Future explorations of solar and space plasmas

bservatoire

PARIS DIDEROT LESIA

Milan Maksimovic milan.maksimovic@obspm.fr

LESIA & CNRS, Observatoire de Paris

The future of plasma Astrophysics, March 8 2013, Les Houches, France

- How is the Solar Magnetic Field generated in the solar interior and what is the origin of the Solar Cycle? SoHO, SDO
- How does the Solar Magnetic Field emerge from the solar interior and what is its impact on the Solar atmosphere ?

SoHO, TRACE, STEREO, SDO

What are the physical mechanisms involved in the Corona & Solar Wind formations, heating & acceleration ? *Yokho, Ulysses, SoHO, TRACE, STEREO*

What are the physical processes at the origin of the solar eruptive actvity (CMEs, Flares ...) ? *Yokho, Ulysses, SoHO, TRACE, STEREO, Rhessi*

Interaction of the Solar WIND with ...

The Heliosphere is an extraordinary laboratory for Plasma Physics ...

... where it is possible to measure full particle distribution functions without perturbing the medium ?

Figure 6.1-2: EAS Electro-optical Model

- Velocity (energy) selection set by entrance grid Φ
- Look direction set by electro-optical geometry or S/C spining

Electron velocity distribution functions : 3 components : core, halo & strahl

Proton distribution functions

0.98

Heavy ions distribution functions

... where it is possible to measure magnetic & electric plasma waves ?

Do we observed Chromospheric Alfvénic Waves that are Strong enough to Power the Solar Wind ? De Pontieu et al., Science, 2007

Hinode SOT Ca II H 3968 Å
 images

 Displacements of spicules that are compatibles with the propagation of Alvén Waves (10-25 km/s and T~100-500s)

 Estimates of the energy flux carried by MHD simulations seem sufficient

... but we see photons, not plasma

Field-parallel Alfvén

wave:

 B and V variations anti-correlated

Field-anti-parallel

Alfvén wave:

- B and V variations correlated
- See this very clearly in the solar wind
- Most common in high speed wind

In the Solar wind we directly observe Alvén Waves (courtesy T. Horbury)

adding the measurements DC electric fields

If equal illumination for 1 & 2 & symmetry with respect to the S/C

then $\Phi_1^* = \Phi_1$ and $\Phi_2 - \Phi_1$ will provide $\delta \Phi_{DC}$

can provide the Poynting flux $S = \delta E \times \delta B/\mu_0$

Courtesy S. Bale

Cluster measurements of the E field of solar wind turbulence show that:

- 1. The cascade is Alfénic, E & B strongly correlated
- 2. Short λ E field power is enhanced
- 3. E/B ratio is consistent with Alfénic inertial range and evolution to KAW at short λ
- 4. Density (S/C pot.) spectrum is $k^{-5/3}$

... where it is possible to do cool plasma physics involving particles, waves, density fluctuations ... *(lecture by Zarka)*

Solar Type III bursts, *Wild*, 1950

- Short (sec → hrs) & intense (→10⁻¹⁴ W.m⁻².Hz⁻¹) radio bursts
- Decrease rapidly from high to low frequencies (GHz \rightarrow kHz).
- Emmited at the Fundamental or/and the Harmonic of the local Fp
- Low level of polarization (@ high freq)
- Most of the time associated with Solar Flares
- Associated with the propagation of supra-thermal electrons $(c/10 \rightarrow c/3)$

What are the mechanisms responsible for the Mode Conversion Electrostatic \rightarrow Electro-Magnetic ?

Solar Orbiter

Exploring the Sun-heliosphere connection with dedicated remore-sensing and in-situ instrumentation

The need for near-Sun observations

Days

Linking the Sun and the solar wind

- Need to measure the same parameter on the Sun and in space to make the link
 - Heavy ion charge states and composition
 - Magnetic polarity
 - Energetic particles
- Solar Orbiter will make all o these measurements with both remote sensing and in situ instruments

How do solar eruptions produce energetic particle ?

- Around 10% of coronal mass ejection energy is in accelerated particles
- Understanding release and transport mechanisms requires going close to the Sun
- Solar Orbiter will measure energetic particles within a mean free path of their acceleration site

Coordinated remote and in-situ observations of a flare source : Tracing the magnetic connectivity from the solar surface to the inner heliosphere

How and where do the solar wind plasma and magnetic field originate in the corona?

- Solar wind is variable and structured
- Originates in complex magnetic "carpet"
- Small scale transient jets are common

How does the solar dynamo work?

 The unexplored poles are central to the operation of the Sun's dynamo

Angle from Limb: 27° vs. 7°

Mission profile

In situ instruments			
SWA	Solar wind analyser	C. Owen, UK	Sampling protons, electrons and heavy ions in the solar wind
EPD	Energetic particle detector	J. Rodriguez-Pacheco, Spain	Measuring timing and distribution functions of accelerated energetic particles
MAG	Magnetometer	T. Horbury, UK	High-precision measurements of the heliospheric magnetic field
RPW	Radio and plasma wave analyser	M. Maksimovic, France	Studying local electromagnetic and electrostatic waves and solar radio bursts
Remote sensing instruments			
PHI	Polarimetric and heliospheric imager	S. Solanki, Germany	Full-disc and high-resolution visible light imaging of the Sun
EUI	Extreme ultraviolet imager	P. Rochus, Belgium	Studying fine-scale processes and large-scale eruptions
STIX	Spectrometer/telescope for imaging X-rays	S. Krucker, Switzerland	Studying hot plasmas and accelerated electrons
METIS	Multi-element telescope for imaging and spectroscopy	E. Antonucci, Italy	High-resolution UV and extreme UV coronagraphy
SoloHI	Solar Orbiter heliospheric imager	R.Howard, US	Observing light scattered by the solar wind over a wide field of view
SPICE	Spectral imaging of the coronal environment	ESA provided	Spectroscopy on the solar disc and corona

Solar Probe Plus

□ 9.5 Rs to 30 RS : primary science

- □ Focussed in-situ instrumentation
- instruments under selection
 Launch ~2018

Reference Mission Design Solar Distance Profile

Solar Probe Plus

Max solar distance is1.018 AU, and min solar distance is 0.0442 AU (9.5 R_s)

- Total of 25 aphelia (A1 through A25) and 24 perihelia (P1 through P24)
- Perihelia gradually decreases

Exemple of Synergy

Solar Orbiter METIS field-ofview at ~0.28 AU (yellow).

Solar Probe + trajectory projected on the plane of the sky (red)

courtesy E. Antonucci

The Future ?

Tor

Exploring dissipation in solar wind turbulence

Both fast Waves & particle measurements

Conclusions

- □ The Heliosphere is a very exciting laboratory for plasma physics
- Solar Orbiter & Solar Probe will improve our knowledge of the Sun & Heliosphere (solar wind heating and acceleration) ...
- Image: Image: Image: Collisional plasmas
 Image: Image: Collisional plasmas
- Future space projects (for instance TOR) science objectives should be discussed by a wider community such as the one attending this school

Collisionless model for the Transition Region : Scudder's (1992) velocity filtration mechanism

Liouville's Theorem

)

Non-thermal distributions and

heat flux in the corona

Non-thermal distributions and

heat flux in the corona

Even with a weak Knundsen number (10⁻² à 10⁻⁴)
 e⁻ VDF with supra-thermal tails still exist at z = 0.1 Rs
 The classical Spitzer & Harm heat flux is not valid

Landi & Pantellini, 2001 & 2003

Dorelli & Scudder, 1999 & 2003