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Why radiation?

✓Why is radiation so important to understand?
✓ Light is a tracer of the emitting media

✓ Geometry, evolution, energy, magnetic field...

✓ Light can influence the source properties
✓ cooling/heating, radiation pressure...

✓ Light can be modified after its emission

✓Why are high energy plasmas so important to study?
✓ High energy particles are the most efficient emitters
✓ They emit over an extremely wide range of frequencies
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Outline

✓Goals of this course: 
✓ Review the main high energy processes for continuum emission

✓ Assumptions, approximations, properties

✓ Show how they can be used to constrain the physics of astrophysical 
sources

✓Main books/reviews: 
✓ Rybicki G.B. & Lightman A.P., 1979, Radiative processes in astrophysics, 

New York, Wiley-Interscience
✓ Jauch J.M. & Rohrlich F., 1980, The theory of photons and electrons (2nd 

edition), Berlin, Springer
✓ Aharonian F. A., 2004, Very High energy cosmic gamma radiation, World 

scientific publishing
✓ Heitler W., 1954, Quantum theory of radiation, International Series of 

Monographs on Physics, Oxford: Clarendon
✓ Blumenthal G.R. & Gould R.J., 1970, Reviews of Modern Physics
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Introduction
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Introduction ●○

Non black-body radiation

✓Black-Body radiation is simple ideal limit
✓ independent of internal processes, geometry...
✓ Simple law

✓No black body radiation if:
✓ Optically thin media

✓ <= finite source size and finite interaction cross sections
✓ => absorption/emission/reflection features

✓Matter not at thermal equilibrium
✓ <= low density, high energy plasmas

✓Then, radiation properties depend on
✓ The particle distributions 
✓ The microphysics: what processes?
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Introduction ●●

Radiation processes

✓Lines (bound-bound):
✓ Atomic, molecular transitions (radio to X-rays)
✓ Nuclear transitions (γ-rays)

✓Edges (bound-free):
✓ ionization/recombination

✓Nuclear reactions, decay and annihilations:
✓ bosons, pions... 
✓ electron-positron, photon-photon

✓Collective processes
✓ Faraday rotation, Cherenkov radiation...

✓Free-free radiation of charged particles in vacuum:
✓ Cyclo-synchrotron radiation
✓ Compton scattering
✓ (Bremsstrahlung radiation)
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I. Radiation of relativistic particles
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Emission of relativistic particles ●○○○

Emission from non-relativistic particles
✓Electro-magnetic field created by charges in motion:

✓ Charged particles in uniform motion do not emit light
✓ Only charged, accelerated particles can emit light

✓ Liénard-Wiechert potentials (1898): (A,Φ) => E-B
✓ Power:
✓ Spectrum: 

✓Emission of low-energy particles:

✓ Total power:

✓ Dipolar field perpendicular to acceleration:

✓ Polarization depends on the direction:
✓ Is also the emission in the particle rest frame...
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Emission of relativistic particles ●●○○

Change of frame
✓Relativistic particles:

✓ Velocity
✓ Lorentz factor
✓ Energy
✓Momentum

✓Let’s consider a particle
✓ moving at velocity β as seen in the observer frame K in the parallel direction
✓ emitting radiation in its rest frame K’

✓Total emitted power: 
✓ Is a Lorentz invariant:
✓ Acceleration is not:
✓ Emission of relativistic particles strongly enhanced: 
✓ High energy sources are amongst the most luminous sources...

a0k = �3aka0? = �2a?
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Emission of relativistic particles ●●●○

Relativistic beaming
✓Angles: an example

✓ Emitting body moving at velocity v
✓ Photon emitted perpendicular to motion in the 

body frame
✓ Photon 

✓ must fly at c in all frames
✓ observed with parallel velocity v
✓ observed with perpendicular velocity c/γ
✓ observed with an angle 

✓Angular distribution of emission:

✓ beaming
✓ enhancement
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Emission of relativistic particles ●●●●

Relativistic beaming

✓The dipolar emission of charge particles:
✓ The angular distribution depends on the 

(a,v) angle

✓ Beaming is still present and

a v

a
v

a

v=0
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Cyclo-Synchrotron radiation

- Emitted power
- Spectrum
- Radiation from many particles
- Polarization
- Self-absorption
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Cyclo-synchrotron radiation ●○○○○○○○○○○○○○○

Synchrotron in astrophysics

✓Applications to astrophysical sources started in the mid 20th

✓Most observations in radio but also at all wavelengths 

14Galactic center

SNR

Radio galaxies

jupiter

PWN



⌫B =
qB

2⇡mc

Cyclo-synchrotron radiation ●●○○○○○○○○○○○○○

Cyclo-synchrotron radiation

hν

✓Radiation from particles gyrating the magnetic field lines 

✓Relativistic gyrofrequency

✓Assumptions:
✓ Classical limit: 

✓ Otherwise: quantization of energies, Larmor radii...
✓ Observable cyclotron scattering features in accreting neutron stars... 

✓ B uniform at the Larmor scale (parallel and perp)
✓ ! no strong B curvature (pulsars and rapidly rotating neutron stars)
✓ ! no small scale turbulence (at the Larmor scale)
✓ ! no large losses (tcool >> 1/νB,r)

✓Emission/Absorption
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Cyclo-synchrotron radiation ●●●○○○○○○○○○○○○

Emitted Power and cooling time

✓Circular motion: 

✓Emission of an accelerated particle: 
✓ Power goes as p2

✓ Power goes as B2

✓ Isotropic distribution of pitch angles: 

✓Cooling time:

✓ ISM (B=1µG): tcool>tuniverse as far as γ<103

✓ AGN jets (B=10µG, γ=104): tcool = 107yr (=travel time!)

✓Maximal loss limit
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Cyclo-synchrotron radiation ●●●●○○○○○○○○○○○

Emission Spectrum

✓ Sinus modulation of the electric field at 
νB:

✓ Spectrum = one cyclotron line at νB= νB,r

a
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ver

Very low energy particles:
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Cyclo-synchrotron radiation ●●●●●○○○○○○○○○○

✓ Moderate beaming

✓ Asymmetrical modulation of the 
electric field at νB,r:

✓ Spectrum = many harmonic lines at 
kνB,r=kνB/γ

Emission Spectrum

ob
ser

ver

Mid-relativistic particles:
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Cyclo-synchrotron radiation ●●●●●●○○○○○○○○○

✓ Strong beaming: δθ=1/γ

✓ Pulsed modulation of the electric field 
at νB:

✓ Spectrum = continuum up to

Emission Spectrum

ob
ser

ver

Ultra-relativistic particles:
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Cyclo-synchrotron radiation ●●●●●●●○○○○○○○○

Emission Spectrum

✓Exact spectrum depends on:
✓ the particle energy
✓ the pitch angle α:
✓ the observation angle θ 

with respect to B

✓Line broadening results from 
integration over:
✓ Observation direction
✓ Particle pitch angle
✓ Particle energy

cos↵ = �k/�

x = (⌫/⌫B)�? sin ✓
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Cyclo-synchrotron radiation ●●●●●●●●○○○○○○○

✓High energy plasmas have a continuous spectrum:

✓Peaks at the critical frequency: 

✓Most of the emission is at νc* 
✓ AGN (B=10µG, γ=104): 10cm

✓ Crab nebula (B=0.1mG, γ=107): 10 keV

✓Highest possible energy of photons:

Spectrum of Relativistic Particles
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Cyclo-synchrotron radiation ●●●●●●●●●○○○○○○

Spectrum of many particles

✓Emission integrated over the particle distribution:

✓Thermal distribution:
✓ Same as for a single particle for the mean energy..

✓Power-law distribution:
✓ Integrated emission:

✓ Power-law spectrum with 
✓ slope:
✓ minimal energy:
✓ maximal energy:
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Cyclo-synchrotron radiation ●●●●●●●●●●○○○○○

The Crab Nebula

✓Pulsar wind nebula
✓ Outflow of high energy electrons
✓Magnetized medium (0.1 mG)

✓Synchrotron emission from radio 
to γ-rays

✓Broken power-law distribution
✓ Two slopes: s1, s2

✓ Two breaks: γ1, γ2
23
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Cyclo-synchrotron radiation ●●●●●●●●●●●○○○○

Polarization

✓One single particle produces a coherent EM fluctuation
✓ Intrinsically polarized: elliptically
✓ Depends on p, α and θ

✓Turbulent magnetic field: no net polarization

✓Ordered magnetic field:
✓ Ensemble of particles with random pitch angles => partially linearly 

polarized
✓ Polarization angle perpendicular to observed B:
✓ High polarization degree: 

✓ depends on frequency and particle energy
✓ averaged over all frequencies: Π=75% !
✓ In average over PL distribution of particles: Π=(s+1)/(s+7/3) 

⇧(⌫, p) =
P? � Pk

P? + Pk

P? >> Pk
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Cyclo-synchrotron radiation ●●●●●●●●●●●●○○○

Polarization

✓Such high polarization is characteristic of synchrotron radiation

✓Measure of the direction gives the direction of B
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Cyclo-synchrotron radiation ●●●●●●●●●●●●●○○

Synchrotron self-absorption

✓  Absorption decreases with frequency
✓ high energy photons are weakly absorbed
✓ low energy photons are highly absorbed

True absorption

Stimulated emission 
(negative absorption)

hν

Spontaneous emission

hν

True absorption Stimulated emission
(negative absorption)

hν

hν
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Cyclo-synchrotron radiation ●●●●●●●●●●●●●●○

Synchrotron self-absorption

✓Radiation transfer:
✓ Equation for specific intensity Iν:
✓ Solution for a uniform layer of thickness L:

✓ τν=ανL is the optical depth at energy hν
✓When τν<<1: thin spectrum
✓When τν>>1: thick spectrum
✓ transition for:

✓The transition energy increases with optical depth, i.e. with:
✓ Physical thickness of the layer
✓ Density of the medium
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Cyclo-synchrotron radiation ●●●●●●●●●●●●●●●

Self-absorbed Spectra

✓Thermal distribution ✓ Power-law distribution
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Compton Scattering

29

- Thomson/Klein-Nishina regimes
- Spectrum, angular distribution
- Particle cooling
- Multiple scattering



Compton scattering ●○○○○○○○○○○○

In the particle rest frame
✓Scattering of light by free electrons

✓Result described by 6 quantities

✓4 Conservation laws:
✓ Energy
✓Momentum

✓1 symmetry

✓One quantity is left undetermined, e.g. the scattering angle θ

✓Direction/energy relation

✓Photon loose energy in the particle rest frame

✓Two regimes:
✓ The Thomson regime (hν0<mc2): coherent scattering: hν=hν0

✓ The Klein-Nishina regime (hν0>mc2): incoherent scattering: hν<hν0 30
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Compton scattering ●●○○○○○○○○○○

Thomson scattering
✓Scattering of linearly polarized waves:

✓ Harmonic motion of the particle
✓ Emission of light in all directions

✓Scattering of unpolarized waves:
✓ Average of linearly polarized waves with random directions

✓ Scattered power:

✓ Thomson cross section:

✓ Total cross section:

✓ Partially polarized:

✓Spectrum: a line at the incident frequency 
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Compton scattering ●●●○○○○○○○○○

Klein Nishina scattering 
✓Requires quantum mechanics but still 

analytical formulae
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⌫ = 2�0⌫
0

Compton scattering ●●●●○○○○○○○○

In the source frame
✓ In the particle frame: one incident parameter (hν0)

✓ In the source frame: new dependance on
✓ The particle energy
✓ The collision angle

✓Photon can now gain/loose energy

✓An example:
✓ Head-on collision:

✓ Cold photon hν0 and relativistic electron γ0>>1
✓ Photon energy in the particle frame:

✓ Thomson backward scattering:
✓ Emitted photon energy in the electron frame:
✓ Photon energy in the source frame:

✓ In the end:
✓ Compton up-scattering

✓Often: isotropy assumption and average over angles
33
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Compton scattering ●●●●●○○○○○○○

In the source frame

✓For isotropic distributions:

✓The Thomson limit: 

✓The scattered spectrum:

✓Average energy of scattered photons

✓ Down scattering:

✓ Up-scattering:
✓ Amplification factor: 

✓Scattering by relativistic plasmas produces high energy radiation

✓Particle cooling: 
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Compton scattering ●●●●●●○○○○○○

Blazar Spectra

✓E > TeV! Comptonization?

✓Model = Synchrotron Self-Compton (SSC) + Doppler boosting
✓ Seed photons = synchrotron photons
✓ The same particle emit though synchrotron and scatter these photons

✓Here: 
✓ A=108 => γ=104

✓ hν0 = 0.1 keV => KN regime
✓ Synchrotron peaks at Bγ2, Compton amplifies with A=γ2 => B! 35

optical X-RaysUV !-Rays



Compton scattering ●●●●●●●○○○○○

Single scattering by many electrons
✓Emission integrated over the particle 

distribution

✓Thermal distribution:
✓ Same as for a single particle for the 

mean energy..

✓Power-law distribution:
✓ Power-law spectrum with 

✓ slope:
✓ minimal energy: hν0 γ2min

✓ maximal energy: hν0 γ2max

✓Scattered photons distributions should 
also be integrated over the source seed 
photons

36
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Compton scattering ●●●●●●●●○○○○

Multiple Scattering

✓Photons can undergo successive scattering events

✓Medium of finite size L: Thomson optical depth:

✓Competition scattering/escape:
✓ τ (or τ2)  = Mean number of scattering before escape 
✓ τ<1: single scattering
✓ τ>1: multiple scattering

✓y parameter = <photon energy change> before escape
✓ y= <Energy change per scattering> * <scattering number> 
✓ For mono-energetic particles: y = τγ2

✓ For thermal distributions: y = 4τθ(1+4θ)
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Compton scattering ●●●●●●●●●○○○

The SZ effect

✓Typical distortion whose 
amplitude gives: y ≈ τθ ≈ 10-4

✓Bremsstrahlung gives T

✓=> density...

38

kBTph=2.7 K
kBTe=1-10 keV  ("e=kBTe/mec2≈10-2, p≈#≈0.1)

!=Ne"TL ≈ 10-2

Compton up-scattering
Cold photons

Hot electrons



Compton scattering ●●●●●●●●●●○○

Compton orders

hν0/mc2=10-7

γ0=10 
A =100 

bumpy spectrum

cutoff at the particle 
energy

τ => spectrum hardness 

A A AA
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Compton scattering ●●●●●●●●●●●○

Compton regimes
Sub-relativistic particles:  hν0/mc2 < p < 1

Thomson regime hν0#0<< mc2

 Inefficient scattering:  A = 1

Ultra-relativistic particles: #0>> 1
KN regime: hν0#0>mc2

Efficient scattering: A >> 1

w0=10-4, p0=1 (w0 g0 < 1)
A = 2

Power-law spectrum
- cutoff at the particle energy
- Slope = ln(τ)/ln(A)

one-bump spectrum
= single scattering !

=> AGN/Blazars=> X-ray binaries 40

Relativistic particles: #0>>1 
Thomson regime: hν0#0<< 1

Efficient scattering: A >> 1



Compton scattering ●●●●●●●●●●●●

X-ray binaries

✓Soft states:
✓Multi-color black body at 1 keV from the accretion disk
✓ Non-thermal comptonization in a hot corona (τ=1)

✓Hard states:
✓ Soft photons from the accretion disk or synchrotron
✓ Inefficient thermal Comptonization in a hot corona (100 keV, τ=0.01)

✓What heating acceleration mechanism?
41
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Bremsstrahlung radiation
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Bremsstrahlung ●○○○

Bremsstrahlung

✓Radiation of charged particles 
accelerated by the Coulomb field of 
other charges

✓Astrophysical sources:
✓ Some modes of hot accretion disks
✓ Hot gas of intra-cluster medium (1-10 

keV)
✓ ...

43
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Bremsstrahlung ●●○○

Easy bremsstrahlung

✓  Assumptions:
✓ Classical physics
✓ Sub-relativistic particles
✓ Far collision (small deviation, no recombination)
✓ Small energy change (Δv << v i.e. hν<<mv2/2)

✓Single event
✓ No p+/p+, e-/e-, e+/e+ Bremsstrahlung 
✓ p+/e, iZ+/e Bremsstrahlung
✓ Approximation: static heavy iZ+

✓Approximated motion: 
✓ Typical collision time: τ ≈ 2b/v
✓ Typical velocity change: Δv ≈ τ a ≈ τ F/m ≈ τ Z e2/(mb2) ≈ 2Ze2/(mvb)
✓ τ and Δv characterize the motion = enough to compute the spectrum
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Bremsstrahlung ●●●○

Easy bremsstrahlung
✓Spectrum:

✓Fourier transform: 

✓One single particle produces a flat spectrum:

✓Many particles with a range of impact parameters:
✓ with bmin from the small angle approximation
✓ with bmax from ντ<1

✓ Produce a flat spectrum that cuts at the electron energy
✓ Total losses: 
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✓Emission integrated over the particle distribution

✓Power-law distributions produce power-law spectra

✓Thermal distributions:
✓ Emission coefficient: 
✓ Total losses:

✓Relativistic and quantum correction can be added to give more 
general spectra

✓ In media of finite size: bremsstrahlung self-absorption at low energy
✓ c.f. synchrotron
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Bremsstrahlung ●●●●

Emission from many electrons
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Summary
✓Particle cooling:

✓ Synchrotron: P ∝ σT p2 UB

✓ Compton in the Thomson regime: P ∝ σT p2 Uph

✓ Bremsstrahlung: P ∝ σT αf p Ui      (with Ui= ni mec2)
✓Photons:

✓ Synchrotron: 
✓ Thin spectrum of 1 particle peaks at νc ∝ γ2 B
✓ Thin spectrum of a power-law distribution is a power-law
✓ Absorption => Thick spectrum at low frequency

✓ Compton
✓ Amplification factor in the Thomson regime: A = γ2

✓ Mildly relativistic particles: power-law spectrum
✓ Comptonization by a relativistic power-law distribution is a PL spectrum

✓ Bremsstrahlung
✓ Flat spectrum
✓ up to the particle energy
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