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Motivation

Solar flares Earth’s magnetosphere
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Motivation: plenty of

* Fusion reactors (tokamaks): tearing modes,
disruptions, edge-localized modes

* Laser-solid interactions (inertial
confinement fusion)

* Magnetic dynamo

* Flares (accretion disks, magnetars, blazars,
etc)

* Etc. (actually, there’s no need for
observational/experimental motivation: it’s
interesting per se.)

Recent review papers: Zweibel & Yamada ’09; Yamada ef
al., ’10; also books by Biskamp and Priest & Forbes.
Reconnection in exotic HED environments: Uzdensky ‘11

others!
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even more motivation. ..

“I he prevalence of this research topic s a symptom not of
repetition or redundancy in plasma science but of the
underlying unity of the wntellectual endeavor. As a physical
process, magnetic reconnection plays a role in magnetic fusion,
space and astrophysical plasmas, and in laboratory
experiments. T hat 1s, investigations in these different contexts
have converged on this common scientific question. If this
multipronged attack continues, progress in this area will have a
dramatic and broad impact on plasma science.”

(S. C. CGowley & J. Peoples, Jr., “Plasma Science: advancing knowledge in the national interest™,
National Academy of Sciences decadal survey on plasma physics, 2010)



RECONNECTION:
ESSENTIAL INGREDIENTS



Reconnection: basic idea

Reconnecting
Magnetic Field Line

Obpositely directed magnetic field lines
brought together by plasma flows.

New Reconnected
Magnetic Field Lines

Large Coronal

Main features: Loop

- coupling between large and \ t
small scales (multiscale problem) m

- Magnetic energy 1s
converted / dissipated (energy
partition: what goes where?)

- Reconnection rate ~ 0.01 —

0.1 L/V, (fast)

- often reconnection events are
preceded by long, quiescent
periods (fwo-timescales, the trigger

problem)

Inflowing
Magnetic Field

Hot Flare
Loop

New Reconnected
Magnetic Field Lines



Frozen flux constraint

Magnetic flux through a surface S, defined by a closed contour C:

\IJ:/B-dS .
S

How does W change in time?
1. the magnetic field itself can change:

(8—‘1’) = [ = dS——c/VxE ds
ot ),

C(t+dt)

2. the surface moves with velocity u:

(a—qj) :/B-uxdl:/Bxu-dl
6t 2 C C

:/SVX(Bxu)-dS




Frozen flux constraint (cont’d)

Combine the two contributions to get:

d\If

/Vx (cE+4+ux B)-dS

Recognize that w 1s an arbitrary velocity. Let me chose it to
be the plasma velocity: w = v, and recall Ohm’s law:

1
E+-vxB=nJ

Neglect collisions (RHS) =2 ideal Ohm’s law

aWw

dt

0

Magnetic flux through the arbitrary
contour G 1s constant: magnetic field lines
must move with (are frozen to) the plasma



Frozen flux vs. reconnection

Reconnection implies breaking the frozen flux constraint, 1.e.,

going beyond Ohm’s law.
1
E+-vxB=nd
C

\/—;
e T\

But the plasma is a very good conductor, right?



Frozen flux vs. reconnection

Reconnection implies breaking the frozen flux constraint, 1.e.,

going beyond Ohm’s law.
1
E+-vxB=nd
C

\/7
e T\

But the plasma is a very good conductor, right?

Right. The RHS becomes important not because collisions are
large, but because sharp gradients of the magnetic field give

rise to a large current (hence the term current layer).



ONE WAY TO GET RECONNECTION GOING:
THE TEARING MODE



T'he tearing instability

[Furth, Killeen & Rosenbluth (FKR) ‘63; Coppi et al. “76]

B

A A A

Bo = Boy f(z)y; vo =0
Take MHD eqs:

8—B:V><(v><B)+nV2B |

ot Yoy oy

dv 1 B y‘f '_0
Par = VP LS x
(Fitzpatrick’s book)

Linearise (assume V-v = 0):

. d?
vB, = ikBoy, f(x)vs + 1 (@ _ k2> B,

d2 . d2 f”(CC‘)
v <@ — k2) vy = 1kBoy f () [@ — k% — (@) ] B,




learing cont’d

tH = 1/kBy,; T, :a2/77
v=zXxV¢; B=zxVy

Definitions:

Normalize lengths:  z/a = z; ka — k

Rescale (for convenience): ¢/YTg — ¢

e L.

V1o =—f(z) [d2 —k? — fﬂ ]

dx?




learing cont’d

1 [ d? |
wﬂ@¢vwlﬁgﬁ ¢
P [ (@)

. Expect growth rate to be
Ordering: 1/ <YK 1/ TH  intermediate between resistive

diffusion (very slow) and ideal MHD
(very fast)



learing cont’d

1 [ d? |
wﬂ@¢7%[MgW w
2 2 | d? f”(x)_

. Expect growth rate to be
Ordering: 1/ <YK 1/ TH  intermediate between resistive
diffusion (very slow) and ideal MHD

(very fast)

It’s a reconnecting mode: expect wdeal MHD to be valid away from the
reconnection layer (outer region), and resistive effects to be important
the reconnection layer (inner region = boundary layer)



learing cont’d

2
Outer region: ¢ = . f(x) [d— — k2] = f"(x)y

dr?
Overlap region: 11— fx)rx=¢Y" =0

For a reconnecting mode, Y(0) must be finite. Need even solution.
b~ o + ||y

This solution 1s discontinuous at x=0. A measure of that
discontinuity 1s the wmstability parameter:

, [d oy
A= [dmlnw]o B ¢0




learing cont’d

. \3/2 ]
Tearing mode A’ T 5/4_1/2 3/4F _()\ 7 - 1) /4-
Dispersion Relation: — gl TH T _(3\3/2 4+ 5) /4_
where )\ = ’YTH/ 7'7% /3 'Two 1mportant limits:

A< 1l=y= 0.55777_3/5752/5A’4/5 —> small A’: “FKR”

A= 17 =y = 7}_12/3777_1/3 —* large A’: “Copp1”

Analytical expressions for A’ are obtained from solving the outer
region eq. for specific equilibrium profiles, f(x). For the Harris sheet:

() = tanh(z) = A’ = 2 (% _ k)



NONLINEAR RECONNECTION:
THE SWEET-PARKER MODEL



T'he stmplest description of
reconnection: the Sweet-Parker model

Peter Sweet (‘58) and Fugene Parker (‘57) attempted to

describe reconnection within the framework of resistive

| -

magnetohydrodynamics (MHD).




T'he stmplest description of
reconnection: the Sweet-Parker model

Peter Sweet (‘58) and Fugene Parker (‘57) attempted to
describe reconnection within the framework of resistive

magnetohydrodynamics (MHD).

S = LC’SVA/U @ —
Ssp/Leg ~ S™12 & ' | > Losp
Uin /Va ~ ST1/? - ﬁ

E ~ CB()VAS_l/2 LCS



T'he stmplest description of
reconnection: the Sweet-Parker model

Peter Sweet (‘58) and Fugene Parker (‘57) attempted to
describe reconnection within the framework of resistive

magnetohydrodynamics (MHD).
S = Lcst / 7

0sp/Log ~ S™1/2
um/VA ~/ S_1/2
E ~ CBOVAS_1/2

Typical solar corona parameters yield S~10'*; this theory then predicts that
flares should last ~2 months; 1n fact, flares last 13 min — 1h,

(still, Sweet-Parker (SP) theory was a great improvement on simple resistive
diffusion of magnetic fields, which would yield ~3.10° years...)



Does the Sweet-Parker model work?

A'=17.3
Sure!

10 10 103



Does the Sweet-Parker model work?

1.0

0 -
038
8.89- A'=17.3
Sure! 05 0.06-
0.053 P2
0.04 3
. 1 "
0.0 = 0.031 o
o p
L 1 -
0.02
05 1
d"
0.01
1.0 v '
10 10 103
-0.50 025 0.00 0.25 0.50
n

Hmm... maybe it doesn’t...

2

2 .
-0.50 -0.25 0.00 0.25 0.50

Loureiro et al. ‘05




BEYOND SWEET-PARKER:
TEARING INSTABILITY OF THE
CURRENT SHEET



SP current sheet instability

1- Assume incompressible flow profile of the form:

uy, = —vax/Les; uy, = Vay/Los

Lcs




SP current sheet instability

1- Assume incompressible flow profile of the form:
uy = —vaz/Les; uy = Vay/Les

2- Obtain consistent reconnecting magnetic field
from resistive induction equation.

Lcs




SP current sheet instability

1- Assume incompressible flow profile of the form:
uy = —vaz/Les; uy = Vay/Les

2- Obtain consistent reconnecting magnetic field
from resistive induction equation.

3- Linearize RMHD eqgs and look for perturbations
v> Va/Les =1/7a

Lcs




SP current sheet instability

1- Assume incompressible flow profile of the form:
uy = —vaz/Les; uy = Vay/Les

2- Obtain consistent reconnecting magnetic field
from resistive induction equation.

3- Linearize RMHD eqgs and look for perturbations
v>Va/Los =1/74

4- Asymptotic expansion using S>>1.

Lcs




SP current sheet instability

1- Assume incompressible flow profile of the form:
uy = —vaz/Les; uy = Vay/Les

2- Obtain consistent reconnecting magnetic field
from resistive induction equation.

3- Linearize RMHD eqgs and look for perturbations
v>Va/Los =1/74

4- Asymptotic expansion using S>>1.

Lcs

5- Obtain:

YmaxTA 7~ S1/4

kmaxLCS ~ 53/8




SP current sheet instability

1- Assume incompressible flow profile of the form:
i ) Uy = —var/Los; uy, = Vay/Leos

2- Obtain consistent reconnecting magnetic field
from resistive induction equation.

3- Linearize RMHD eqgs and look for perturbations

g Super Alfvenic growth!!

(pansion udng S>>1.

|
|
|
|

Plasmoids galore!!

5- Obtain:

3/8
(Loureiro et al. >07, ‘13) kmaxLcs ~ S




Current sheet mstability: threshold

: : 1/4
Linear theory predicts: Y T, ~ S /

* 'To a good approximation, outflows in the CGS are linear
(Yamada et al. “00, Uzdensky & Kulsrud °00):

v, ~V,y/L

* For any perturbation to grow, its growth rate needs to
exceed the shearing rate:

v, >>1= 85" >>1

4
> Critical threshold for instability: |5, ~ 10

(NB: there’s a slightly better way to do this, but this makes for a better joke)



Growth rate, YT,

Numerical confirmation of linear theory

Numerical simulations confirm scalings predicted by
linear theory (Samtaney et al., PRL “09).
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Nonlinear stage:

hierarchical plasmoid chains

Long current sheets (S > S_~ 10%) are violently unstable to multiple plasmoid
formation.

An-t * Current layers between any two plasmoids are

D\/O\/O\/O\/C'$ 5 themselves unstable to the same instability if

2 n-1
— }j/\/ * Plasmoid hierarchy ends at the critical layer:

==30 Sn — __
AD/\ /\/\C¢ L. Scn/VA 50 T Lc/‘\/SC
- CE. = BoVa/ 5
M $ On+1

* N~ L/ L, plasmoids separated by near-

Shibata & Tanuma *01) critical current sheets.

P




Hierarchical Plasmoid Chains

Long current sheets (S > S_~ 10*) are vzolent_ly unstable to multiple plasmoid
formation.

An-1 %
NXV@/CW Sn-t i %
) =< (|| 3 =

L n *@
/\ /\/\ r;", R
/ y

Anst = =
W =
AD/\O/\O/\O/\C$ On+1 =

(Shibata & Tanuma ’01)

Bartaetal, ‘11
(also Huang et al., 10)



Plasmoid-dominated reconnection:
the ULS model

Theoretical model (ULS) (Uzdensky et al., PRL *10) attempts to
describe reconnection in stochastic plasmoid chains.

Key results:

* Nonlinear statistical steady state exists; effective reconnection
rate 1s:

E.¢~S."?~0.01 = independent of !

* Plasmoid flux and size distribution functions are:
() ~p? 5 flw) ~w,?

* Monster plasmoids form occasionally:
W, .« ~ 0.1 L --- can disrupt the chain, observable

ma



f(P)

High-Lundquist-number reconnection

Direct numerical simulations to investigate magnetic
reconnection at S>S_ (Loureiro ¢t al., PoP ‘12)

10" ¢ —8— s=1.0x10°
L e s=3.0x10°
107 5 —a— g=10x10°
- $=3.0x10°
102 L S=30x10
107 10 107 107 10
¥/ ByL

S=10°, res. 1638472

10* ¢
. W-2
103 3 X
102 3
g 1015‘
= :
10° b 5
© —B—  $=1.0x10
L f e s=3.0x10°
107 F —a— s=10x10°
,f $=3.0x10°
10 — I321
107 10* 10~ 10 10
w_/L

X

(see also Huang and Bhattacharjee ‘12,°13)



Reconnection and dissipation rates

[Sweet—Parker model breaks down for S> 104]

~

Feg =~ 0.02

10- - ! LI | . LI A ’ LU | ‘ LI R |
107 ¢
107}
- -1/2
| —f+— Rec.rate
| =5 1/2 Ohm. heat. rate
~/N+ 1/2 Visc. heat. rate
10‘4 ! Lol ! |||||||Iv f Lol f Lol L L 1 ! Lol !
10" 107 10° 10* 10° / 10° 10’
S
(Loureiro et al., “12) Sweet-Parker rate

~ 40% of ncoming
magnetic energy dissipated
into heat

(see also: Lapenta ‘08,
Bhattacharjee ‘09, Huang
‘10, “12)



Monster plasmoid formation

uwn



Monster plasmoid formation

| $=1.0x10°

- S=3.0x10° o e

- S=1.0x10° | o Tg

o 2 4 § 10 12 14
t/ Ty

Time-to-monster
a few Alfvén times,
independent of §

(Loureiro et al., ‘12)



Monster plasmoids: application to
blazar flares?

Minute-timescale TeV flares t are~1 0 min
s

f
appear to be a generic feature of

blazar activity. Recent model
proposed by Giannios (arXiv:
1211.0296) claims that envelope
can be do the reconnection,
while the “bursts” could be due
to monster plasmoids.

Luminosity L

Time ¢
t ~1day ¢

env



Reality check

NoRH/17GHz R+L

Fo¥ : 640"x 640"

NoRH/17GHz R+L
Fo¥V : 640"x 640"

18—-APR—-01 02:15:33UT

B8-APR-01 02:16:13UT

APR-01 02:16:42UT

Karlicky & Kliem ‘10

There seems to be
abundant evidence
for plasmoids 1n
solar flares and

Earth’s magnetotail

(see Loureiro PRE
‘13 and refs.
therein).



Reality check

,

ore’1eeLso  (6)
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Takasao et al. ‘12



RECONNECTION IN A TURBULENT PLASMA



Reconnection 1n a turbulent

background

Sweet—Parker model

Many (if not all) environments where ]
reconnection occurs are turbulent — how s /
does that affect reconnection? <f/ T —>

Very roughly: it’s SP but now the width d
1s determined by the typical field line

wandering: \ - o /

UinL = Vi Ax C | S 3
More precisely: e
AL L .
Win = ~=-Va =
Al N

Plug in your favourite turbulence model (e.g., GS95: )\” ~ )\i/ 3)

Independent of 7.
Lazarian & Vishniac ‘99



Reconnection 1n a turbulent

background

140

No
background

120

turbulence 00
B, T N . | iy
e s - - ‘.-' — W N
.t - -
. ,_4_4.__,\-\:,4_:/(':,,(/_4_-‘/
- 1 .= - " 25N 2 o r Y
O/\—r‘""-(,‘_‘v-l s
P e L 4 _\-_ N .‘ S
40
'f‘l
W
0

Kowal et al. ‘09

With
background

turbulence



Reconnection 1n a turbulent

background

° ¢ 570 Pni=1, k=8
o e B,=1.0 i i
Turbulence
0.10 | 3 ¢ 3 e -
> - g
Nnu g
\
®
s Sweet—Parker 7
0.01 e e
107* 1073 1072
My

Kowal et al., ‘09



E‘eff

Turbulent 2D MHD reconnection is also fast!
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KINETIC RECONNECTION



Enter kinetics

What happens if

dgp < pi,c/wp,,; PP . N

L¢cs

10sp

Alternatively, even 1f ) Sp > pPi,C / Wpi , one 1s almost certain to get:




(Generalized Ohm’s law




(Generalized Ohm’s law

Hall term:;
Whistler waves;
c/ o




(Generalized Ohm’s law

e ——————— .
I V; X B I j X B 1
B+ = njH - —V-P,
: ¢ I nec ne
________________ "
Hall term: (Electron\
Whistler waves; pressure
c/ o Ergsvci;,
s )




(Generalized Ohm’s law

v; X B 1 x B 1 Me dV
E —|— 1 — nJ:—'— J L _v . P . (&4 (&
C I nec ne e dt
]
---------------- (El )
Hall term:; ectron Electron 1nertia;
Whistler waves; | | PTEUIC c/m,,
e/ tensor;
= KAW;
\Os J




(Generalized Ohm’s law

Hall term:;
Whistler waves;
c/ o

/

does NOT break

frozen flux

1 v.p Me AV,
ne © e dt
~ )
Electron Electron inertia;
pressure o/
tensor; B
KAW;
\ps \

Break frozen-flux



(Generalized Ohm’s law

- - 1
] v; X B 1 x B 1 Me dV
:E —|— 1 — nJ:—I— J L _v . Pe . (&4 (&
| C I nec ne e dt
] f
(" )
Hall term:; Electron Electron 1nertia;
Whistler waves; | |PTSUC c/m,,
e/ tensor;
= KAW:
/ \Os )\ /
?OCS lel)T break Break frozen-flux
rozen flux

- MHD 1s valid at large scales.
- Below ¢/,
fluid. Electrons remain frozen-in.

1ons and electrons decouple: plasma is no longer a single

- Electrons and field lines decouple below ¢/,



GEM challenge

What 1s the minimal plasma description that yields fast
reconnection rates?

X 4F —— Full Particle 7
—— L )
™ : PR

8 3;_ ----- H)/brld 5
< F — — Hall MHD
© 2F E
c | —-— MHD 4
S| / s
() 1 . E
0% S Y

OFE - \ e
0 10 20 30 40

GEM challenge, Birn et al. ‘01



T'he signature ot Hall reconnection:
quadrupolar magnetic field

lon and electron streamlines: L.
Quadrupole out-of-plane magnetic field:

.I 2 r
£

— = T - \ P —
I e e e 4..‘....“.p‘-.,.._—._'.......».. B e IR
- - L

’ /
14
” . ' ' d 1] o] TN N
' ) U ' ' ' ” ’ \J
4 . ' ) \ ] ' ' N\
. \ \ " p ’ 1 0 !

(Breslau & Jardin *03)

[Also observed in MRX (see H. Ji’s talk)]

Physical explanation of quadrupole field: Uzdensky & Kulsrud ‘06



Growth Rate: yt,

Kinetic means kinetic...

0.5
B.=0.3 + . . .

4 B:=0.075 © 'Two-fluid tearing mode theories seem to

RN B.=0.01875 o , . ,
021 _ fail to predict linear tearing mode growth

' rates. The reason is the failure of simple
o1 t*  3Eel 5 equations of state (e.g., 1sothermal
t closure 1s not valid).
005 2 3 4 5
10" 10> 10° 10* 10° 10° o

Lundquist Number: S

Numata et al. ‘11
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Growth Rate: yt,

Kinetic means kinetic...

0.5
B.=0.3 + o

% %2828?275 ° Strongly suggests that minimum model

02t ) _ for weakly collisional reconnection may
' be kinetic wons + drift kinetic electrons (and
0.1 " 5 even that may not be sufficient)
I

0.05

10" 10 10° 10* 10° 10
Lundquist Number: §

Numata et al. ‘11

§=7.2x10%, B,=0.3, 6=0.01

6 T
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Connection with other topics at this school

o
N

fei\

IAWAY
0\/0

Reconnection 1n accretion disks

(Hawley & Balbus 92)

(a 100

50

50 [

0 50 100 150 200
x/d,

Firehose / mirror in high-f
reconnection (Schoefller “11)



Some open questions
3D
Reconnection onset (the two-timescale problem)
Energy partition, dissipation mechanisms

What is the subgrid model that will reproduce the eftect of
reconnection on small scales?

Role of background turbulence?
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