf- g —(1+01) [H B " ..-;n(H 2 )L:ﬂ

—%(% N 1) (1+ B)fr-if-‘%}_

When the ion temperature anisotropy is small, the instability is not confined at large
transverse scales. In this case, the functions I',(b,) and I';(b,) cannot be expended.



Examples of mirror instability extending to small scales

__ _ _zero electron éyroradius
0.0015 : P iy =~ = =4
_ : Pa T+ 15 order LFjtheory
+ ]
‘E:\ 0.0010 w i
o> I i
2"d order LF theory ]
0.0005 . LF= low f
L WHAMP ] = IOW Trequency
0 1 2 5, 4 5
kir)

FIG. 1. Growth rate y/€); as a function of k, r; for 6 = 89°, Py =10, Ty, =
Ty T-_.-f?'-h- =T../Ty. = 1.094 for the solution of wramp (solid line), the
low-frequency theory using first-order (crosses) or second-order (stars) expan-
sion, and from the first-order low frequency theory in the limit of zero electron

gyro-radius (dashed line).

Example where the ion response function is to be expended
#2

tosecondorder R({,) =1+iy/n, —20 + 0(:3)
and electron FLR corrections must be retained.



67 ) ¢ IIItI C Id'l ST T ]
p Z€rO electron gyroradius 7/ zero electrop gyroradius
0.08 | Withoutlandau damping # \ith | andad damping
08 | 3 :
I ¥ / ]
o 0.06 [ § , / -
"h\\ I ]
&~ 0.04 1st order I::F theory
l WHAMP
0.02 | 3
[ o
0.00 L .
0 5 10 15
l(J_rL

FIG. 2. Growth rate 7/€; versus k;rp for #=89", Pri=1, Tje=Ty,
T,;/Ty=1.8, '1"._:.;“"}';!“ =1.72 from waamp (solid line), the first-order low-
frequency theory (crosses), and the limit of zero electron gyro-radius with
(dashed line) or without (stars) electron Landau damping.

Example where Landau damping and FLR corrections are to be retained for the electrons.



Nonlinear mirror modes

The nonlinear dynamics of mirror modes is a delicate issue.

Development of mirror structures: magnetic holes or humps, anti-correlated with
density.

A04203 SOUCEK ET AL.: MIRROR MODE PROPERTIES

Cluster 3, 01-Mar-2006 (peakness = 0.83, MP distance = 13615.0 km)

Magnetic humps
(or peaks) 201

09:15 09:16 09:17 09:18 09:19

Cluster 3, 01-Mar-2006 (peakness = -1.92, MP distance = 668.4 km)

Magnetic holes
(or dips)

IBI [nT]

11:03 11:04 11:05 11:06 11:07 11:08

Figure 1. An example of mirror mode structures of the two types. (top) Peaks (peakness = 0.83),
(bottom) dips (peakness = —1.92).

Soucek et al., JGR 113, A04203, 2007



JOY ET AL.: MIRROR MODES IN THE JOVIAN MAGNETOSHEATH

4 T T
Peaks
Bl ,
(nT)
g : :
Dips
|BI oy v.-k‘ -,
(nT) \
Other |
L e® Ij . .
" H! Wy ‘r”' rllli, Ak e
(nT) » l ”r ‘ ' ‘
0 i L =
0 I Time in Hours 2 3

Figure 1. Each panel shows 3 hours of Galileo magnetometer field magnitude data (solid black line),
appropriate quartiles (dotted), and the median value (solid gray) computed using 20 min sliding windows
with single sample shifts. The panels show examples of “peaks™ (top), “dips” (middle), and *“‘other”
(bottom) structures.

Joy et al., GRL 111, A12212 (2006)
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nearly sinusoidal modes

0.0

magnetic humps

12:10:00
Time (UT)

12:05:00
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--=-n
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Time (UT)

14:30:00

(wo) upuw (1u) *°g

correlation of magnetic field and density for mirror modes.

Strong anti

Leckband et al., Adv. Space Res. 15, 345 (1995)

Measurement by AMPTE-UKS satellite in the magnetosheath.
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magnetic holes

anticorrelation
magnetic field - density

magnetosheath region
adjacent to the dayside
magnetopause

(AMPTE/IRM satellite).

pressure equilibrium

Phan et al. JGR 99, 121,
(1994)

1215 25 35 45 55 1305 1315




Holes at small B

Peaks at higher

40 ' . : - . .
- Dips 1
8 20 —l—\_ :
’:.)
0 = '_‘_!_‘ " i
40 . e : : i i
Peaks
£
4 20 F |
i [ : e T
40 ' ; v
- Other
]
S 20} 4
;:.)
0 2 4 6

Figure 6. Occurrence distribution of MM structures
versus plasma Beta (/7).

Joy etal., GRL 111, A12212 (2006)
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A quantitative characterization of the shape of the mirror structures is provided

by the skewness of the magnetic fluctuations (Génot et al., Ann. Geophys. 27, 601,2009)

or by the essentially equivalent peakness (defined as the skewness of the time series
representing the total wavelet content betwen two chosen scales, of the original magnetic
field fluctuations) (Soucek et al., 113, A04203, 2007)

Typically, a positive skewness corresponds to peaks
a negative skewness corresponds to holes

\v]
I
|

SKewness

peakness

0.1 1.0 10.0 100.0 gl
By 10 10

B I
Fig. 3. Skewness as a function of 8 for all mirror events detected

in the period 1 February 2001-31 December 2005. SOUCEk, JGR 113’ A04203 (2007)

Génot et al., Ann. Geophys. 27, 601 (2009)

Skewness variation with B 61



Influence of the distance to threshold

SC3, 15/11/05-14/01/06
1.8 T T T T T
A peaks Solid blue line: theoretical

¢ dips H (bi-Maxwellian) mirror threshold

*  other TJ_
i — >14+ ]./,"BJ_
1

Dashed-dotted blue line: empirical
marginal stability

8 £:1+i 1200;8:
_ . b = 0.5
v T T &
o gl Black dashed line: fitted boundary
. 4 between peaks and dips
*
i ad T, 215
. . i 1 T = 3039
. Wy s, *-:‘Q ‘\sA‘ L T ’3\|
09f * . ]
- . | o “Peaks are typically observed in an

2 4 B, ° 8§ 10 12 unstable plasma, while mirror structures
Figure 3. Distribution of mirror modes of different types observed deep within the stable 10N
in the anisotropy-beta plane. Red triangles denote peaks appear almost exclusively as dips".
with P > 0.3, green squares dips (P < —0.6) and the
remaining ambiguous mirror mode events are marked by Soucek, Lucek & Dandouras, JGR 113, A04203
grey stars. (2008)
Solar wind: almost always stable against the mirror instability (Winterhalter et al., Space Sc. Rev.
72, 201, 1995): “Ulysses observed structures generated by mirror mode instability, which remained after
the distribution relaxes to a marginally stable state”.
“Although the plasma surrounding the holes was generally stable against the mirror instability, there are
indications that the holes may have been remnants of mirror mode structures created upstream ofthe
points of observation”.
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T T

[T T
0.6 i
 mirror stable ; mirror unstable i Shows the tendency of the magnetosheath plasma
0.4 i to be mostly observed in a marginally stable state
[ | 1 with respect to the mirror instability.
0.2 ! - |
-/

| I '

L

peaks
N
8 0.0f--------m--ere oo oL Peaks are a minority among mirror
¢ structures:
Y -0.2 'bistability i . e ] Joy et al. 2006: 14% are peaks; 19% holes
[ | S B ] Soucek et al:2007: 18.7% are peaks; 39.7% holes
-0.4 [ : ? 400 / E “".\ 1
_ I S NG
! | e Holes are preferentially observed close
I Cu 1
I S D to the magnetopause.
o ; (m 1)1 ) 2 . Peaks are more frequent in the middle
M=PiL\ = — v
Ti Distance to threshold: Cu—1 magnetosheath.
Fig. 5. Average skewness as a function of the mirror parameter C 4.
The vertical dashed line delineates the mirror threshold. The hor- Similar conclusions in Soucek et al., 2007

izontal dashed line delineates the region of predominance of holes Consistent with Bavassano Cattaneo et al ( 1998 )
(below) from the one of peaks (above). The error bars are pro- ’ ’

portional to o /+/N where o is the standard deviation and N is the Magnetic peaks are only observed when
number of mirror events in each ACy;=0.15 bin (Npyi,=20 and . .
the plasma is mirror unstable.

Nmax=675). The insert shows the distribution of mirror events as a
function of Cyy: the peak is observed for marginally stable condi-
tions with respect to the mirror instability (Cyr221). When the plasma is mirror stable ,0n |y

Génot el al. 2009 magnetic holes are observed.
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Numerical simulations of the Vlasov-Maxwell equations

Califano, Hellinger, Kuznetsov, Passot, Sulem & Travnicek, JGR 113, A012898, 2008

Mirror unstable regime near threshold in a small domain (Eulerian scheme)

ab

T H

t=1400
1.0 T

0.8F n ;
EJ_E]‘:— [ ]
0_25 | \

—-0.2

| Figure 8. Magnetic and density fluctuation profiles at
\ 1 initial and final times of the simulation, in the case T ,/T| =
\_— 14,8,=15and 6= 7853".
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N S — /1 The mirror instability leads to the formation of
i | 1  magnetic peaks (and density holes).
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Mirror unstable regime near threshold in an extended domain (PIC simulations)

1D simulation:  f,p = 72.8° (most unstable direction)

bo

-‘3.1_,“ =1 ,.‘3]) 1 = 1.857 _n’,‘gp_ 10—
With a PIC code in a large domain:
Domain size= 2048 c/w,

; 1 10000 O=1
Growth rate: 0.005 Qp t = 20009, t = 100002,
: 0.15 - - - - - : :
1024 cells with 500 000
2000 0.10 _oaof ]
r P : :~.J:
~ = . z = 005F
i 5 | 0.05 =
Ll . —| 0.00
: = : : 0.0 . . . J I . . . .
1000 - — il 7 0.00 0O 500 1000 1500 2000 O 500 1000 1500 2000
I o - ¢ Shp/va ¢ p/va
i = S 0.25 - - - :
500 - = 1005 0.20¢ 1t
[ - :— '*E 015k b C
0l e e 1 0.10 = oi0f E
0 2000 4000 6000 8000 10000 0.0k ;
He 0.00 . . , .
00 01 02 03 04 0500 01 02 03 04 05
Color plot of the fluctuations of the magnetic field kvaf, kuva/tl,

component B, perpendicular to the direction ¢ of

tial iation, f ti f dt. .
spatial variation, as a function of ¢ an A large number of modes are excited.

Humps form and undergo coarsening.
66



r

Gray scale plot of the
magnetic fluctuations
as a function of space

and time.

Bi-Maxwellian distance
to threshold:

Instantaneous distance
to threshold:

l;i df(o)
4 0-’1,:?‘

B my,

PB

dPv — 5

The actual distance to threshold rapidly
departs from the bi-Maxwellian value,
indicating a significant evolution of the

proton distribution function.
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The instability continues to
develop while <0, due to
the nonlinearities.

Positive skewness: magnetic
humps.

Nonlinear development of the mirror instability leads to magnetic humps.
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Toward a theoretical understanding of the nonlinear dynamics near threshold

A natural way to extend the linear theory to the weakly nonlinear regime

(that develops near threshold), is to perform a reductive perturbative expansion

based on the observation that, near threshold, the unstable modes are
localized at large scale.

Kuznetsov, Passot & Sulem, PRL 98, 23003 (2007)
Califano et al., JGR 113, A08219 (2008)
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Definitions:
B
PB = g
0 mn
PO — : /q;lf
Pr= —mn [ %ai,ﬁ fOq3y
p\
b = —
PB
fix = % ’U_Lszf(B)dE;U
p
Br = =
PB
[} o Pr pL—l—ﬁr—ﬁL—l
PB
g 1
A = Gr—2 —_ 4 =
Ba — 20r + 5 +2
< 4 P
-1 mn vl o df 3
'} —() 'R ——ad v
1 27 DR 4 (l“)t)'v?d,l,

F2 — _ mn i (t‘i‘df +3’U4¢ )d?’t'

24pp Q2 dtrﬁ
BL— 0
= 14—
X L
b = _bz_ normalized parallel magnetic

By fluctuations

For an arbitrary ion distribution function

o = sgnl’

Hellinger et al., GRL 36, L06103 (2009)

Orb = \/z& (—HOz) (0|F|b § AN b— X(AL)_IGZZb—Abz)
T 2 /

AN

BL=mnvg,, [pe | O =vg/Or
o= T'rz»nvfhﬂ /B
Br = 51/0

Ba = 3/281 /53

rz,: Larmor radius

= v (B — B0)?/Q
F=p(B/8—1) -1 <«1

ion Larmor radius /

Nonlinear contribution does not involve FLR corrections and
can thus be computed within the drift kinetic approximation:
Kuznetsov et al., PRL 98, 235003 (2007).

Pokhotelov et al., JGR, 113, A04225 (2008).

distance to threshold

Linear growth rate:

7 —flf‘lf( —gf‘zki—%\)

For a bi-Maxwellian equilibrium proton distribution

1 vif
v
exp(— —— - b

5.2 a..2
thh-ll 2ug5, |
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Califano et al. JGR 113, A08219 (2008)

In the bi-Maxwellian case, A >0 >




Defining

¢ — \/Eﬂz U Hd
Syt ljlrﬁ ' o=1: above threshold
R, = \/gm% B = jﬂb o =-1: below threshold

Oru = (—H0O¢)(ou+ Aju— Af@ggu — 3sgn(A) u?)

Changing sign(A) replaces u by —u, indicating that
sign(A\) prescribes the formation of peaks or holes.

For a bi-Maxwellian distribution, sgn(A) =1.

Case where spatial variations are limited to a direction making a fixed angle with the ambient field:

- -~ i ‘ K, =-Hay,
After a simple rescaling: [0pU = Kz [(0 + O==) U — 3[;2] Z 0z

whose Fourier transform is |K;]|

where = 1s the coordinate along the direction of variation.
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Bi-Maxwellian dynamics

When spatial variations limited to a direction
making a fixed angle with the propagation:

0.5

2

L L L L L
0 50 100 150 200 250 300

Profile of the solution near collapse

Integration above threshold (o>1), with as
initial conditions a sine function
involving several wavelengths.

After an early phase of linear instability,
formation of magnetic holes, whose number
is progressively reduced to one.

The equation develops a finite time singularity
with a self-similar behavior.

Wave-particle resonance provides the trigger
mechanism leading to the linear instability.

Hydrodynamic nonlinearities reinforce the
instability, leading to collapse.

Linear FLR effects arrest the linear instability
at small scales but cannot cope with
hydrodynamic nonlinearities.

At the level of Vlasov-Maxwell equations,
the singularity is the signature of the
formation of finite-amplitude structures,
through a subcritical bifurcation.

Kuznetsov et al., PRL 98, 235003, (2007);

JETP Letters 86, 637 (2007)
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A model possibly closer to numerical observations

Formation of magnetic hump could result from a distortion of the
distribution function that does not remain close to bi-Maxwellian.

PIC simulation in an extended domain near threshold

o
[$)]
T
I
T
1

(i
wn
o

I

Reduced distribution function f as a function of v (solid
curve) compared to the initial reduced distribution func-
tion (dotted curve).

Flattening of the distribution function
resulting from diffusion in velocity space
possibly described by the quasi-linear theory
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Quasi-linear theory (Shapiro & Shevchenko JETP 18, 1109, 1963)

e Assumes space homogeneity (thus no coherent structures); can thus be valid at early times only.
e Requires many modes in interaction, thus an extended domain.

e Can be extended to the (aperiodic) mirror instability because Yk << K2V |

e Describes a diffusion process in velocity space (dominantly along the ambient tield).

Sketch of the method:

lon distribution function: [ =.f (t, v) + | t,r, v
( 1 N a ) fo(v,t) = (f(x,v.t))x
hf+(V-V)f+LE+-vxB)-V,f=0

m ' .
| : fi = ‘;—*kae‘kr+ C.c.
—()fB:—VXE Bk:_TkXEk 1
' 2

( Wi E= Ey e’kr - c.c.

o " By k-v k . k
Ofo= - {Ei{<1 — —) + —(v- Ek)}vak +c.c.
| Wi 7 Wi

Kk

Assumptions:

1. Variations of f, are slow compared with the variations of the fluctuations
2. Interactions between the harmonics of the collective motions are neglected : f. = L( fo)

!

After some algebra, one gets a diffusion equation in the velocity space linear
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b w B, 0 of 1 0 of 0
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D =-2-Lpy, ol
2 )k -
UL — = Vibg b = 0B.(k)/ By
‘ ot
|[) ’2 Dol
Di =12y p 4
L - 4 linear growth rate computed from the instantaneous PDF
This equation was solved numerically Hellinger & al., GRL, 36, L00105, (2009)
fluctuating magnetic energy  distance from threshold maximum growth rate:
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Quasi-linear theory cannot describe structure formation.
It traces the spatially independent part of the distribution function, while
nonlinearities describing space variations (wave-wave interactions) are ignored.



Perturbation of the space-averaged distribution function

QL theory t= 1.4 10
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This suggests to couple QL theory and reductive perturbative expansion by estimating
the coefficients in the equation for the magnetic fluctuations from the instantaneous
QL distribution function (that is sensitive to the magnetic fluctuations).

of J of 1 0 Of af

|| OUL
{ b=zb,
2 ~
o= V" oy (to+ 2o - v ap?
ST _|_2£ 2 Ay
_ mn 05 Pfo
un = V2 / ?5("')(31;') d*v Hellinger & al., GRL, 36, L06103, (2009)

The coupled system can also be viewed as retaining the full nonlinear equation for the magnetic

fluctuations given by the reductive perturbative theory within the QL description, instead of the
sole linear contribution.

Because of the quasi-singularity of the distribution function resulting from the QL evolution,
near the zero parallel velocity, contributions of the resonant particles are to be taken into

account when estimating the nonlinear coupling (nonlinear Landau damping), which
leads to the denominator.
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Saturation by nonlinear Landau damping

Difficult to study the saturation by direct integration of the model (due to numerical limitations).

In order to isolate the saturation effect, we freeze the coefficients after the QL phase
(QL diffusion is expected to be strongly depleted as structures are formed)

1D model after rescaling,

1 5
b= ——(—F0:) (0b+ ud: b — 3sb~
1 +soab ( ) ( e )
where o=+1 (supercritical) or -1 (subcritical)
s=+1 (near a Maxwellian distribution)
or s=-1(due to QL flattening of the distribution function)
The parameters a and p are positive.

The denominator is reminiscent (in a small amplitude expansion) of the arctan trapping correction suggested in

Pokhotelov et al., JGR 113, A04225, 2008). The physical mechanism is however different, originating here from
nonlinear Landau damping.

The parameter o refers to the contribution of the QL resonance to the nonlinear coupling.

While for a=0, the solution blows up in a finite time, the denominator arrests the collapse at a
maximal amplitude given by 1/a, leading to the formation of

- magnetic dark solitons when s=+1

- magnetic bright solitons when s=-1

(Passot et al., AIP Conf. Proc. 1188, 205, 2009)



Saturated solutions in a supercritical regime

Numerical integration of the model equation, starting from a sine wave of amplitude 0.01 in a

domain of size 2m leads to a stationary hump.

The problem is numerically delicate: Extremely small time steps are required.

Saturation process:

During the nonlinear phase of amplitude growth, a plateau of
negative values gradually develops, that tends to locally reduce
the ambient magnetic field, putting the system in a situation
similar to the subcritical regime.

The solution is thus attracted to the KdV soliton with an

amplitude b,,.,=1/0: Amplitude is prescribed by the strength
of the early time QL resonance: larger amplitudes when these effects are
weaker.

When starting with random initial conditions, which leads to a
large number of humps, a coarsening phenomenon is observed.

When QL effects are subdominant (even above threshold),
s=+1 and hole solutions are obtained (change b into —b).
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Subcritical solutions

When o=-1 with large initial data, no quasi-linear phase: the distribution function remains
bi-Maxwellian (s=+1).

The denominator correction (with o small) is to be retained because of the large amplitudes.

Magnetic holes are obtained.
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Mirror instability far from threshold

PICS simulations
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Figure 16. Evolution in an extended domain, for 3 =1, T, /T = 4 and § = 50.5°. Gray scale plot of the
magnetic fluctuation B, as a function of t1me and space (left top); Time evolution of skewness of B, (right
top). of fluctuating magnetic energy 8B ."BU (left bottom), of the instantaneous distance from the threshold
(right bottom): I' (solid line) as given by equation (1) and the corresponding bi-Maxwellian value I'*
(dashed line) obtained from equation (2).

100 200
¢ 82/

p/ VA

300

400 500 0 100 200 300 400 500
X fva

Figure 17. Profiles of 0B, as a function of ( in a fraction of the simulation box, in the conditions of

Figure 16. From left to right and top to bottom: ¢ = 60/€2,

, =100/, 1 =150/, and 7 = 600/,

Transition from magnetic peaks to magnetic holes during the time evolution

Califano et al., JGR 113, A012898, 2008



STEREO observations on the solar wind

STEREO A Feb 29,2008
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Figure 4. Forty seconds segments of B showing the devel-
opment of magnetic structures during mirror mode storms
observed on 29 February 2008. The starting time (HH:
MM:SS) of each segment is indicated on the right hand side.

Figure 4 shows
the evolution of the mirror-mode structures in intervals of
40s during the storm. At the very beginning of the event,
near the shock, mirror-mode waves are mainly small ampli-
tude ““peaks” (top of Figure 4A). A few minutes later, the
number of peaks increases, and the time separation be-
tween them decreases (Figures 4B—4C). As time passes,
holes begin to be detected, making it difficult to distinguish
between peaks and holes (Figure 4D). Near the end of the
storm event, the structures turn into nicely shaped holes
which are deeper, wider, and more separated as the end of
the event is approached (Figures 4F—4@G). The normalized
amplitudes (0B/By) of such holes can reach 0B/By=0.95
approximately as seen in the hole presented in case G of
Figure 4. During the MMS, the mean value of beta was
11.48 with a maximum peak of 51.59.

Enriguez-Riviera et al. JGR 118, 1, 2013



Summary

In a non-collisional (or weakly collisional plasma), the ion pressure is usually non isotropic
(significantly weaker collisions may be sufficient to make electron temperature isotropic).

At large enough scales, the pressure tensor is gyrotropic,.
At small scales, finite Larmor radius effects induce non-gyrotropic contributions.

Pressure (or temperature) anisotropy may be due to the expansion/compression of the
plasma and to other processes such as turbulence which induce (anisotropic) heating or
cooling.

Anisotropic heating may lead to microinstabilities that constrain the development of the
anisotropy, maintaining the system close to the instability threshold.

Mirror instability is one of the processes leading to magnetic holes and humps commonly
observed in heliospheric plasmas.

Temperature anisotropy can also play a role in other contexts (not addressed here), such as
an effect on the growth rate of the tearing instability in magnetic reconnection
(Matteini et al. ApJ, in press).



