
An Introduction to Magnetic Reconnection �

N. F. LOUREIRO
Instituto de Plasmas e Fusão Nuclear, 

IST, Lisbon, Portugal

Les Houches school on 
“The Future of  Plasma Astrophysics”

29th February 2013





Motivation
Solar flares Earth’s magnetosphere

Sawtooth in tokamaks



Motivation: plenty of  others!
•  Fusion reactors (tokamaks): tearing modes, 

disruptions, edge-localized modes
•  Laser-solid interactions (inertial 

confinement fusion)
•  Magnetic dynamo
•  Flares (accretion disks, magnetars, blazars, 

etc)
•  Etc. (actually, there’s no need for 

observational/experimental motivation: it’s 
interesting per se.)

Doerk et al. ‘11

Recent review papers: Zweibel & Yamada ’09; Yamada et 
al., ’10; also books by Biskamp and Priest & Forbes.
Reconnection in exotic HED environments: Uzdensky ‘11



even more motivation…
“The prevalence of  this research topic is a symptom not of  

repetition or redundancy in plasma science but of  the 
underlying unity of  the intellectual endeavor. As a physical 
process, magnetic reconnection plays a role in magnetic fusion, 
space and astrophysical plasmas, and in laboratory 
experiments. That is, investigations in these different contexts 
have converged on this common scientific question. If  this 
multipronged attack continues, progress in this area will have a 
dramatic and broad impact on plasma science.”

(S. C. Cowley & J. Peoples, Jr., “Plasma Science: advancing knowledge in the national interest”, 
National Academy of  Sciences decadal survey on plasma physics, 2010)



RECONNECTION: 
ESSENTIAL INGREDIENTS



Reconnection: basic idea
Oppositely directed magnetic field lines 
brought together by plasma flows.

Main features:
  - coupling between large and 
small scales (multiscale problem)
  - Magnetic energy is 
converted / dissipated (energy 
partition: what goes where?)
  - Reconnection rate ~ 0.01 – 
0.1 L/VA (fast)
  - often reconnection events are 
preceded by long, quiescent 
periods (two-timescales, the trigger 
problem)



Frozen flux constraint
Magnetic flux through a surface S, defined by a closed contour C:

Ψ =

�

S
B · dS

How does Ψ change in time?
1. the magnetic field itself  can change:

2. the surface moves with velocity u:
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Frozen flux constraint (cont’d)

Combine the two contributions to get:

Recognize that u  is an arbitrary velocity. Let me chose it to 
be the plasma velocity: u = v, and recall Ohm’s law: 

E+
1

c
v ×B = ηJ

dΨ

dt
= −

�

S
∇× (cE+ u×B) · dS

Neglect collisions (RHS)  ideal Ohm’s law

dΨ

dt
= 0

Magnetic flux through the arbitrary 
contour C is constant: magnetic field lines 
must move with (are frozen to) the plasma



Frozen flux vs. reconnection

Reconnection implies breaking the frozen flux constraint, i.e., 
going beyond Ohm’s law.

E+
1

c
v ×B = ηJ

But the plasma is a very good conductor, right?



Frozen flux vs. reconnection

Reconnection implies breaking the frozen flux constraint, i.e., 
going beyond Ohm’s law.

E+
1

c
v ×B = ηJ

But the plasma is a very good conductor, right?

Right. The RHS becomes important not because collisions are 
large, but because sharp gradients of  the magnetic field give 
rise to a large current (hence the term current layer).



ONE WAY TO GET  RECONNECTION GOING: 
THE TEARING MODE



The tearing instability �
[Furth, Killeen & Rosenbluth (FKR) ‘63; Coppi et al. ’76]

(Fitzpatrick’s book)

Take MHD eqs:
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= ∇× (v ×B) + η∇2B

ρ
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dt
= −∇p+

1
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J×B

Linearise (assume                ):∇ · v = 0

B0 = B0yf(x)ŷ; v0 = 0

γBx = ikB0yf(x)vx + η

�
d2

dx2
− k2

�
Bx

γ

�
d2

dx2
− k2

�
vx = ikB0yf(x)

�
d2

dx2
− k2 − f ��(x)

f(x)

�
Bx



Tearing cont’d

Definitions:
τH = 1/kB0y; τη = a2/η

v = ẑ×∇φ; B = ẑ×∇ψ

Normalize lengths: x/a → x; ka → k

iφ/γτH → φRescale (for convenience):

ψ − f(x)φ =
1
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Tearing cont’d

Ordering: 1/τη � γ � 1/τH
Expect growth rate to be 
intermediate between resistive 
diffusion (very slow) and ideal MHD 
(very fast)
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Tearing cont’d

Ordering: 1/τη � γ � 1/τH
Expect growth rate to be 
intermediate between resistive 
diffusion (very slow) and ideal MHD 
(very fast)

It’s a reconnecting mode: expect ideal MHD to be valid away from the 
reconnection layer (outer region), and resistive effects to be important in 
the reconnection layer (inner region = boundary layer)
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Tearing cont’d

Outer region:

Overlap region:

φ =
ψ

f(x)
; f(x)

�
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�
ψ = f ��(x)ψ

x � 1 → f(x) ≈ x ⇒ ψ�� = 0

For a reconnecting mode, ψ(0) must be finite. Need even solution.

ψ ≈ ψ0 + |x|ψ�
0

This solution is discontinuous at x=0. A measure of  that 
discontinuity is the instability parameter:
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Tearing cont’d

Tearing mode 
Dispersion Relation: ∆� = −π
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Two important limits:

small Δ’: “FKR”

large Δ’: “Coppi”

Analytical expressions for Δ’ are obtained from solving the outer 
region eq. for specific equilibrium profiles, f(x). For the Harris sheet: 

f(x) = tanh(x) ⇒ ∆� = 2
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NONLINEAR RECONNECTION: 
THE SWEET-PARKER MODEL



The simplest description of  
reconnection: the Sweet-Parker model

δSP

LCS

Peter Sweet (‘58) and Eugene Parker (‘57) attempted to 
describe reconnection within the framework of  resistive 
magnetohydrodynamics (MHD).
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The simplest description of  
reconnection: the Sweet-Parker model

δSP

LCS

S = LCSVA/η

δSP /LCS ∼ S−1/2

uin/VA ∼ S−1/2

E ∼ cB0VAS
−1/2

Peter Sweet (‘58) and Eugene Parker (‘57) attempted to 
describe reconnection within the framework of  resistive 
magnetohydrodynamics (MHD).

Typical solar corona parameters yield S~1014 ; this theory then predicts that 
flares should last ~2 months; in fact, flares last 15min – 1h.
(still, Sweet-Parker (SP) theory was a great improvement on simple resistive 
diffusion of  magnetic fields, which would yield ~3.106 years…)



Does the Sweet-Parker model work?

Sure!



Does the Sweet-Parker model work?

Sure!

Hmm… maybe it doesn’t…

Loureiro et al. ‘05



BEYOND SWEET-PARKER: 
TEARING INSTABILITY OF THE 

CURRENT SHEET



SP current sheet instability 

1- Assume incompressible flow profile of  the form:

ux = −vAx/LCS ; uy = VAy/LCS
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SP current sheet instability 

1- Assume incompressible flow profile of  the form:

2- Obtain consistent reconnecting magnetic field 
from resistive induction equation.

3- Linearize RMHD eqs and look for perturbations

4- Asymptotic expansion using S>>1. 

5- Obtain:

ux = −vAx/LCS ; uy = VAy/LCS

γ � VA/LCS ≡ 1/τA

γmaxτA ∼ S1/4

kmaxLCS ∼ S3/8

Super Alfvenic growth!!

Plasmoids galore!!

(Loureiro et al. ’07, ‘13)



Current sheet instability: threshold

•  To a good approximation, outflows in the CS are linear 
(Yamada et al. ’00, Uzdensky & Kulsrud ’00):

•  For any perturbation to grow, its growth rate needs to 
exceed the shearing rate:

€ 

vy ≈VA y /LCS

€ 

γτA >>1⇒ S1/ 4 >>1

 Critical threshold for instability:  

€ 

Sc ~ 10
4

€ 

γmaxτA ~ S
1/ 4

Linear theory predicts:

_______________________________________________________________________
(NB: there’s a slightly better way to do this, but this makes for a better joke)



Numerical confirmation of  linear theory

Numerical simulations confirm scalings predicted by 
linear theory (Samtaney et al., PRL ‘09).



Nonlinear stage: �
hierarchical plasmoid chains

(Shibata & Tanuma ’01)

 Long current sheets (S > Sc ~ 104) are violently unstable to multiple plasmoid 
formation.

•  Current layers between any two plasmoids are 
themselves unstable to the same instability if

•  Plasmoid hierarchy ends at the critical layer: 

•  N ~ L / Lc  plasmoids separated by near-
critical current sheets.

Sn = LnVA/η > Sc



Hierarchical Plasmoid Chains

(Shibata & Tanuma ’01)

 Long current sheets (S > Sc ~ 104) are violently unstable to multiple plasmoid 
formation.

Barta et al., ‘11
(also Huang et al., ‘10)



Plasmoid-dominated reconnection: �
the ULS model	


Theoretical model (ULS) (Uzdensky et al., PRL ’10) attempts to 
describe reconnection in stochastic plasmoid chains.	


Key results: 
•  Nonlinear statistical steady state exists; effective reconnection 

rate is:	

	
 	
 	
Eeff ~ Sc

-1/2~ 0.01    independent of S !	


•  Plasmoid flux and size distribution functions are: 	

	
 	
 	
f(ψ) ~ ψ-2    ;   f(wx) ~ wx

-2	


•  Monster plasmoids form occasionally: 	

    	
 	
wmax ~  0.1 L --- can disrupt the chain, observable 	




High-Lundquist-number reconnection
Direct numerical simulations to investigate magnetic 
reconnection at S>Sc (Loureiro et al., PoP ‘12)

S=106, res. 163842

(see also Huang and Bhattacharjee ‘12,’13)



Reconnection and dissipation rates

Ẽeff ≈ 0.02

~ 40% of  incoming 
magnetic energy dissipated 
into heat

Sweet-Parker rate

Sweet-Parker model breaks down for S>104

(see also: Lapenta ‘08, 
Bhattacharjee ‘09, Huang 
‘10, ‘12)(Loureiro et al., ‘12)



Monster plasmoid formation
tim

e



Monster plasmoid formation

Time-to-monster
a few Alfvén times, 
independent of  S

(Loureiro et al., ‘12)



Monster plasmoids: application to 
blazar flares?

Minute-timescale TeV flares 
appear to be a generic feature of  
blazar activity. Recent model 
proposed by Giannios (arXiv:
1211.0296) claims that envelope 
can be do the reconnection, 
while the “bursts” could be due 
to monster plasmoids.



Reality check

There seems to be 
abundant evidence 
for plasmoids in 
solar flares and 
Earth’s magnetotail 
(see Loureiro PRE 
‘13 and refs. 
therein).

Karlicky & Kliem ‘10



Reality check

Takasao et al. ‘12



RECONNECTION IN A TURBULENT PLASMA



Reconnection in a turbulent 
background

Many (if  not all) environments where 
reconnection occurs are turbulent – how 
does that affect reconnection?

Lazarian & Vishniac ‘99

Very roughly: it’s SP but now the width d 
is determined by the typical field line 
wandering:

uinL = VA∆x

More precisely:

uin =
λ⊥
λ�

L

λ�
VA

Plug in your favourite turbulence model (e.g., GS95:                   )
Independent of  η.

λ� ∼ λ2/3
⊥



Reconnection in a turbulent 
background 

No 
background 
turbulence

With 
background 
turbulence

Kowal et al. ‘09
S = 103



Reconnection in a turbulent 
background

Kowal et al., ‘09



Turbulent 2D MHD reconnection is also fast!

(from Loureiro et al., MNRAS ‘09)	




KINETIC RECONNECTION



Enter kinetics

What happens if                                              

δSP < ρi, c/ωpi

Alternatively, even if                                          , one is almost certain to get:  δSP > ρi, c/ωpi

δc < ρi, c/ωpi

ρi

??



Generalized Ohm’s law

E+
vi ×B

c
= ηj
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Generalized Ohm’s law

Hall term;
Whistler waves;
c/ωpi

Electron 
pressure 
tensor;
KAW;
ρs

Electron inertia;
c/ωpe

Break frozen-fluxdoes NOT break 
frozen flux
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Generalized Ohm’s law

Hall term;
Whistler waves;
c/ωpi

Electron 
pressure 
tensor;
KAW;
ρs

Electron inertia;
c/ωpe

Break frozen-fluxdoes NOT break 
frozen flux

E+
vi ×B

c
= ηj+

j×B

nec
− 1

ne
∇ ·Pe −

me

e

dve

dt

- MHD is valid at large scales. 
- Below c/ωpi, ions and electrons decouple: plasma is no longer a single 
fluid. Electrons remain frozen-in.
- Electrons and field lines decouple below c/ωpe



GEM challenge 

GEM challenge, Birn et al. ‘01

What is the minimal plasma description that yields fast 
reconnection rates?



The signature of  Hall reconnection: 
quadrupolar magnetic field

(Breslau & Jardin ’03)

[Also observed in MRX (see H. Ji’s talk)]

Physical explanation of  quadrupole field: Uzdensky & Kulsrud ‘06



Kinetic means kinetic…

Numata et al. ‘11

Two-fluid tearing mode theories seem to 
fail to predict linear tearing mode growth 
rates. The reason is the failure of  simple 
equations of  state (e.g., isothermal 
closure is not valid).  



Kinetic means kinetic…

Numata et al. ‘11

Strongly suggests that minimum model 
for weakly collisional reconnection may 
be kinetic ions + drift kinetic electrons (and 
even that may not be sufficient)



Connection with other topics at this school

Reconnection in accretion disks
(Hawley & Balbus ‘92)

Firehose / mirror in high-β 
reconnection (Schoeffler ‘11)



Some open questions

•  3D

•  Reconnection onset (the two-timescale problem)

•  Energy partition, dissipation mechanisms

•  What is the subgrid model that will reproduce the effect of  
reconnection on small scales? 

•  Role of  background turbulence?
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