## Radiative processes in high energy astrophysical plasmas

École de physique des Houches

23 Février-8 Mars 2013

R. Belmont

### Why radiation?

Why is radiation so important to understand?
Light is a tracer of the emitting media

Geometry, evolution, energy, magnetic field...

Light can influence the source properties

cooling/heating, radiation pressure...

Light can be modified after its emission

Why are high energy plasmas so important to study?
 High energy particles are the most efficient emitters
 They emit over an extremely wide range of frequencies

### Outline

#### ✓ Goals of this course:

 $\checkmark$  Review the main high energy processes for continuum emission

✓ Assumptions, approximations, properties

✓ Show how they can be used to constrain the physics of astrophysical sources

#### ✓ Main books/reviews:

- ✓ Rybicki G.B. & Lightman A.P., 1979, Radiative processes in astrophysics, New York, Wiley-Interscience
- ✓ Jauch J.M. & Rohrlich F., 1980, The theory of photons and electrons (2nd edition), Berlin, Springer
- ✓ Aharonian F. A., 2004, Very High energy cosmic gamma radiation, World scientific publishing
- ✓ Heitler W., 1954, Quantum theory of radiation, International Series of Monographs on Physics, Oxford: Clarendon
- ✓ Blumenthal G.R. & Gould R.J., 1970, Reviews of Modern Physics

#### Contents

#### ✓ Introduction

✓ I. Emission of charged particles

II. Cyclo-Synchrotron radiation
III. Compton scattering
IV. Bremsstrahlung radiation

### Introduction

#### Introduction $\bullet \circ$

#### Non black-body radiation

✓ Black-Body radiation is simple ideal limit
 ✓ independent of internal processes, geometry...
 ✓ Simple law

✓ No black body radiation if:

- $\checkmark$  Optically thin media
  - $\checkmark$  <= finite source size and finite interaction cross sections
  - $\checkmark$  => absorption/emission/reflection features
- ✓ Matter not at thermal equilibrium
- $\checkmark$  <= low density, high energy plasmas

Then, radiation properties depend on
The particle distributions
The microphysics: what processes?

#### Introduction $\bullet \bullet$

### Radiation processes

- ✓ Lines (bound-bound):
  - ✓ Atomic, molecular transitions (radio to X-rays)
  - ✓ Nuclear transitions ( $\gamma$ -rays)
- ✓ Edges (bound-free):
  - ✓ ionization/recombination
- ✓ Nuclear reactions, decay and annihilations:
  - ✓ bosons, pions...
  - ✓ electron-positron, photon-photon
- Collective processes
  - ✓ Faraday rotation, Cherenkov radiation...
  - Free-free radiation of charged particles in vacuum:
    - ✓ Cyclo-synchrotron radiation
    - Compton scattering
    - (Bremsstrahlung radiation)

### I. Radiation of relativistic particles

### Emission from non-relativistic particles

- Electro-magnetic field created by charges in motion:
  - ✓ Charged particles in uniform motion do not emit light
  - ✓ Only charged, accelerated particles can emit light
    - ✓ Liénard-Wiechert potentials (1898):  $(A, \Phi) \Longrightarrow E-B$
    - ✓ Power:  $P \propto \vec{E}^2$ ✓ Spectrum:  $P_{\nu} \propto \left| \text{FFT}(\vec{E}) \right|^2$

Emission of low-energy particles:

✓ Total power: 
$$P_e = \frac{2q^2a^2}{3c}$$

✓ Dipolar field perpendicular to acceleration:  $\frac{\partial P_e}{\partial \Omega} = \frac{q^2 a^2}{4\pi c} \sin^2 \theta$ 

 $\checkmark$  Polarization depends on the direction:  $\vec{E} \propto \vec{n} \times (\vec{n} \times \vec{a})$ 

✓ Is also the emission in the particle rest frame...

### Change of frame

✓ Relativistic particles:

✓ Velocity  $\beta = v/c$ ✓ Lorentz factor  $\gamma = 1/(1 - \beta^2)^{1/2}$ ✓ Energy  $E = \gamma mc^2$   $E_k = (\gamma - 1)mc^2$ ✓ Momentum  $p = (\gamma^2 - 1)^{1/2} = \beta\gamma$ 

#### ✓ Let's consider a particle

 $\checkmark$  moving at velocity  $\beta$  as seen in the observer frame K in the parallel direction

✓ emitting radiation in its rest frame K'

✓ Total emitted power:

✓ Is a Lorentz invariant:  $P_e = P'_e = \frac{2q^2a'^2}{3c}$ ✓ Acceleration is not:  $a'_{\perp} = \gamma^2 a_{\perp}$   $a'_{\parallel} \stackrel{3c}{=} \gamma^3 a_{\parallel}$ ✓ Emission of relativistic particles strongly enhanced:  $P_e = \frac{2q^2}{3c}\gamma^4 \left(\gamma^2 a_{\parallel}^2 + a_{\perp}^2\right)$ ✓ High energy sources are amongst the most luminous sources... Emission of relativistic particles  $\bullet \bullet \bullet \circ$ 

### Relativistic beaming

#### ✓ Angles: an example

- $\checkmark$  Emitting body moving at velocity v
- Photon emitted perpendicular to motion in the body frame
- ✓ Photon
  - $\checkmark$  must fly at c in all frames
  - $\checkmark$  observed with parallel velocity v
  - $\checkmark$  observed with perpendicular velocity c/ $\!\gamma$
  - $\checkmark$  observed with an angle  $\sin \theta = 1/\gamma$

#### Angular distribution of emission:

| $\partial P_r$    | $\mathbf{g} \in [0, 0]$                 | $\partial P'_e$               |
|-------------------|-----------------------------------------|-------------------------------|
| $\partial \Omega$ | $= rac{1}{\gamma^4(1-eta\cos	heta)^4}$ | $\overline{\partial \Omega'}$ |

✓ beaming✓ enhancement



Emission of relativistic particles ••••

### Relativistic beaming

The dipolar emission of charge particles:
 The angular distribution depends on the (a,v) angle





V

 $\checkmark$  Beaming is still present and  $\theta \approx 1/\gamma$ 

perpendicular acceleration

### Cyclo-Synchrotron radiation

- Emitted power
- Spectrum
- Radiation from many particles
- Polarization
- Self-absorption

### Synchrotron in astrophysics

Applications to astrophysical sources started in the mid 20th
 Most observations in radio but also at all wavelengths



### Cyclo-synchrotron radiation

![](_page_14_Figure_2.jpeg)

![](_page_14_Picture_3.jpeg)

✓ Radiation from particles gyrating the magnetic field lines ✓ Relativistic gyrofrequency  $\nu_B = \frac{qB}{2\pi mc}$   $\nu_{B,r} = \frac{1}{\gamma} \frac{qB}{2\pi mc}$ ✓ Assumptions:

✓ Classical limit:  $h\nu_B << mc^2$   $B < B_c = 12 \times 10^{12}$  G

✓ Otherwise: quantization of energies, Larmor radii...

✓ Observable cyclotron scattering features in accreting neutron stars...

- ✓ B uniform at the Larmor scale (parallel and perp)
  - ✓ ! no strong B curvature (pulsars and rapidly rotating neutron stars)
  - $\checkmark$  ! no small scale turbulence (at the Larmor scale)
  - ✓ ! no large losses ( $t_{cool} >> 1/v_{B,r}$ )

Emission/Absorption

### Emitted Power and cooling time

✓ Circular motion:  $a = a_{\perp} = \frac{\nu_B}{2\pi\gamma}v_{\perp}$ 

✓ Emission of an accelerated particle:  $P = \frac{2q^2}{3c^3}\gamma^4 a_{\perp}^2 = 2c\sigma_T U_B p_{\perp}^2$ ✓ Power goes as p<sup>2</sup> ✓ Power goes as B<sup>2</sup>

✓ Isotropic distribution of pitch angles:  $P = \frac{4}{3}c\sigma_T U_B p^2$ 

✓ Cooling time:  $t_{\rm cool} = \frac{\gamma mc^2}{P_e} \approx \frac{25 {\rm yr}}{B^2 \gamma}$ 

✓ ISM (B=1µG): t<sub>cool</sub>>t<sub>universe</sub> as far as γ<10<sup>3</sup>
 ✓ AGN jets (B=10µG, γ=10<sup>4</sup>): t<sub>cool</sub> = 10<sup>7</sup>yr (=travel time!)

✓ Maximal loss limit  $t_{cool} >> 1/\nu_{B,r}$   $\gamma^2 B < \frac{2q}{r^2}$ 

![](_page_15_Picture_8.jpeg)

Cyclo-synchrotron radiation •••••000000000

### **Emission Spectrum**

#### Very low energy particles:

![](_page_16_Figure_3.jpeg)

Cyclo-synchrotron radiation ••••••00000000

### **Emission Spectrum**

#### Mid-relativistic particles:

![](_page_17_Figure_3.jpeg)

Cyclo-synchrotron radiation ••••••0000000

### **Emission Spectrum**

#### Ultra-relativistic particles:

![](_page_18_Figure_3.jpeg)

### **Emission Spectrum**

$$\frac{\partial^2 P}{\partial (\nu/\nu_B) \partial \Omega} = 4\sigma_T c U_B \beta_\perp^2 \frac{\nu^2}{\nu_B^2} \sum_{n=1}^\infty \left[ n^2 \frac{(\cos\theta - \beta_\parallel)^2}{(1 - \beta_\parallel \cos\theta)^2} \frac{J_n^2(x)}{x^2} + J_n^{'2}(x) \right] \delta \left[ \frac{\nu}{\nu_B} (1 - \beta_\parallel \cos\theta) - \frac{n}{\gamma} \right]$$

 $x = (\nu/\nu_B)\beta_{\perp}\sin\theta$ 

/ Exact spectrum depends on:

- $\checkmark$  the particle energy
- $\checkmark$  the pitch angle  $\alpha$ :  $\cos \alpha = \beta_{\parallel}/\beta$
- the observation angle θ
   with respect to B
- Line broadening results from integration over:
  - Observation direction
  - ✓ Particle pitch angle
  - ✓ Particle energy

![](_page_19_Figure_12.jpeg)

### Spectrum of Relativistic Particles

![](_page_20_Figure_2.jpeg)

### Spectrum of many particles

 $\checkmark$  Thermal distribution:  $f(\gamma) \propto \gamma^2 e^{-\gamma/\theta}$ 

 $\checkmark$  Same as for a single particle for the mean energy.

Power-law distribution:  $f(\gamma) \propto \gamma^{-s}$ Integrated emission:

$$j_{\nu} \propto \int G(3\nu/2\nu_B\gamma^2)\gamma^{-s}d\gamma$$
  

$$\propto \nu^{-(s-1)/2} \int x^{(s-3)/2}G(x)dx$$
  

$$\propto \nu^{-\alpha}$$

✓ Power-law spectrum with
 ✓ slope: α = s - 1/2
 ✓ minimal energy: ν<sub>min</sub> ∝ Bγ<sup>2</sup><sub>min</sub>
 ✓ maximal energy: ν<sub>max</sub> ∝ Bγ<sup>2</sup><sub>max</sub>

![](_page_21_Figure_8.jpeg)

#### Cyclo-synchrotron radiation ••••••••••••

#### The Crab Nebula

![](_page_22_Figure_2.jpeg)

✓ Pulsar wind nebula

- ✓ Outflow of high energy electrons
- ✓ Magnetized medium (0.1 mG)
- Synchrotron emission from radio to γ-rays

Broken power-law distribution

- ✓ Two slopes: s<sub>1</sub>, s<sub>2</sub>
- / Two breaks:  $\gamma_1$ ,  $\gamma_2$

![](_page_22_Figure_10.jpeg)

### Polarization

One single particle produces a coherent EM fluctuation
 Intrinsically polarized: elliptically
 Depends on p, α and θ

✓ Turbulent magnetic field: no net polarization

#### ✓ Ordered magnetic field:

Ensemble of particles with random pitch angles => partially linearly polarized

✓ Polarization angle perpendicular to observed B:  $P_{\perp} >> P_{\parallel}$ 

- ✓ High polarization degree:  $\Pi(\nu, p) = \frac{P_{\perp} P_{\parallel}}{P_{\perp} + P_{\parallel}}$ 
  - $\checkmark$  depends on frequency and particle energy
  - ✓ averaged over all frequencies:  $\Pi$ =75% !
  - ✓ In average over PL distribution of particles:  $\Pi = \frac{(s+1)}{(s+7/3)}$

#### Polarization

Such high polarization is characteristic of synchrotron radiation
 Measure of the direction gives the direction of B

![](_page_24_Figure_3.jpeg)

#### Crab nebula

![](_page_24_Figure_5.jpeg)

### Synchrotron self-absorption

![](_page_25_Figure_2.jpeg)

Spontaneous emission

emission coefficient:

$$j_{\nu} = n \frac{\partial P}{\partial \nu \partial \Omega}$$

![](_page_25_Figure_6.jpeg)

True absorption

![](_page_25_Figure_8.jpeg)

Stimulated emission (negative absorption)

True absorption

$$\alpha_{\nu}(p,\nu) = \frac{c^2}{2h\nu^3} \frac{1}{p\gamma} \left[\gamma p j_{\nu}\right]_{\gamma}^{\gamma+h\nu/mc^2}$$

$$\approx \frac{1}{2m\nu^2} \frac{1}{p\gamma} \partial_{\gamma} \left(\gamma p j_{\nu}\right)$$

absorption coefficient:

Stimulated emission (negative absorption)

Absorption decreases with frequency
 high energy photons are weakly absorbed
 low energy photons are highly absorbed

### Synchrotron self-absorption

#### ✓ Radiation transfer:

✓ Equation for specific intensity I<sub>v</sub>:  $\frac{\partial I_{\nu}}{dl} = j_{\nu} - \alpha_{\nu} I_{\nu}$ ✓ Solution for a uniform layer of thickness L:  $I_{\nu} = \frac{j_{\nu}}{\alpha_{\nu}} (1 - e^{-\alpha_{\nu} L})$ 

✓ τ<sub>ν</sub>=α<sub>ν</sub>L is the *optical depth* at energy hv
 ✓ When τ<sub>ν</sub><<1: thin spectrum</li>
 ✓ When τ<sub>ν</sub>>>1: thick spectrum
 ✓ transition for: τ<sub>ν</sub> = α<sub>ν</sub>L ≈ 1

The transition energy increases with optical depth, i.e. with:
 Physical thickness of the layer
 Density of the medium

#### Cyclo-synchrotron radiation •••••••••••

#### Self-absorbed Spectra

#### Thermal distribution

#### Power-law distribution

![](_page_27_Figure_4.jpeg)

Tends to BB radiation in the thick part

Does not tend to BB radiation in the thick part

### Compton Scattering

- Thomson/Klein-Nishina regimes
- Spectrum, angular distribution
- Particle cooling
- Multiple scattering

#### Compton scattering •000000000

### In the particle rest frame

- Scattering of light by free electrons
- ✓ Result described by 6 quantities
- ✓ 4 Conservation laws:
  - ✓ Energy  $h\nu_0 + mc^2 = h\nu + \gamma mc^2$ ✓ Momentum  $\frac{h\nu_0}{c}\vec{n}_0 = \frac{h\nu}{c}\vec{n} + mc\vec{p}$
- ✓ 1 symmetry
- ✓ One quantity is left undetermined, e.g. the scattering angle  $\theta$ ✓ Direction/energy relation  $\frac{h\nu}{h\nu_0} = \frac{1}{1 + \frac{h\nu_0}{m_ec^2}(1 - \cos\theta)}$

backward scattering (
$$\theta = \pi$$
)  $\gamma$   $\frac{h\nu_0}{1 + 2h\nu_0/mc^2} \le h\nu \le h\nu_0$ 

forward scattering ( $\theta$ =0)

- ✓ Photon loose energy in the particle rest frame
- ✓ Two regimes:
  - ✓ The Thomson regime ( $hv_0 < mc^2$ ): coherent scattering:  $hv=hv_0$
  - ✓ The Klein-Nishina regime ( $hv_0$ >mc<sup>2</sup>): incoherent scattering: hv< $hv_0$

#### Compton scattering ••000000000

### Thomson scattering

- ✓ Scattering of linearly polarized waves:
  - Harmonic motion of the particleEmission of light in all directions

![](_page_30_Figure_4.jpeg)

✓ Scattering of unpolarized waves:

✓ Average of linearly polarized waves with random directions

Scattered power:  $\frac{\partial P}{\partial \Omega} = \frac{\partial \sigma}{\partial \Omega} F$ Thomson cross section:  $\frac{\partial \sigma}{\partial \Omega} = \frac{3}{8\pi} \sigma_T \frac{1 + \cos^2 \theta}{2}$ Total cross section:  $\sigma_T = 6.65 \times 10^{-25} \text{ cm}^2$ Partially polarized:  $\Pi = \frac{1 - \cos^2 \theta}{1 + \cos^2 \theta}$ 

✓ Spectrum: a line at the incident frequency

![](_page_30_Figure_9.jpeg)

Compton scattering •••00000000

### Klein Nishina scattering

Requires quantum mechanics but still analytical formulae

![](_page_31_Figure_3.jpeg)

#### Differential cross sections:

![](_page_31_Figure_5.jpeg)

#### In the source frame

- ✓ In the particle frame: one incident parameter ( $hv_0$ )
- $\checkmark$  In the source frame: new dependance on
  - $\checkmark$  The particle energy
  - $\checkmark$  The collision angle
- ✓ Photon can now gain/loose energy
- ✓ An example:
  - ✓ Head-on collision:

✓ Cold photon hv₀ and relativistic electron γ₀>>1
✓ Photon energy in the particle frame: ν'<sub>0</sub> = 2γ<sub>0</sub>ν<sub>0</sub>
✓ Thomson backward scattering: hν'<sub>0</sub> << mc<sup>2</sup>
✓ Emitted photon energy in the electron frame: ν' = ν'<sub>0</sub>
✓ Photon energy in the source frame: ν = 2γ<sub>0</sub>ν'
✓ In the end: ν = 4γ<sup>2</sup><sub>0</sub>ν<sub>0</sub>
✓ Compton up-scattering

Often: isotropy assumption and average over angles

### In the source frame

![](_page_33_Figure_2.jpeg)

✓ Scattering by relativistic plasmas produces high energy radiation ✓ Particle cooling:  $\frac{\partial E_p}{\partial t} = \frac{4}{3}c\sigma_T p^2 U_{ph}$ 

### Blazar Spectra

![](_page_34_Picture_2.jpeg)

![](_page_34_Figure_3.jpeg)

#### ✓ E > TeV! Comptonization?

- Model = Synchrotron Self-Compton (SSC) + Doppler boosting
  - Seed photons = synchrotron photons

 $\checkmark$  The same particle emit though synchrotron and scatter these photons

- ✓ Here:
  - ✓ A=10<sup>8</sup> =>  $\gamma$ =10<sup>4</sup>
  - $\checkmark$  hv<sub>0</sub> = 0.1 keV => KN regime
  - ✓ Synchrotron peaks at  $B\gamma^2$ , Compton amplifies with  $A=\gamma^2 => B!$

### Single scattering by many electrons

 Emission integrated over the particle distribution

 $\checkmark$  Thermal distribution:  $f(\gamma) \propto \gamma^2 e^{-\gamma/\theta}$ 

✓ Same as for a single particle for the mean energy..

✓ Power-law distribution:  $f(\gamma) \propto \gamma^{-s}$ ✓ Power-law spectrum with ✓ slope:  $\alpha = \frac{s-1}{2}$ ✓ minimal energy: hv<sub>0</sub>  $\gamma^2_{min}$ ✓ maximal energy: hv<sub>0</sub>  $\gamma^2_{max}$ 

 Scattered photons distributions should also be integrated over the source seed photons

![](_page_35_Figure_7.jpeg)

### Multiple Scattering

✓ Photons can undergo successive scattering events

✓ Medium of finite size L: Thomson optical depth:  $\tau_T = n_e \sigma_T L^2$ 

✓ Competition scattering/escape:
 ✓ τ (or τ<sup>2</sup>) = Mean number of scattering before escape
 ✓ τ<1: single scattering</li>
 ✓ τ>1: multiple scattering

y parameter = <photon energy change> before escape
 y= <Energy change per scattering> \* <scattering number>
 For mono-energetic particles: y = τγ<sup>2</sup>
 For thermal distributions: y = 4τθ(1+4θ)

### The SZ effect

#### Hot electrons

# Cold photons

 $k_BT_{ph}=2.7~K$ 

![](_page_37_Figure_5.jpeg)

 $\begin{aligned} &k_B T_e \text{=}1\text{-}10 \ keV \ \left(\theta_e \text{=} k_B T_e/m_e c^2 \approx 10^{\text{-}2}, \ p \approx \beta \approx 0.1\right) \\ &\tau \text{=} N_e \sigma_T L \approx 10^{\text{-}2} \end{aligned}$ 

![](_page_37_Picture_7.jpeg)

wavelength (mm) 10 0.5 500 0.000GaB, (Top) 0.2 Intensity  $(M_{c}^{T}y sr_{a}^{-1})$ 50. AI (MC) Kinetic 238 -0.1 mJy 10 α 100 200 300 400 500 frequency (CHz) 20 600 Frequency (GHz) (b) (a)

Typical distortion whose amplitude gives: y ≈ τθ ≈ 10<sup>-4</sup>
 Bremsstrahlung gives T
 => density...

#### Compton orders

![](_page_38_Figure_2.jpeg)

 $hv_0/mc^2 = 10^{-7}$  $\gamma_0 = 10$ A = 100

bumpy spectrum cutoff at the particle energy

 $\tau =>$  spectrum hardness

### Compton regimes

![](_page_39_Figure_2.jpeg)

### X-ray binaries

![](_page_40_Figure_2.jpeg)

#### ✓ Soft states:

✓ Multi-color black body at 1 keV from the accretion disk

✓ Non-thermal comptonization in a hot corona ( $\tau$ =1)

#### ✓ Hard states:

 $\checkmark$  Soft photons from the accretion disk or synchrotron

- ✓ Inefficient thermal Comptonization in a hot corona (100 keV,  $\tau$ =0.01)
- ✓ What heating acceleration mechanism?

### Bremsstrahlung radiation

#### Bremsstrahlung •000

### Bremsstrahlung

 Radiation of charged particles accelerated by the Coulomb field of other charges

![](_page_42_Picture_3.jpeg)

#### Astrophysical sources:

- $\checkmark$  Some modes of hot accretion disks
- ✓ Hot gas of intra-cluster medium (1-10 keV)

![](_page_42_Picture_7.jpeg)

### Easy bremsstrahlung

b

2b

 $\phi << 1$ 

- Assumptions:
  - ✓ Classical physics
  - ✓ Sub-relativistic particles
  - ✓ Far collision (small deviation, no recombination)
  - ✓ Small energy change ( $\Delta v \ll v$  i.e.  $hv \ll mv2/2$ )

#### ✓ Single event

- ✓ No p+/p+, e-/e-, e+/e+ Bremsstrahlung
- ✓ p+/e, iZ+/e Bremsstrahlung
- ✓ Approximation: static heavy iZ+

#### Approximated motion:

- ✓ Typical collision time:  $\tau \approx 2b/v$
- ✓ Typical velocity change:  $\Delta v \approx \tau \ a \approx \tau \ F/m \approx \tau \ Z \ e^2/(mb^2) \approx 2Ze^2/(mvb)$
- $\checkmark \tau$  and  $\Delta v$  characterize the motion = enough to compute the spectrum

### Easy bremsstrahlung

✓ Spectrum: 
$$\frac{\partial P}{\partial \nu} \propto \left| FFT(\vec{E}) \right|^2 \propto \left| FFT(\vec{a}) \right|^2$$

 $\checkmark \text{ Fourier transform:} \quad TF[\dot{\vec{v}}] = \int_{-\infty}^{+\infty} \dot{\vec{v}}(t) e^{-2i\pi\nu t} dt \quad \approx \quad \begin{cases} 0 & \text{if } \nu\tau >> 1\\ \Delta \vec{v} & \text{if } \nu\tau << 1 \end{cases}$ 

✓ One single particle produces a flat spectrum:

$$\frac{\partial \mathcal{E}}{\partial \nu}(v,b) \approx \quad \left\{ \begin{array}{cc} 0 & \text{if } \nu\tau >> 1 \\ \frac{16e^6Z^2}{3c^3m^2v^2b^2} & \text{if } \nu\tau << 1 \end{array} \right.$$

✓ Many particles with a range of impact parameters:

✓ with b<sub>min</sub> from the small angle approximation
 ✓ with b<sub>max</sub> from vτ<1</li>

 $\frac{\partial P}{\partial V \partial \nu} = n_i n_e v \int_{b_{min}}^{b_{max}} \frac{\partial \mathcal{E}}{\partial \nu} 2\pi b db = \frac{32\pi e^6}{3m^2 c^3 v} n_i n_e g_{\rm ff}(v,\nu)$ 

✓ Produce a flat spectrum that cuts at the electron energy ✓ Total losses:  $P_{cool} \propto n_i n_e Z^2 v$ 

![](_page_44_Figure_10.jpeg)

 $mv^2/2$ 

1/v

#### Emission from many electrons

 $j_{\nu}$ 

 $\checkmark$  Emission integrated over the particle distribution

✓ Power-law distributions produce power-law spectra

- Thermal distributions:
  - ✓ Emission coefficient:  $j_{\nu} \propto n_i n_e Z^2 T^{-1/2} e^{-h\nu/k_B T}$ ✓ Total losses:  $P_{cool} \propto n_i n_e Z^2 T^{1/2}$

![](_page_45_Figure_6.jpeg)

In media of finite size: bremsstrahlung self-absorption at low energy
 c.f. synchrotron

 $h\nu$ 

 $T_2 > T_1$ 

#### Summary

#### ✓ Particle cooling:

- ✓ Synchrotron:  $P \propto \sigma_T p^2 U_B$
- ✓ Compton in the Thomson regime:  $P \propto \sigma_T p^2 U_{ph}$
- ✓ Bremsstrahlung: P ∝  $\sigma_T \alpha_f p U_i$  (with U<sub>i</sub>= n<sub>i</sub> m<sub>e</sub>c<sup>2</sup>)

#### ✓ Photons:

- ✓ Synchrotron:
  - ✓ Thin spectrum of 1 particle peaks at  $v_c \propto \gamma^2 B$
  - $\checkmark$  Thin spectrum of a power-law distribution is a power-law
  - $\checkmark$  Absorption => Thick spectrum at low frequency

#### ✓ Compton

- ✓ Amplification factor in the Thomson regime:  $A = \gamma^2$
- ✓ Mildly relativistic particles: power-law spectrum
- ✓ Comptonization by a relativistic power-law distribution is a PL spectrum
- ✓ Bremsstrahlung
  - ✓ Flat spectrum
  - $\checkmark$  up to the particle energy