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Anisotropic plasmas refer to situations where the velocity distribution functions  of the 

various particle species  are non isotropic  (in particular non Maxwellian).

Such a regime requires Coulomb collisions to be sufficiently weak. 

Many astrophysical plasmas are magnetized and weakly or  even almost non collisional. 

Characterized by: 

Collision frequency  <<  cyclotron frequency

Larmor radius   <<    mean free path

Examples include

• Galaxy cluster plasmas Schekochihin et al. ApJ 629, 139  (2005)

• Solar wind Marsch , Space Sc. Rev. 172, 22, (2012)

• Planet magnetospheres        Blanc et al. Space Sci. Rev. 116, 227 (2005)

• . . . 



In situ observations in the solar wind

Velocity distribution functions  exhibit large departures from isotropic (Maxwellian) 

distribution functions:

o Different parallel and perpendicular temperatures with respect to the ambient 

magnetic field. 

o The proton distribution function often exhibit a core and a magnetic field-aligned 

beam with 

• a number density of the order of tenths of the core density

• the beam/core relative velocity of the order of the local Alfvén velocity 

(Marsch et al., JGR 87, 35, 1982).



Marsch , Space Sc. Rev. 172, 22, 2012

Anisotropy of the proton distribution 

function of slow (left), intermediate 

speed (middle) and fast solar wind at 

increasing distances from the sun.

----- : direction of the magnetic field

In magnetized collisionless (or 

weakly collisional) plasmas, the 

velocity distribution function of 

each particle species is not 

Maxwellian.



In this talk, 

I concentrate on the effect of temperature anisotropy  

(assuming an equilibrium bi-Maxwellian velocity distribution function)

and will not address the effect of  beams.

I concentrate on instabilities that require the  presence of an ambient magnetic field

and will thus not discuss instabilities such as the Weibel instability (driven by an 

anisotropic  electron distribution in the presence of immobile neutralizing ions; enhances initial 

magnetic fluctuations). 



Pressure tensor of a magnetized collisionless plasmas

The pressure of each particle species  r (of mass        )

is a full tensor.

Here,                                                               : is the corresponding hydrodynamic velocity.

is the number density of particles of species r

Pressure anisotropy  is a source of free energy (energy that can be transformed into work). 

The system will tend to relax or to reduce this anisotropy via collisions or, if they are 

too weak to act efficiently, by developing instabilities which push the system towards 

equilibrium.



It is often convenient to separate the gyrotropic part of the pressure tensor  

(characterized by the perpendicular and parallel pressures) 

from the non-gyrotropic part  (also called  finite Larmor radius or FLR corrections)

From the perpendicular and parallel pressures ,

one defines the perpendicular and  parallel temperatures

nr : number density 

At scales large compared with the Larmor radius, the non-gyrotropic part  is subdominant.



The perpendicular and parallel pressures of each species  r obey equations 

derived from the Vlasov equation 

qr : heat flux tensor 

In the absence of collisions, pressure and temperature anisotropies can develop

even if the plasma is initially isotropic. 



Example: Expanding plasma (solar wind)

Simple model:

• Consider the dynamics at scales large compared to the ion Larmor radius

(FLR contributions and Hall term negligible)

• Neglect heat fluxes

Combining the equations for the perpendicular and parallel ion pressures with the 

density and induction equations (where Hall effect is neglected), 

Double adiabatic approximation

(Chew,Goldberg & Low, 1956)

One can impose

the equations 

of state



For a spherical expansion, in the presence of a strictly radial magnetic field and

a constant solar wind velocity where 

one gets

and

Double-adiabatic (or CGL) 

approximation



Suggests perpendicular heating by turbulence (not addressed here).

Parallel cooling may also be required (Hellinger et al. JGR, in press).

For               ,, data show departure from the empirical correlation observed at lower       .

Related to the fact that for             , , anisotropic plasmas with                   can develop a  

fire-hose instability.

Matteini et al., Space Sci. Rev. 172, 373, 2011

CGL

0.3 AU

1AU

The observed anticorrelation departs from the CGL prediction.   

fire-hose instability



Statistical study of temperature anisotropies in the slow solar wind

Solar wind expansion and turbulence generate temperature anisotropy

This anisotropy is limited by micro-instabilities:  mirror and oblique firehose instabilities.

Bale et al. PRL 103, 21101 (2009)

color: magnitude of δB; enhanced δB also corresponds

to enhanced proton heating.
Hellinger et al. ,GRL 33, L09101 (2006)



Kasper et al., Solar Wind 10, 2003

Parallel temperature far from bi-adiabatic prediction 

Temperature anisotropy constrained to stay within 

the strip defined by micro-instabilities.



For a detailed study of the microinstabilities based on a fully kinetic description:

o S.P. Gary, Theory of Space Plasma Microinstabilities , Cambridge Univ. Press, 1993 

(reprinted 2005).

o Schlickeiser, Lazar & Skoda, Phys. Plasmas 18, 012103, 2011 (and references therein)

o R.A. Treumann & W.B. Baumjohann,  Advanced Space Plasma Physics, Imperial 

College Press, 1997.

Plasmas instabilities

• macroscopic (configurational) instabilities:  can be described by macroscopic 

equations in configuration space.

• microinstabilities instabilities :  depend on the actual shape of the distribution function.



• Parallel (or whistler) fire-hose instability

• Oblique (or Alfvén) fire-hose instability

• Mirror instability mirror modes                                                                

• Proton cyclotron instability                                   ion-cyclotron waves

Main microinstabilities due to anisotropic  ion pressure in a magnetized plasma

oblique (or kinetic) Alfvén waves

Instabilities do not arise without free energy.

Free energy may come from the magnetic configuration  (stored  e.g.  in the Harris 

current sheet) , anisotropic plasma pressure,  streaming of plasma particles with 

respect to each other, etc.

The presence of a small density of helium ions  can significantly reduce the proton 

cyclotron  instability growth rate, making the mirror instability dominant 

(Price et al., JGR, 91, 101, 1986).

whistler waves

Analogous instabilities can be driven by anisotropic electron pressure

(Gary & Karimabadi, JGR 111, A11224, 2006;  Steverak et al. JGR 113, A03103, 2008)



The parallel (or whistler) fire-hose instability

This instability can be correctly analyzed within a fluid description (outside ion-cyclotron 

resonance).

Consider a plasma at equilibrium, with anisotropic pressure, subject to an ambient

magnetic field in the z direction.  We first consider the large-scale dynamics.

Linearize the induction equation (neglecting Hall effect)

Define the displacement vector 

For a mode with wavevector



Pressure fluctuations:

where       

Thus

Lorentz force:

Substituting  in the linearized velocity  equation 

gives



• the dynamics of the transverse field components decouples

• it is not necessary to specify the  pressure field: no kinetic physics is required.

When assuming purely longitudinal perturbations (kx=0), 



The instability condition can be written in several forms : 

Growth rate

(at the largest scales)

Alfvénic eigenmode:

The instability survives  in weakly oblique directions  in a cone whose angle increases with 

beta, but is maximal in the parallel direction

(Gary et al. , JGR, 103, 14574, 1998 where a kinetic approach is presented)



Consider a magnetic flux tube.

The plasma flows along the magnetic field

with the typical velocity v
thǁ.

Whenever a flux tube is slightly bent, 

the plasma exerts  a  centrifugal force                                     

Two forces resist to this centrifugal force:

The thermal pressure force in the plane

perpendicular to the flux tube 

The magnetic stresses of the flux tube

Physical interpretation of the parallel fire-hose instability

(from Treumann & Baumjohann

Advanced Space Plasma Physics,  1997)

Instability sets in if                                    ,  i.e.                                                or 



Within this (large-scale) description, the instability growth rate increases linearly 

with the perturbation wavenumber. 

The instability is in fact arrested at small scales by the Hall term and the pressure 

FLR corrections.

These effects are to be retained for the initial value problem to be well-posed.

Growth rate 



Hall term   (neglect contribution of electron pressure gradient)

Ion gyrofrequency

When linearized, 

(              )



Large-scale pressure FLR corrections (after linearization) 

Gyrotropic pressure fluctuations (linearized form)

For parallel perturbations,

So 



Lorentz force 

Substitute in the velocity equation

and get 

where the velocity is expressed from the induction equation



After substitution, 

Define



Solvability condition

Unstable modes: with 

Schekochihin et al., Mon. Not. R. Astron. Soc. 405, 291, 2010 

Instability if 

real frequency



Dispersive effects (Hall effect and pressure FLR corrections) 

• induce a real  part to the frequency (thus a velocity of propagation) 

• arrest the instability at small scales

Influence of electron temperature anisotropy (arising in the generalized Ohm’s low) 

can easily be taken into account
(Schekochihin et al., Mon. Not. R. Astron. Soc. 405, 291, 2010). 



Nonlinear saturation of the parallel (or whistler) fire-hose instability

Hybrid PIC simulations indicate a non-linear saturation in a quasi-linear manner

(Quest and Shapiro, JGR  101, 24457, 1996; Gary et al. JGR 103, 14567, 1998).

Hellinger & Matsumoto, 

JGR 105, 10519, 2000 



Nonlinear saturation of the 

parallel fire-hose instability

(PIC simulations)
Matteini et al. JGR 111, A 10101, 2006.



Under resonant conditions, the linear threshold

condition for a fixed value of the dimensionless

maximum  growth rate γm / Ωp of the proton 
firehose instability in an electron-proton plasma
can be written for γm / Ωp < 0.10 as 

over 1≤βǁp ≤10.

Sp is a dimensionless number of order unity  

determined by the choice of the maximum growth

rate, but αp 0.7, relatively independent of

γm / Ωp.

Resonances enlarge the instability region

The fluid theory is valid only very close to the instability threshold.

It requires that for the most unstable mode, 

Ion gyrofrequency

Gary et al. JGR, 103, 14574, 1998 

non resonant

resonant

non resonant

From kinetic theory

Resonances affects the instability threshold

The right-handed polarized whistler mode is

destabilized.



fluid

resonant

kinetic formula

Resonances enlarge the instability region

Matteini et al. JGR 111, A 10101, 2006.



Matteini et al. JGR 111, A 10101, 2006.



Proton velocity distribution function

The departure from the initial biMaxwellian

is more important in the case of lower β.

The deformation of the velocity  distribution 

function is a direct consequence of the 

resonant interaction of the protons with the

waves.

Matteini et al. ,JGR 111, A 10101, 2006.



Quasi-linear saturation of the fire-hose instability:

• Theory in the non-resonant regime: Shapiro & Shevchenko, JETP 18, 1109, 1964.

Predict asymptotic relaxation to the marginal equilibrium condition given by the 

fluid theory.

• Effect of weak collisions and also of turbulence: Rosin et al., MNRAS 413, 7, 2011.

• Effect of the resonances: Seough & Yoon, JGR 117, A08101, 2012.



A flavor of quasi-linear theory  (see e.g. Diamond, Itoh & Itoh, Modern Plasma Physics: Vol. 1,

Physical Kinetics of Turbulent Plasmas, Cambridge Univ. Press  2010).  

Separate space-averaged contributions from fluctuations (taken in the linear approximation)

Assuming that the fluctuations evolve much faster than the electric field and the 

space-averaged distribution function, 



Here                              is viewed as the (complex) frequency of the considered kind 

of waves, given by the dispersion relation based on the instantaneous particle 

distribution function        .

The absolute value is aimed to cope with the case of damped modes.  

This  formula is valid in the limit ϒk → 0, but additional terms arise otherwise

(Hellinger & Travnicek, PoP 19, 062307, 2012). 

(growth rate calculated from <f(x,t)>)



The oblique or Alfvén fire-hose instability

Hellinger & Matsumoto, 

JGR 105, 10519, 2000 

JGR 106, 13215, 2001

=

See also Wang & Hau, JGR 108, 1463, 2003; Hau and Wang, NPG 14, 557, 2007



The oblique or Alfvén fire-hose instability

(Empirical) threshold: 

• Zero-frequency mode (purely growing)

• Resonant instability (Hellinger & Travnicek, JGR 113, 10109, 2008)

• Maximum growth rate at oblique propagation

• Linear polarization:

• Compressible mode:

• Anti-correlated density and magnetic field fluctuations    



Hellinger &Travnicek, JGR 113, A10109, 2008 

No quasi-linear relaxation to 

marginal equilibrium, but 

Alfvén wave damping and 

heating of the protons.

x



Mirror instability 

Return to the case of arbitrary perturbations (concentrate on largest scales)

Simplest closure: double adiabatic (or CGL) approximation: prescribes zero heat fluxes.

This leads to prescribe the equations of state:

or 

gives



Solvability:

ω2< 0  if  

Instability condition:  

which differs from the

kinetic prediction by the

factor 6.

For  quasi –transverse directions



The correct stability threshold 

can be obtained by performing a quasi-normal (QN) closure of the fluid hierarchy

(i.e. retaining heat fluxes but neglecting fourth rank  cumulants)
(Passot, Ruban & Sulem, PoP 13, 102310 2006; 

Dzhalilov, V.D. Kuznetsov &  J. Staude, Contrib. Plasma Phys.  51, 621, 2010).

This QN closure may be suitable for analyzing stationary solutions but

cannot correctly reproduce the time dynamics.

In fact,  advection terms are negligible (pressure equilibrium), with time dependency 

originating  from Landau damping.



The particles become trapped in the 

magnetic configurations whenever, 

under the action of large perpendicular 

pressure, the magnetic field locally 

inflates over one wavelength.

In this bottle, the particle perform a 

mirror motion between the knots of 

the wave. 

Particles stream into the mirror during 

the instability. 

The whole region consists of magnetic 

mirrors which, when crossed by a 

spacescraft, are recorded as pulsation 

of oscillations of the magnetic field and 

out-of-phase oscillations of the density.

The physics of the mirror instability
(from Treumann & Baumjohann

Advanced Space Plasma Physics,  1997)

See also   Southwood & Kivelson, JGR 98, 9181, 1993

Kivelson & Southwood, JGR 101, 17365, 1996



A kinetic approach is required for a quantitative analysis of the mirror instability, 

but a mixed description is  in fact convenient to evaluate the various contributions.

Assume cold electrons

Scaling:                                                     , where ε measures the distance to threshold.

The advection term is subdominant: pressure balance equilibrium

Project on the plane perpendicular to the local magnetic field and linearize.



Time dependence will arise,  through the perpendicular pressure,  from Landau damping.

Kinetic theory or                                      or

Using 



Linear kinetic theory near a bi-Maxwellian equilibrium : Califano et al., JGR 113, A08219, 2008

time derivative 

signature of Landau resonance

To be substituted in the pressure balance equation.

Hilbert operator

ion Larmor radius 



Instability condition: 

The arrest of the instability at small scales originates from FLR corrections

• Non-gyrotropic pressure:

• FLR contribution to the perpendicular (gyrotropic) pressure:

This approach can easily be extended to retain nonlinear contributions

(which at this order of expansion are  purely hydrodynamic, with no FLR contributions).

In fact  a 

destabilizing effect 

After substitution in the pressure balance equation,



General case of hot electrons:

Linear instability more easily studied in a fully kinetic framework, using 

Electric quasi-neutrality:

Linearized Ampère equation: 

Kuznetsov, Passot, & Sulem, PoP 19, 092116, 2012

•

•



Need kinetic expressions for         ,           and        ..

The computations are strongly simplified in prescribing a priori a low-frequency, 

quasi-transverse asymptotics (instead of deriving general formulas and taking

limits afterwards, e.g. Pokhotelov et al., Adv. Space Res. 37, 1550, 2006).

The various quantities are expressed in term of the parallel magnetic field perturbation

and of the potentials        and        defined by 



After multiplying the 2nd line by 

Low-frequency dynamics

Retaining the first (second) order leads to 

a dispersion relation in the form of a first 

(second) degree polynomial.

Modified Bessel function of order ν

In the special case of isotropic  equilibrium temperatures, the  matrix 

reduces to that derived from the gyrokinetic theory by Howes et al. 

ApJ 651, 590, 2006 for computing KAW’s dispersion relation.



When the instability is confined at large scale:

• Neglect electron Landau damping

• Neglect electron FLR corrections

• Expand the ion quantities:

Solvability condition:

Threshold: 



Growth rate:



When the ion temperature anisotropy is small, the instability is not confined at large

transverse scales. In this case, the functions Γ0(br) and Γ1(br) cannot be expended.

Remark:



Example where the ion response function is to be expended

to second order

and electron FLR corrections must be retained.

Examples of mirror instability extending  to small scales

zero electron gyroradius

1st order LF theory

2nd order LF theory

WHAMP
LF= low frequency



Example where Landau damping and FLR corrections are to be retained for the electrons. 

WHAMP

1st order LF theory

zero electron gyroradius

with Landau damping

zero electron gyroradius

without Landau damping



Nonlinear mirror modes

The nonlinear dynamics of mirror modes is  a delicate issue.

Development of mirror structures: magnetic holes or humps, anti-correlated with 

density.

Magnetic humps

(or peaks)

Magnetic holes

(or dips)

Soucek et al.,  JGR 113, A04203, 2007 
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Joy et al., GRL 111, A12212 (2006)
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Strong anti-correlation of magnetic field and density for mirror modes.

Leckband et al., Adv. Space Res. 15, 345 (1995)

Measurement by AMPTE-UKS satellite in the magnetosheath.

B

n
B

n

nearly sinusoidal modes magnetic humps
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pressure equilibrium

anticorrelation

magnetic field - density

Phan et al. JGR 99, 121, 

(1994)

magnetosheath region 

adjacent to the dayside

magnetopause

(AMPTE/IRM satellite).

magnetic holes
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Joy et al., GRL 111, A12212 (2006)

Holes at small β

Peaks at higher β
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A quantitative characterization of the shape of the mirror structures is provided

by the skewness of the magnetic fluctuations (Génot et al., Ann. Geophys. 27, 601,2009) 

or by the essentially equivalent peakness (defined as the skewness of the time series 

representing the total wavelet content betwen two chosen scales, of the original magnetic 

field fluctuations) (Soucek et al., 113, A04203, 2007)

Typically, a positive skewness corresponds to peaks

a negative skewness corresponds  to holes

Génot et al., Ann. Geophys. 27, 601 (2009)

Soucek, JGR 113, A04203 (2007)

Skewness variation with β
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Soucek, Lucek & Dandouras, JGR 113, A04203 

(2008)

Solid blue line: theoretical

(bi-Maxwellian) mirror threshold

Dashed-dotted blue line: empirical

marginal stability   

Black dashed line: fitted boundary 

between peaks and dips

Solar wind: almost always stable against the mirror instability (Winterhalter et al., Space Sc. Rev. 

72, 201, 1995):  “Ulysses observed structures generated by mirror mode instability, which remained after 

the distribution relaxes to a marginally stable state”.

“Although the plasma surrounding the holes was generally stable against the mirror instability, there are 

indications that the holes may have been remnants of mirror mode structures created upstream  of the 

points of observation”.

Influence of the distance to threshold

“Peaks are typically observed in an 

unstable plasma, while mirror structures 

observed deep within the stable region 

appear almost exclusively as dips”.



63(An estimate based on cold electrons and bi-Maxwellian ions is sufficient, given the data accuracy).

Magnetic humps

(Positive skewness)

Supercritical
CM <1 : subcritical

CM >1 : supercritical

(for cold electrons and bi-Maxwellian ions) 

Génot et al., Ann. Geophys. 27, 601 (2009)

Magnetic holes

(Negative skewness)

Mostly subcritical
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Génot el al. 2009

Shows the tendency of the magnetosheath plasma 

to be mostly observed in a marginally stable state 

with respect to the mirror instability.

bistability

Peaks are a minority among mirror 

structures:
Joy et al. 2006: 14% are peaks; 19% holes

Soucek et al:2007: 18.7% are peaks; 39.7% holes

Distance to threshold:

Holes are preferentially observed close

to the magnetopause.

Peaks are more frequent in the middle

magnetosheath.

Similar conclusions in Soucek et al., 2007

Consistent with Bavassano Cattaneo et al. (1998).

Magnetic peaks are only observed when 

the plasma is mirror unstable.

When the plasma is mirror stable, only 

magnetic holes are observed.



Numerical simulations of the Vlasov-Maxwell equations

Mirror unstable regime near threshold in a small domain (Eulerian scheme)

The mirror instability leads to the formation of

magnetic peaks (and density holes).

Califano, Hellinger, Kuznetsov, Passot, Sulem & Travnicek, JGR 113, A012898, 2008 



66

With a PIC code in a large domain:

Domain size= 2048 c/ωpi

Growth rate: 0.005 Ωp

1024 cells with 500 000 

particles/cell

A large number of modes are excited.

Humps form and undergo coarsening.

Mirror unstable regime near threshold in an extended domain (PIC simulations)

(most unstable direction)

Color plot of the fluctuations of the magnetic field

component Bη perpendicular to the direction ζ of 

spatial variation, as a function of ζ and t.

1D simulation:
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Distance to threshold

reaches negative values. No 

relaxation to marginal 

stability.

Bi-Maxwellian distance 

to threshold:

Instantaneous distance 

to threshold:

Gray scale plot of the 

magnetic fluctuations 

as a function of space

and time.

The instability continues to 

develop while Г<0, due to 

the nonlinearities.

Positive skewness: magnetic

humps.

The actual distance to threshold rapidly

departs from the bi-Maxwellian value,

indicating a significant evolution of the

proton distribution function.

energy of magnetic

fluctuations

Nonlinear development of the mirror instability leads to magnetic humps.
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Toward a theoretical understanding of the nonlinear dynamics near threshold 

A natural way to extend the linear theory to the weakly nonlinear regime

(that develops near threshold), is to perform a reductive perturbative expansion

based on the observation that, near threshold, the unstable modes are 

localized at large scale.

Kuznetsov, Passot & Sulem, PRL 98, 23003 (2007)

Califano et al., JGR 113, A08219 (2008) 
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Definitions:

distance to threshold ion Larmor radius

Nonlinear contribution does not involve FLR corrections and 

can thus be computed within the drift kinetic approximation: 

Kuznetsov et al., PRL 98, 235003 (2007).

Pokhotelov et al., JGR, 113, A04225 (2008).   

For a bi-Maxwellian equilibrium proton distribution

normalized parallel magnetic 

fluctuations 

<<1

In the bi-Maxwellian case, Λ >0

Hellinger et al., GRL  36, L06103 (2009)

Califano et al. JGR 113, A08219 (2008)

:  Larmor radius

Linear growth rate:

For an arbitrary ion distribution function
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| |

Changing sign(Λ) replaces u by –u, indicating that

sign(Λ) prescribes the formation of peaks or holes.

For a bi-Maxwellian distribution, sgn(Λ) =1.

σ=1: above threshold

σ =-1: below threshold

Case where spatial variations are limited to a direction making a fixed angle with the ambient field:

whose Fourier transform is
After a simple rescaling:
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Integration above threshold (σ>1), with as 

initial conditions a sine function

involving several wavelengths.

After an early phase of  linear instability, 

formation of  magnetic holes, whose number 

is progressively reduced to one.

The equation develops a finite time singularity  

with a self-similar behavior.

Profile of the solution near  collapse 

Bi-Maxwellian dynamics

At the level of Vlasov-Maxwell equations,

the singularity is the signature of the 

formation of finite-amplitude structures,

through a subcritical bifurcation.

When  spatial variations limited to a direction 

making a fixed angle with the propagation: Wave-particle resonance  provides the trigger 

mechanism leading to the linear instability.

Hydrodynamic nonlinearities reinforce the

instability, leading to collapse.

Linear FLR effects arrest the linear instability 

at small scales but cannot cope with 

hydrodynamic nonlinearities.

Kuznetsov et al.,  PRL 98, 235003, (2007);

JETP Letters 86, 637 (2007)    
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Flattening of the distribution function
resulting  from diffusion in velocity space

PIC simulation in an extended domain near threshold

Formation of magnetic hump could result from a distortion of the 

distribution function that does not remain close to bi-Maxwellian.

possibly described by the quasi-linear theory   

A  model possibly closer to numerical observations



Quasi-linear theory (Shapiro  & Shevchenko JETP 18, 1109, 1963) 

• Assumes space homogeneity  (thus no coherent structures);  can thus be valid at early times only.

• Requires many modes in interaction, thus an extended domain.

• Can be extended to the (aperiodic) mirror instability because                   

• Describes a diffusion process in velocity space (dominantly along the ambient field).

73

Sketch of the method:

Ion distribution function: 

After some algebra, one gets a diffusion equation in the velocity space

Assumptions:
1. Variations  of       are slow compared with the variations of the fluctuations  
2. Interactions between the harmonics of the collective motions are neglected :      

linear
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linear growth rate computed from the instantaneous PDF 

Hellinger & al., GRL, 36363636, L06103, (2009)This equation was solved numerically

Quasi-linear theory cannot describe structure formation.

It traces the spatially independent part of the distribution function, while 

nonlinearities describing space variations (wave-wave interactions) are ignored.
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Perturbation of the space-averaged distribution function Δf = f – f(0)

QL theory PIC simulation
t= 1.4 105 t=2 103

Integrated over 
flattening

t=0

negative values

positive values 

Δ
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This suggests to couple QL theory and reductive perturbative expansion by  estimating 

the coefficients in the equation for the magnetic fluctuations from the instantaneous 

QL distribution function (that is sensitive to the magnetic fluctuations).

Because of the quasi-singularity of the distribution function resulting from the QL evolution,

near the zero parallel velocity, contributions of the resonant particles are to be taken into 

account when estimating the nonlinear coupling (nonlinear Landau damping), which

leads to the denominator.

The coupled system can also be viewed as retaining the full nonlinear equation for the magnetic 

fluctuations given by the reductive perturbative theory within the QL description, instead of the 

sole linear contribution.

Hellinger & al., GRL, 36363636, L06103, (2009)

b ≡ bz
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Results of the simulation of coupled 

system in 1D  (in the most unstable direction)

Formation of magnetic humps

QL theory

-min(b)

nonlinear coupling

QL saturation

resonance coefficientchange 
of sign

max(b)
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where σ=+1 (supercritical) or -1 (subcritical)

s=+1 (near a Maxwellian distribution)

or s=-1 (due to QL flattening of the distribution function)

The parameters α and μ are positive.

The denominator is reminiscent (in a small amplitude expansion) of the arctan trapping correction suggested in 

Pokhotelov et al., JGR 113, A04225, 2008). The physical mechanism is however different, originating here from

nonlinear Landau damping.

The parameter α refers to the contribution of the QL resonance to the nonlinear coupling.

While for α=0, the solution blows up in a finite time,  the denominator arrests the collapse at a 

maximal amplitude given by 1/α, leading to the formation  of

- magnetic dark solitons when s=+1

- magnetic bright solitons when s=-1

Saturation by nonlinear Landau damping

1D model after rescaling,

In order to isolate the saturation effect, we freeze the coefficients after the QL phase

(QL diffusion is expected to be strongly depleted as structures are formed)

(Passot et al., AIP Conf. Proc. 1188, 205, 2009)

Difficult to study the saturation by direct integration of the model (due to numerical limitations).
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Numerical integration of the model equation, starting from a sine wave of amplitude 0.01 in a 

domain of size 2π leads to a stationary hump. 

Saturated solutions in a supercritical regime

Saturation process:

During the nonlinear phase of amplitude growth, a plateau of 

negative values gradually develops, that tends to locally reduce

the ambient magnetic field, putting the system in a situation

similar to the subcritical regime.

The solution is thus attracted to the KdV soliton with an 

amplitude bmax=1/α: Amplitude is prescribed by the strength

of the early time QL resonance: larger amplitudes  when these effects are 

weaker.

When starting with random initial conditions, which leads to a 

large number of humps, a coarsening phenomenon is observed.

σ=+1

s=-1

μ=0.01

α=1

The problem is numerically delicate: Extremely small time steps are required.

When QL effects are subdominant (even above threshold), 

s=+1 and hole solutions are obtained (change b into –b).
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When σ=-1 with large initial data, no quasi-linear phase: the distribution function remains

bi-Maxwellian (s=+1). 

The denominator correction (with α small) is to be retained because of the large amplitudes.

Magnetic holes are obtained.

Subcritical solutions

σ=-1

s=+1

μ=0.05

α=0.8



Mirror instability far from threshold

Califano et al., JGR 113, A012898, 2008 

Transition from magnetic peaks to magnetic holes during the time evolution

PICS simulations



Enriquez-Riviera et al. JGR 118, 1, 2013 

STEREO observations on the solar wind



Summary

In a non-collisional (or weakly collisional plasma), the ion pressure is usually non isotropic

(significantly weaker collisions may be sufficient to make electron temperature isotropic). 

At large enough scales, the pressure tensor  is  gyrotropic,.

At small scales , finite Larmor radius effects induce non-gyrotropic contributions. 

Pressure (or temperature) anisotropy may be due to the expansion/compression  of the 

plasma and to  other processes such as turbulence which induce (anisotropic) heating or 

cooling.

Anisotropic heating  may lead to microinstabilities that constrain the development of the 

anisotropy, maintaining the system close to the instability threshold. 

Mirror instability is one of the processes leading to magnetic holes and humps commonly 

observed in heliospheric plasmas. 

Temperature anisotropy can also play a role in other contexts (not addressed here), such as 

an effect on the growth rate of the tearing instability in magnetic reconnection

(Matteini et al. ApJ , in press).


