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Protoplanetary disks

• Size:

• Central object: young stellar object 

• Temperature

1011–1015 cm

M ⇠ M�

103–101 K
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Cataclysmic variables

• Size:

• Central object: white dwarf 

• Temperature

109–1010 cm

WZ SGE
Steeghs & Marsh (IAUC 7669, 7670)

M ⇠ M�

105–103 K
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X-Ray binaries

• Size:

• Central object: neutron star, black hole (              )

• Temperature 

106–1011 cm

1–10M�

107–103 K
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AGNs (blazar, quasars...)

• Size:

• Central object: black hole  

• Temperature

106–1011 cm

 
MBH

M�

!

M87

105–102K

MBH = 106–109 M�
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Jets in protoplanetary disks
Astrophysical"jets:"from"young"stars…""

HH"212"(Class"I"YSO)"

HH212
HH30

2000 AU

100 AU
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Jets in AGNs

Centaurus A Quasar 3C175

20 kpc20 kpc
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Disks and jets in nature

• Disks are very general in nature

• Almost all of them are associated to
powerful jets (with the notable 
exception of CVs)
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Outline
• Accretion disks and jets: what are they

• Accretion disks in nature

• Jets in nature

• The physics of accretion

• Turbulent disks

• Disk Instabilities

• The shearing box model

• The case of the MRI

• Outflows in disks

• Jet launching mechanisms

• MRI & disk winds

• disk wind stability
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Disks dynamics

• Assume

Radial equilibrium
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• Disk temporal evolution dictated by small deviations from this 
Keplerian profile.

(ur, uz) ⌧ u�cs ⌧ u�vA ⌧ u�
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Disks dynamics

Introduce the average

Q =

Z
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Disks dynamics

• Introduce

Angular momentum conservation
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• Average & integrate vertically:

u = v +R⌦(R)e�

Introduce mass 
conservation
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Disks dynamics
Angular momentum conservation (once mass 
conservation is taken into account)

«Turbulent» torque Wind torqueAccretion
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Disks dynamics

• Angular momentum conservation (for a viscous disk)

• Put it in mass conservation:

Lynden-Bell & Pringle (1974)

⇢vr = � 3
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• Neglect surface terms and assume turbulent stress acts as a «viscosity»

⇢v�vr �B�Br = �⌫⌃R
d⌦
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Viscous disk evolution

• Most of the mass accreted

• Small amount of mass excreted (evacuate the disk angular momentum)

• Viscous timescale                . How big is     ?
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What if it was pure viscosity?

• In protoplanetary disks: 

• Need for an «anomalous» viscosity...

⌫ ⇠ uth⇤mfp

Thermal velocity Mean free path

uth ⇠ 104
p
T cm.s�1 � ⇠ 1016

n
cm

T ⇠ 103 K
n ⇠ 1013 cm�3

⌫ ⇠ 3⇥ 108 cm2.s�1 ⌧⌫ ⇠ 1014yrs >> age of the universe
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The alpha disk model
• Introduce the scaling (Shakura-Sunyaev 1973)

• Estimated accretion rate:

⌫ = ↵csH 10�4 < ↵ < 10�1

New questions!

• What is responsible for this anomalous viscosity?

• Turbulence

• Waves

• How big is α ?

• What about the surface terms we have neglected?

⇢vr ⇠ �↵cs⌃
H

R
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Outline
• Accretion disks and jets: what are they

• Accretion disks in nature

• Jets in nature

• The physics of accretion

• Turbulent disks

• Disk Instabilities

• The shearing box model

• The case of the MRI

• Outflows in disks

• Jet launching mechanisms

• MRI & disk winds

• disk wind stability
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Some disk instabilities
Local instabilities:

• Magnetorotational instability (MRI): shear driven instability but requires an ionised 
plasma (Velikhov 1959, Chandrasekhar 1960, Balbus & Hawley 1991)

• Subcritical shear instability: probably not efficient enough, if exists (see later)

• Baroclinic instabilities: Transport due to waves. Driven by the disk radial entropy profile 
(see later)

• Gravitational instabilities: only for massive & cold enough disk (see later) 

• Rossby wave instability: requires a local maximum of vortensity (Lovelace et. al 1999)

• Vertical convective instability: Requires a heat source in the midplane (Cabot 1996, 
Lesur & Ogilvie 2010)

Global instabilities:

• Papaloizou & Pringle instability: density wave reflection on the inner edge (Papaloizou & 
Pringle 1985)

• Accretion-ejection instability: spiral Alfvén wave reflection on the inner edge (Tagger & 
Pellat 1999)
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Subcritical shear instabilities
The Facts: 

• keplerian shear flows are linearly stable

• Huge reynolds numbers      nonlinear instability? (same thing as pipe flows or Couette 
flows)

Pipe flow Couette flow

A nonlinear instability in accretion disks?

• Experimental approach: hard to «do» a disk in a lab. Boundary conditions?

• Numerical approach: high reynolds numbers unreachable.

Ideal 
Couette-Taylor

Real life 
Couette-Taylor

(Schartman et al. 2012)
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Fig. 2. A) The Princeton MRI Experiment is a
Taylor-Couette apparatus in which the end caps
of the vessel have been divided in to two pairs
of nested, independently rotatable end rings.
B) The primary diagnostic of the fluid veloc-
ity is laser Doppler velocimetry (LDV). Radial
profiles of vθ are acquired with the diagnostic
viewing the fluid from the side. In the axial
orientation two components of velocity vθ and
vr are measured. Simultaneous measurement of
the two velocities gives a direct measure of the
r − θ component of the Reynolds stress. Due to
very low data rates, the Reynolds stress is mea-
sured primarily at one point.

the ratio of gap width to the average radius r̄ = (r1 + r2)/2,
∆r/r̄ > 1/20, Rec increases like (∆r/r̄)2. In this regime Richard
and Zahn rewrite the critical Reynolds number in terms of the
angular velocity gradient and arrive at an instability condition:

Rec =
r̄3

ν

∆Ω

∆r

(
∆r
r̄

)2

≥ 6 × 105
(
∆r
r̄

)2

· (7)

(We note that this prescription implies that the relevant length
scale is r̄ rather than other length scales, ∆r or h, an assumption
which may not be justified. See Sect. 5 for more discussion.)

By this prescription, Richard (2001) should expect a turbu-
lent transition at Rec ≈ 7 × 104 for the radius ratio ∆r/r̄ = 0.35.
In the cyclonic experiments, a transition was observed at Re =
3 × 104. However, the estimate for Rec does not carry over to
the anti-cyclonic experiment where a transition was observed
at Re ≈ 3 × 103. Also absent from the discussion leading to
this equation is an estimate of the perturbation amplitudes which
triggered the transitions in the experiments of Wendt and Taylor.

Torque measurements in the turbulent regime suggest to
Richard and Zahn that the turbulent viscosity, νt, is a diffusive
process and choose for it the form νt = αr̄∆Ω∆r, α is a constant.
Finally, using the observed approximate scaling of α with gap
width, Richard & Zahn conclude that the local value for νt be-
comes independent of the gap width (for large enough gaps) and
is determined only by the local shear:

νt = β

∣∣∣∣∣r
3 ∂Ω

∂r

∣∣∣∣∣ · (8)

The flux of angular momentum is then given by

ρr2〈v′rv′θ〉 = −ρνtr3 ∂Ω

∂r
, (9)

which can be rewritten in terms of q:

β = −〈v′rv′θ〉/q2v2θ . (10)

Thus, β can be directly determined through measurements of
the Reynolds stress. Finally, we comment on a particular case
where 〈vθ〉 satisfies the ideal Couette solution (Eq. (5)) with
negligible 〈vr〉 and axial dependences. In such a case, Eq. (6)
reduces to

1
r2

∂(r2〈v′rv′θ〉)
∂r

= 0 (11)

where the specific angular momentum flux, r2〈v′rv′θ〉 [=νtr3qΩ =
β(r3qΩ)2], is a spatial constant. This is especially convenient
when diagnostic access for Reynolds stress measurements are
limited to certain locations. The Reynolds stress at other loca-
tions can be inferred.

3. Experiment

The Princeton MRI Experiment is a novel Taylor-Couette appa-
ratus (Tagg 1994). The working fluid is confined between con-
centric, corotating cylinders which are bounded vertically by
two pairs of nested, differentially rotating end rings (Burin et al.
2006; Schartman et al. 2009), Fig. 2. The experiment was de-
signed to produce quasi-Keplerian flows of a liquid gallium al-
loy, GaInSn (Morley et al. 2008) which would become unstable
to the MRI in the presence of an applied solenoidal magnetic
field (Ji et al. 2001). To minimize the volume of GaInSn required
for the MRI studies, the height of the cylinders is only twice the
gap width between them, h/∆r = h/ (r2 − r1) ≈ 2. This aspect
ratio is small in comparison with other Taylor-Couette experi-
ments which aim to minimize the influence of the end caps by
separating them as much as possible. For example, Taylor (1936)
used h/∆r > 100. Further details of the design and implementa-
tion of the apparatus and diagnostics can be found in Schartman
et al. (2009).

3.1. Apparatus

The experiment outer cylinder is a pressure vessel into which the
inner cylinder and end rings are submerged. The outer cylinder is
a 25.4 mm thick annulus of cast acrylic capped by two 101.6 mm
thick acrylic disks. The inner cylinder and end rings are mounted
to nested stainless steel axles which pass through the top cap of
the outer cylinder. The rings are acrylic. The lower rings and
outer cylinder cap were polished to allow optical diagnostic ac-
cess to the fluid. The inner cylinder is stainless steel and was
painted black to reduce reflections which would interfere with
the velocity measurement (Table 1). A lip seal is mounted at the
top end of each axle to seal against its inner neighbor. The sub-
merged, lower, end of each component is fixed radially by a plain
bearing.

The hydrodynamic experiments reported here use water or a
water-glycerol mix as the working fluid. The kinematic viscosity

A94, page 4 of 13
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Subcritical shear instabilities
Experiments Simulations

A&A 543, A94 (2012)
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Fig. 10. Measurement of β for quasi-Keplerian profiles at r = 179 mm
and z = 62 mm or 74 mm. Horizontal dashed lines is the predicted range
of β from Richard and Zahn. The vertical dashed line is the estimate of
the transition Reynolds number predicted by Eq. (7).

two components of LDV systems as discussed in Sect. 3.3.1.
Example data and their comparisons can be found in Fig. 3
from Ji et al. (2006). The transport levels for linearly-stable pro-
files are plotted in Fig. 10. The measurements are performed at
r = 179 mm and z = 62 mm or z = 74 mm, but the results
are robust for other locations, see Fig. 3 from Ji et al. (2006) for
the z-dependence. The optimized QK(q = 1.9) and QK(q = 1.5)
configurations for Re > 106 are not consistent with Richard and
Zahn’s proposed transport level. Averaging the results for the
optimized configurations yields β = (1.13 ± 1.15) × 10−6 and
β < 3.4 × 10−6 at 2 standard deviations. Because negative val-
ues for β would indicate inward transport of angular momentum
(which we believe to be unphysical, as it would intensify rather
than extract energy from the shear), 2 standard deviations yields
98% confidence. The slight improvement of the transport limit
over the previously published result (Ji et al. 2006) is due to the
use of the local measurement of q and a correction for a small
angular misalignment of the LDV diagnostic.

Choices of the ring speeds other than the optimized values
have profound effects, through the global Ekman circulation,
on the mean flow profiles (Fig. 6) as well as on the Reynolds
stress, Σrθ. When the ring speeds are chosen to be equal to the
outer cylinder (the QK(Ekman) configuration), Σrθ is raised sig-
nificantly above the zero line as shown in Fig. 10, even above
the Σrθ value measured in the CUS 1 configuration which has a
local q below 2 in the bulk flow but with a centrifugally unstable
layer near the outer cylinder (the region C in Fig. 4). We note
that the Σrθ value in the QK(Ekman) configuration approaches
the level proposed by Richard & Zahn (1999). When the in-
ner (outer) ring rotates at the inner (outer) cylinder speed (the
QK(Split) configuration), Σrθ jumps to much larger values. It is
important to note that the QK(Split) configuration has stability
only with respect to the two cylinder speeds but is unstable lo-
cally, i.e. at the ring gap. Given this level of transport, the ob-
servations by Richard (2001), which uses the split configuration,
are likely to be caused by the influence of the end rings extending
throughout the fluid volume. As a side note, the axial boundary
conditions are also important for cyclonic flows briefly studied
in the Princeton MRI experiments. In the split configuration, ra-
dial profiles of these cyclonic flows deviated significantly from
the ideal Couette profiles with large fluctuations (Burin 2006),
and this subject is studied in detail by a followup experiment
(Burin & Czarnocki 2012).
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Fig. 11. A simplified Moody diagram for circular pipe flow. Only three
transport curves are shown: the laminar case, turbulence in a pipe with
smooth walls, and one choice of rough wall turbulence. For the rough
wall curve, the scale height of the roughness is 5% of the pipe diameter.
Below the minimum critical Reynolds number, a perturbed flow will
always return to the laminar state. A transition to the turbulent state is
marked by a discontinuity in the transport level. The minimum magni-
tude of the discontinuity in this case is approximately 2.

If a subcritical transition occurred in the range 3 × 105 <
Re < 2 × 106, what should we expect to see in Σrθ? Suppose the
transport follows the behavior of the normalized pressure drop,
or friction factor, plotted in the Moody diagram of pipe flow
(Moody 1944). A simplified moody diagram is reproduced in
Fig. 11 which displays only the laminar behavior and two tur-
bulent cases. The turbulent curves are the smooth wall case and
one rough wall case in which the scale height of the roughness
is 5% of the pipe diameter. A jump should occur at the transi-
tion from the laminar value to a value of order a few times the
laminar transport level. If the flow is bounded by rough walls
the friction factor should approach constant or logarithmic be-
havior when the viscous boundary layer becomes thinner than
the roughness scale height. This formed the basis of our astro-
physical extrapolation in Ji et al. (2006). However, our end caps
are not rough nor is rough-wall behavior applicable to accretion
disks. Instead, once the transition occurs the transport should
again be a decreasing function of Reynolds number. If a tran-
sition occurred in the proposed range we should see, according
to the Moody diagram, Σrθ jump to a factor of 2 to 4 above the
laminar transport level βvisc (where βvisc = ν/r̄3|∂Ω/∂r| = ν/2b
shown in Fig. 10) and then fall off as Re is further increased.
The absence of such a spike in Fig. 10 argues strongly against
the presence of a transition.

The source of the higher levels of transport associated with
the glycerol runs are hinted at by the time-averaged radial ve-
locities (Schartman 2008). Of the QK(q = 1.9) configurations,
only for these low Reynolds number experiments is v̄r statisti-
cally distinguishable from zero. For example, at Re = 2.2 × 104

with glycerol v̄r = −2.84 ± 0.35 mm/s, whereas for water
v̄r = 0.18 ± 0.17 mm/s at Re = 3.3 × 105. The vr distributions
for a glycerol run are compared to a water run and a solid body
water run in Fig. 12. At Re = 2.2 × 104, fluctuations are clearly
present in the negative tail of the distribution which give rise to
the non-zero value of v̄r. At the same speed but in water (so that
Re = 3.3 × 105), the fluctuations are more symmetric about the
mean and the mean radial velocity has fallen by a factor of two.
We interpret this to mean that the residual unsteady secondary
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! ! v0
"v

0
r=ð !v2

"q
2Þ, where overbars indicate mean quanti-

ties, v" is the azimuthal velocity, v0
" ¼ v" % !v", v

0
r ¼

vr % !vr, and q ¼ %@ ln"=@ lnr. This model describes
angular momentum transport as a diffusive process with
a diffusivity #turb ¼ !jr3@"=@rj. Thus, for a given "ðrÞ,
! determines the transport of angular momentum, with
larger values of ! corresponding to larger fluxes of L. For
quasi-Keplerian flows (region II), Ji et al. measured ! ¼
ð0:72& 2:7Þ ' 10%6. This value is smaller than the value
of ! ¼ ð1:5& 0:5Þ ' 10%5 determined by Richard and
Zahn [4] for Ro ¼ %1 ("1 ¼ 0). Ji et al. attributed the
disparity to Ekman circulation, which is reduced in their
experiments by independently controlling the angular ve-
locity of the axial boundary [7].

To determine ! from our measurements of G we use the
expression given by Dubrulle et al. [6],

! ¼ 1

2$
R4
C

G

Re2
Slam
!S

; (7)

where RC ¼ 2ðb% aÞ=ðbþ aÞ, and we take Slam=S ¼ 3
from [6]. Our measured values of ! are shown in Fig. 4.
We note that ! is proportional to the skin friction coeffi-
cient cf ¼ G=Re2, which is denoted on the right vertical
axis. The values of ! are shifted vertically for a given
Ro by the same factor as G=G1 shown in Fig. 2(b). For
Ro ¼ %1 we measure ! ¼ ð1:84& 0:03Þ ' 10%5, which
agrees with the value determined in Ref. [4]. For the flows
in region II we determine an average value of !! ¼ ð1:7&
0:2Þ ' 10%5, which is markedly higher than the value given
in Ref. [7]. For Rayleigh-unstable flows, though, Ji et al.
report !> 10%3 [7], whereas our values span 2' 10%5 <
!< 2' 10%4.

In conclusion, we have presented the first characteriza-
tion of the flux of angular momentum (torque) between
independently rotating cylinders for all regions of parame-
ter space. The reduction or enhancement of the torque
G=G1 at a given Reynolds number only depends upon
the Rossby number Ro. The Ro dependence of G=G1 is
well described by Eqs. (3)–(6). In contrast to Ref. [7] but
in agreement with Ref. [4], our measurements of !, which
may be used to model angular momentum transport, are
nonzero for Rayleigh-stable flows. This disparity likely
indicates that multiple states are possible for Rayleigh-
stable flows, with our measurements representing a
‘‘turbulent state’’ and those in Ref. [7] a ‘‘laminar state.’’
This is particularly important for astrophysical flows where
such nonlinear instability could explain the observed an-
gular momentum transport. Systematically perturbing
Rayleigh-stable flows while measuring the torque could
be used to directly test for nonlinear instabilities.
We would like to thank B. Eckhardt, Michael E. Fisher,

C. Kalelkar, D. Lohse, D. Martin, H. L. Swinney, and
D. S. Zimmerman, and acknowledge the support of Grant
No. NSF-DMR 0906109.
Note added in proof.—Recently, Detlef Lohse made us

aware of the parallel work [15], independently confirming
the peak in the dimensionless torque as a function of Ro.
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[5] (a) J. Huré, D. Richard, and J. Zahn, Astron. Astrophys.
367, 1087 (2001); (b) D. Richard, Astron. Astrophys. 408,
409 (2003).

[6] B. Dubrulle et al., Phys. Fluids 17, 095103 (2005).
[7] Ji et al., Nature (London) 444, 343 (2006).
[8] B. Eckhardt, S. Grossmann, and D. Lohse, J. Fluid Mech.

581, 221 (2007).
[9] F. Ravelet, R. Delfos, and J. Westerweel, Phys. Fluids 22,

055103 (2010).
[10] F. Wendt, Ingenieurs et architectes suisses 4, 577 (1933).
[11] G. I. Taylor, Proc. R. Soc. A 157, 546 (1936).
[12] L. Rayleigh, Proc. R. Soc. A 93, 148 (1917).
[13] D. Coles, J. Fluid Mech. 21, 385 (1965).
[14] (a) E. P. Velikhov, Sov. Phys. JETP 9, 995 (1959); (b) S.

Chandrasekhar, Proc. Natl. Acad. Sci. U.S.A. 46, 253
(1960); (c) S. A. Balbus and J. F. Hawley, Astrophys.
J. 376, 214 (1991); (d) Rev. Mod. Phys. 70, 1 (1998);
(e) D. R. Sisan et al., Phys. Rev. Lett. 93, 114502 (2004).

[15] G. P.M. van Gils et al., Phys. Rev. Lett., following Letter,
106, 024502 (2011).

Re (10
6 
)

10-5

1 2 40.40.2

0.0210-4

β

0.01

0.004

0.002

cf

I

II

III, IV

FIG. 4 (color online). Scaling of !, given in Eq. (7), and the
skin friction coefficient cf ¼ G=Re2 with Re. The symbols
correspond to the portions of parameter space defined in Fig. 1.

PRL 106, 024501 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending

14 JANUARY 2011

024501-4

Schartman et al. 2012 Paoletti & Lathrop 2012

No turbulence Turbulence

Lesur & Longaretti 2005
G. Lesur and P.-Y. Longaretti: Subcritical turbulence in rotating shear flows 33

1,005 1,01 1,015 1,02 1,025 1,03
-R

20000

40000

60000

80000

R
g

32
64
128
FD 64
4502.39+exp(-181.183+185.636*x)
4757+1.0335e13*(x-1)^5.68873

3

3

Ω

3

3

R  =-1,008
Ω

R  =-1,016 R  =-1,024Ω Ω

Fig. 7. Transition Reynolds number Rg as a function of the Rotation
number RΩ, and related analytical fits, with different resolutions and
codes for shearing-sheet boundary conditions (anticyclonic side). All
plots were computed using our Fourier code except FD (finite differ-
ence) which uses our ZEUS-like code. Note that the x-axis is inverted
with respect to Fig. 2. Symbols along the fitted lines correspond to
resolved simulations; vertically aligned symbols indicate the limiting
rotation number that can be reached at a given resolution and mostly
correspond to unresolved simulations. For the sake of clarity, symbols
which sit on top of each other have been slightly displaced along the
RΩ axis; this is indicated by the arrows and the related values of RΩ.

This is the most important point to note here: two different
regimes of transition from turbulent to laminar are displayed
in this figure. The first (corresponding to the various fitting
curves) is the correct, resolution independent and Reynolds de-
pendent transition. The second (apparent as the various ver-
tically aligned points at a given resolution) is an incorrect,
Reynolds independent and resolution limited transition. Note
that the points belonging to both this vertical line and the
laminar-turbulent line are still resolved, though, as shown in
Sect. 4.4.2. The meaning of the behavior displayed in Fig. 7 is
further discussed in Sect. 4.1, and its implications in Sects. 4.2
and 4.4.

Comparing Figs. 4 and 7, we remark that the dependence
of the transition Reynolds number Rg on the “distance” to
marginal stability in rotation number |RΩ − R±

Ω
| is consider-

ably stiffer on the anticyclonic side than on the cyclonic one.
This has important implications that will be discussed in the
next section. Conversely, the turbulent momentum transport is
very similar to the one found for the cyclonic side5, as shown
in Fig. 8

〈vx vy〉 $
5.5

Rg − 3000
(S d)2. (20)

The constant in the denominator differs from the one found
on the cyclonic side. This reflects the difference of transition
Reynolds number at the two marginal stability limits. For large
enough Reynolds number, one find 〈vx vy〉 $ 5.5/Rg, which

5 Figure 8 is noisier than its cyclonic counterpart. This is a con-
sequence of the larger turbulent fluctuations observed in anticyclonic
flows. Longer integrations time-scale would have been required to im-
prove the statistics.
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y = 0.18*x − 5.5e+02

Fig. 8. Mean transport as a function of critical reynolds number on the
anticyclonic side (normalized by S 2d2).

corresponds to the asymptotic relation found on the cyclonic
side (see Sect. 4.1 for a discussion of the possible origin of this
behavior). This indicates that this relation is very robust for
subcritical flows, far enough from the supercritical transition
limit.

4. Discussion

Our results are at variance with both the point of view advo-
cated by Balbus et al. (1996) and Hawley et al. (1999) (ab-
sence of subcritical turbulence), and Richard & Zahn (1999)
and Hersant et al. (2005) (efficient transport due to subcriti-
cal turbulence). This is further investigated in this section. We
shall first present some phenomenological background material
which helps to understand the physical origin and meaning of
the results presented in the previous section. Then, we shall re-
spectively discuss the implications of our results for Keplerian
flows (Sect. 4.2), the stabilizing role of the Coriolis force in
subcritical flows (Sect. 4.3), and the relation between Reynolds
number and resolution (Sect. 4.4); these last two items have
been highly controversial in the past decade. Section 4.4 also
discusses the relation of these results with the scale-invariance
argument of Balbus (2004). Finally the influence of the na-
ture of the adopted boundary conditions and aspect ratio on
our results is the object of Sect. 4.5, as well as their relation
to fluid dynamics experiments. Note also that the discussion
of the boundary conditions helps quantifying possible biases
introduced by the sheering sheet boundary conditions with re-
spect to actual disk physics. The reader interested only in the
astrophysical implications of our results may focus in Sect. 4.2.

4.1. Some aspects of subcritical turbulence
phenomenology

The phenomenology of subcritical turbulence has been dis-
cussed in Longaretti (2002) and Longaretti & Dauchot (2005).
Some directly relevant aspects for our present purpose are pre-
sented here (and clarified where needed).

Turbulent transport is often quantified in terms of a turbu-
lent viscosity. As this description has been criticized in the past,
a brief discussion of its use here might be useful. First, note
that, in scale-free systems such as the ones studied here (the

No turbulence

No definitive answer yet

Keplerian flow

Keplerian flow

Keplerian flow
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Baroclinic instabilities

Refs: Klahr & Bodenheimer 2003, Petersen et al. 2007a,b, Lesur & Papaloizou 2010

A B

CD

A B

CD

Convectively unstable radial 
temperature gradientOpen issues:

• Vortices are unstable

• Vortices migrate

• What maintains the entropy structure?

• Instability does not survive with magnetic fields

Baroclinic instabilities: nonlinear instability driven by the radial entropy gradient
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Gravitational instabilities

!2 = k2c2s � 2⇡G⌃|k|+ 2

Dispersion relation for axisymmetric modes:

Thermal pressure 
(sound waves)

Self gravity Local centrifugal force
(epicyclic oscillations)

2 = 2⌦
⇣
2⌦+

d⌦

d lnR

⌘

k

!2 inertial waves gravitationally
unstable modes

sound waves

Criterion for instability: �0 = (⇡G⌃)2 � c2s
2 > 0 =) Q =

cs

⇡G⌃
< 1

Toomre 1964
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Consider a disk with

• Disk cools, cs decreases

• When Q=1 GI starts

• GI unstable modes produce strong 
shocks           heating

• cs increases

• Q>1 GI stops

Gravitational instabilities
Nonlinear evolution

636 G. Lodato and W. K. M. Rice

Figure 3. Profiles of the Q parameter for the three simulations: (upper left) q = 0.05; (upper right) q = 0.1; (bottom) q = 0.25.

effects of heating from gravitational instabilities and cooling. Our
simulations are similar to those performed by Rice et al. (2003a,b),
with the difference that these previous investigations were concerned
about either the motion of the central object caused by the massive
disc, or the issue of fragmentation of the disc, while here the main
goal is to characterize the transport properties induced by gravita-
tional instabilities.

We believe that both performing 3D simulations and solving ex-
plicitly the energy equation are essential to determine the final out-
come of the instabilities. In fact, the dynamical properties of self-
gravitating discs are determined to a large extent by the process of
self-regulation, which is strongly dependent on the detailed heating
and cooling mechanisms, as outlined in the introduction. Further-
more, because one of the main tests we want to perform is to check
the type of dissipative process associated with gravitational insta-
bilities, solving the energy equation is essential. The requirement
of 3D simulation is also fundamental, because the typical size of
gravitational disturbances is related to the disc thickness, so that
any zero-thickness simulation will automatically lead to an under-
estimate of global effects.

Previous numerical work carried out on the subject includes:
global, 3D SPH simulations of massive isothermal discs (Laughlin
& Bodenheimer 1994); global, 2D SPH simulations with detailed
heating and cooling (Nelson et al. 2000); global, 3D grid-based sim-
ulations with heating and cooling (Pickett et al. 2000); and local, 2D

grid-based simulations with heating and cooling (Gammie 2001). In
this section we describe the similarities and the differences between
our study and these previous studies.

One of the first studies of gravitational instabilities in discs was
performed by Laughlin & Bodenheimer (1994). They modelled a
very massive disc (with M disc ≈ M!) and followed its evolution with
a 3D SPH code, without including any heating or cooling term, but
simply assuming that the disc was locally isothermal. In this study,
the authors also tried to give a detailed characterization of the trans-
port. Their approach was however slightly different to ours, in that
they evolved their simulation long enough to capture the viscous
evolution of the disc, and then compared the evolution of the az-
imuthally averaged surface density with simple one-dimensional
viscous models, concluding that the disc evolution could be well
reproduced by a viscous model with α ≈ 0.03. This work is impor-
tant because it clarifies that gravitational instabilities are actually
able to transport angular momentum efficiently and that the surface
density evolution is indeed of a diffusive nature, as expected (see
Section 2), but does not answer the important question of whether
energy dissipation is local or global.

Nelson et al. (2000) performed 2D simulations with particular
emphasis on the cooling processes in the disc and included a more
realistic cooling function than the simple parametrization adopted
here. Their disc mass was M disc = 0.2M!, very similar to our
most massive case. They estimated the effective α associated with

C© 2004 RAS, MNRAS 351, 630–642

Q =
cs

⇡G⌃
Q � 1

«gravito-turbulence»
Lodato & Rice (2004)

Q
R
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Gravitational instabilities
Well... It’s not so simple!

⌧
cool

= 2⌦�1⌧
cool

= 10⌦�1

The outcome depends on the cooling time, but also on numerical 
schemes and resolution... See Paardekooper (2012), Meru & Bate (2012)
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Magnetorotational instability

Field line

A
B

A

B

Main properties

• Due to an interaction between magnetic tension 
and epicyclic motions

• Not too strong magnetic fields required («weak 
field instability»)

• Need a sufficiently high ionization fraction

Balbus & Hawley 1991, Balbus 2003
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Magnetorotational instability

Balbus 2003

R0

⌦(R0)

x

Effective (tidal) radial acceleration:

y

R⌦2(R) R⌦2(R0)

Resulting equation of motion for a fluid particle:

ẍ� 2⌦ẏ = � d⌦2

d lnR
x

ÿ + 2⌦ẋ = 0

�x

d⌦2

d lnR

Epicyclic oscillations at frequency  =
⇣
4⌦2 +

d⌦2

d lnR

⌘1/2
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Magnetorotational instability
Induction equation for a displacement
and a spatial dependence                    :

⇠
/ exp(ikz)

�B = i(k ·B)⇠

The magnetic tension force is then

Resulting equation of motion for a fluid particle:

ẍ� 2⌦ẏ = �
⇣

d⌦2

d lnR
+ (k · vA)2

⌘
x

ÿ + 2⌦ẋ = �(k · vA)2y

i(k ·B)

⇢
�B = �(k · vA)2⇠

x = x0 exp(i!t)

Introduce:

y = y0 exp(i!t)
Dispersion relation



02/27/2013The stability of accretion disks and windsGeoffroy Lesur

Magnetorotational instability

DestabilizingStabilizing

⌦ / R�q =) d⌦2

d lnR
= �2q⌦2

!4 � !2[2 + 2(k · vA)2] + (k · vA)2
"
(k · vA)2 +

d⌦2

d lnR

#
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k · vA
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Epicyclic
modes

For an accretion disk (q=3/2)
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Magnetorotational instability

Main properties:

• Fast instability (             )

• Condition for instability               satisfied in disks

• Also works for different field topologies (eg toroidal field: Balbus & Hawley 1992)

• Need weak enough fields (                    )

� ⇠ ⌦
d⌦

dR
< 0

k · vA . ⌦

Can it explain the anomalous 
transport needed in disks?
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The shearing box model

Problem:

• Computing a full disk is computationally expensive

Local resolution is poor

Boundary conditions

Goal:

• Define a simplified setup which mimics the local properties of an 
accretion disks

Simplifies numerical simulations & boundary conditions

Better convergence properties
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The shearing box model

This set of equations admits a simple solution (isothermal EOS):

 = �q⌦2
x

2 +
1

2
⌦2

z

2With the effective potential:

u = �q⌦xey

⇢ = ⇢0 exp
⇣
� z2

2H2

⌘

R0

⌦(R0)

Mean keplerian shear

Disk scale height H =
cs
⌦

@t⇢+r · ⇢u = 0

@t⇢u+r · (⇢u⌦ u) = �rP + J ⇥B

�2⇢⌦⇥ u� ⇢r + ⇢⌫�u

@tB = r⇥ (u⇥B) + ⌘�B
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The shearing box model
Separate the mean shear from the fluctuations:

u = �q⌦xey + v

Shearing box equations:

H x

y z

Now, solve that...

@

t

⇢� q⌦x@
y

⇢+r · ⇢v = 0

@

t

⇢v � q⌦x@
y

⇢v +r · (⇢v ⌦ v) = �rP + J ⇥B � 2⇢⌦⇥ v

+⇢q⌦v
x

ey � ⇢⌦2
zez + ⇢⌫�v

@

t

B � q⌦x@
y

B = r⇥ (v ⇥B)� q⌦B
x

ey + ⌘�B
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Boundary conditions

Vertical and toroidal total magnetic flux conserved

Boundary conditions

• Use shear-periodic boundary 
conditions= «shearing-sheet»

• Allows one to use a sheared Fourier 
Basis

• periodic in y and z (non stratified box)

Courtesy T. Heinemann

x

z y

x

z y

x

z y

mean vertical field mean toroidal field zero mean field
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Spectral methods for 
shearing boxes

Shearing wave

Courtesy T. Heinemann
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Spectral methods for 
shearing boxes

The shearing box involves equations of the type:

Assume Q can be decomposed into:

@Q

@t
� q⌦x

@Q

@y
= H(Q)

Q(t,x) = ˜Q(t) exp
⇥
ik(t) · x

⇤

One has:

@Q

@t
=

hd ˜Q
dt

+ i ˜Q
dk

dt
· x

i
exp

h
ik(t) · x

i

dQ̃

dt
+ iQ̃

dk

dt
· x� iq⌦xky = Ĥ(Q)

Cancel explicit x dependency:

dk
x

dt
= q⌦k

y dQ̃

dt
= Ĥ(Q)

k = k0 + q⌦kytex
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The Snoopy code
a spectral method for sheared flows

• MHD equations solved in the sheared frame

• Compute non linear terms using a pseudo spectral representation

• 3rd order low storage Runge-Kutta integrator

• OpenMP and/or MPI parallelization

• Written in C

• Available online http://ipag.osug.fr/~glesur/snoopy.html

Advantages:

• Shearing waves are computed exactly (natural basis)

• Exponential convergence when resolution is increased

• Magnetic flux conserved to machine precision

• Sheared frame & incompressible approximation: no CFL constrain due to the background 
sheared flow/sound speed.

• Very weak numerical dissipation: tight control on physical dissipation processes

Disadvantages:

• Slower than finite differences for the same resolution (number of real grid points)

• Shocks/diskontinuities can’t be treated spectrally (Gibbs oscillations)

• Strongly parallel spectral codes are not very efficient

http://ipag.osug.fr/~glesur/snoopy.html
http://ipag.osug.fr/~glesur/snoopy.html
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MRI simulations
Dimensionless numbers

• Mean field amplitude:

• Reynolds number

• Magnetic Reynolds number

• Magnetic Prandtl number

• Turbulent transport of angular momentum 

Re =
⌦H2

⌫

Rm =
⌦H2

⌘

Pm =
⌫

⌘

↵ =
h⇢v

x

v
y

�B
x

B
y

i
⇢⌦2H2

� =
⌦2H2

hvAi2
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MRI simulations
Typical simulation

2 4 6 8 10 12 14
0

0.02

0.04

0.06

0.08

0.1

t (orbits)

_

Simulation parameters: Re=1000, 
Pm=1, β=1000

3D map of vy (azimuthal velocity)

It works!

Is it the end of the story?
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MRI simulations
Typical spectrumA&A 528, A17 (2011)
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Fig. 1. Energy spectrum at Pm = 0.0625 (left) and Pm = 0.25 (right). In the Pm = 0.25 case, a power-law spectrum is observed for the kinetic
energy corresponding to a k−3/2 spectrum.

has been used in several context, including the MRI (Longaretti
& Lesur 2010) and the subcritical baroclinic instability (Lesur
& Papaloizou 2010). It is available for download on the author’s
website.

3. Results

3.1. Simulations parameters and averaging procedure

The spectra and transfers presented in this section were all de-
rived from two simulations of an MRI saturated state. These runs
correspond to the Pm = 0.25 and Pm = 0.0625 high-resolution
runs discussed in Longaretti & Lesur (2010). Both runs have a
resolution2 of Nx×Ny×Nz = 768×384×192 with a box aspect-
ratio Lx × Ly × Lz = 4 × 4 × 1. We imposed a mean vertical
field in the box with β = 103 and Λν = 30 (Re = 2 × 104).
Each simulation was integrated for 50 orbits starting from ran-
dom noise, and the spectra were averaged from the last 40 or-
bits to remove any influence of the initial conditions. The two
simulations considered in this section only differ by their ohmic
resistivity, where the Pm = 0.25 run has Λη = 7.5 (Rm = 5000)
and the Pm = 0.0625 run has Λη = 1.87 (Rm = 1250).

The statistical average of any quantity X of interest 〈X〉stat
should in principle be computed on different realisations but are
evaluated in practice as usual via an ergodic hypothesis:

〈X〉stat = lim
T→∞

1
T

∫ T

0
X(t)dt ' 1

T

∫ T

0
X(t)dt '

∑

i

X(Ti), (22)

where 0 ≤ Ti ≤ T are a sufficiently large number of instants of
flow snapshots.

The spectra were averaged in the spherical shells introduced
in (14). The shells were defined so that Kn = 2πn/Lz and δK =
2π/Lz. This means that some power is present in the shell K =
0, as it contains large-scale horizontal waves with no vertical
structure. The shell-integrated spectra and transfers obtained by
this procedure are then averaged in time over 40 instantaneous

remap method, the Nyquist frequency waves are remapped to large-
scale waves in physical space, which might lead to unphysical be-
haviours.
2 The quoted resolution now includes the aliasing domain. This con-
vention differs from the one adopted in our previous papers, where only
the “useful” domain was accounted for when quoting resolutions.

snapshots (1 snapshot per orbit). For simplicity, we renormalized
the wavevectors K so that K′ = K/2π on all the plots in this
section. Shells K > 32 are incomplete in the y direction since
the resolution per scale height is lower in that direction. This is
not a problem since these shells are in the dissipative range, and
high ky modes are weaker than the equivalent high kx/kz modes
due to the anisotropy of MRI turbulence (see Sect. 3.2). With
our procedure, one can reconstruct the box-averaged quantities
by summing the spectra over the integers K.

The shear transfer terms Fs,v and Fs,b are computed in a spe-
cial way. Indeed, one cannot compute Fs for a given shell and
snapshot time numerically because of the δ functions. Instead,
we introduce a shell-averaged flux:

Fc
s (K0, t) =

1
δK

∫ K0+δK/2

K0−δK/2
dK Fs(K, t). (23)

As 〈Fs〉stat depends only on K (the turbulence is statistically sta-
tionary) and varies little with K on scales of the order of δK, one
has 〈Fs〉stat '〈Fc

s 〉stat. One can therefore use Fc
s in the averaging

procedure described above to estimate 〈Fs〉stat. The numerical
flux we obtain is then averaged over time following the proce-
dure described above.

3.2. Spectra and energy injection

We first present the energy spectra in Fig. 1 for Pm = 0.0625
and Pm = 0.25. The standard deviation, as measured from 40
instantaneous snapshots, is shown as a shaded region on these
spectra. This dispersion stems from temporal fluctuations of the
turbulence intensity. The most obvious feature observed in these
spectra is the presence of a k−3/2 spectrum for the kinetic energy;
the traditional Kolmogorov scaling k−5/3 appears to be excluded
in the Pm = 0.25 run, but it cannot be strictly excluded in the
Pm = 0.0625 run. A k−3/2 power law was also found in zero
net-flux MRI turbulence (Fromang 2010), and although the spec-
trum shape differs, our spectra being exempt of any “bump” at
intermediate scale. As our runs do not resolve the inertial range
of the turbulent cascade yet, these apparent spectral shapes re-
quire some comment. The presence of a k−3/2 spectrum is usu-
ally related to the theoretical argument of Iroshnikov (1963)
and Kraichnan (1965) (or IK). However, MRI turbulence is not
strongly magnetized, so it falls outside the domain of validity of

A17, page 4 of 10

for kinetic energy?K�3/2

E
(K

)

768x384x192
~500 turnover times
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MRI simulations
Simulations with a mean vertical field

Turbulent transport varies by 2 order of magnitude!

P.-Y. Longaretti and G. Lesur: MRI-driven turbulent transport: the role of dissipation, channel modes and their parasites
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Fig. 4. Transport standard deviation as a function of the time interval τ
used to bin the transport data, for a given run (in this case, Re = 3200,
Rm = 800, and β = 100). This information is used to quantify the error
in the transport from the fit ∝τ−1/2 that is expected to hold for large
enough binning time τ (see text for details).
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Transport ∝ Pmb, b = 0.57
Transport ∝ Pmb, b = 0.82

Fig. 5. The dimensionless turbulent radial momentum transport α as a
function of the Prandtl number Pm and the field strength β for various
Reynolds numbers. black: β = 102; blue: β = 103; red: β = 104; !:
Re = 400; +: Re = 800; ♦: Re = 1600; ◦: Re = 3200; ×: Re = 6400;
the green starred data points correspond to the three more resolved runs
at Re = 20 000 and β = 103. Power law fits are also shown for each
value of β.

the initial work of Hawley et al. (1995). However, the varia-
tion of the index of the Prandtl number dependence with field
strength just discussed induces deviations from this scaling.

– There is a weaker, but systematic and significant increase of
the transport with increasing Reynolds number at any given
field strength and Prandtl number. This effect is real: for most
of our runs, this increase is larger than the standard deviation
in the transport, as quantified in the previous subsection. It is
also larger for the smaller Prandtl number values. This indi-
cates that the Prandtl number does not capture all the physics
of the correlation between transport and physical dissipation;
this point is further discussed below.

Our previous investigation was limited to β = 100. In the present
work, the Prandtl number dependence of the transport for this
field strength is consistent with our earlier findings. However,
the transport observed here is reduced by a factor ∼2; this is a
direct consequence of the reduced role played by the channel
mode in our horizontally extended simulation boxes.

For the lowest Prandtl number (1/4) and lowest field strength
(β = 104), only one point is reported in the graph. Our other
runs for this parameter have lower Reynolds numbers, and are
too close to the linear stability threshold of Eq. (23) to sustain
full 3D turbulent motions. These runs show 2D or quasi-2D be-
havior, with very different transport efficiency and behavior. The
data point we have retained might still be weakly affected by
such effects.

As pointed out above, Fig. 5 indicates that the spread with
Reynolds number at a given Prandtl number increases with de-
creasing Prandtl number. In fact, two different regimes can be
noted, one for Pm ≤ 1 and one for Pm = 4.

At Pm = 4, the transport seems to be only weakly depen-
dent on Re (or Rm), at least for large enough Reynolds number:
the transport increases by 10% to 50% (depending on β) while
the Reynolds number is multiplied by a factor of 4. This trend
can also be found in the work of Simon & Hawley (2009), where
the MRI turbulent transport in presence of a toroidal field is in-
vestigated with more emphasis on the Pm > 1 regime. Their
Figs. 6 and 7 show that, for Pm = 2 and 4 at least (the only ones
with enough data in the Pm > 1 regime), the transport increases
steadily with the Reynolds number for Re <∼ 1000 and much
more weakly for Re >∼ 1000.

On the contrary, the spread in Reynolds number for Pm ≤ 1
is substantial, and systematic. Such a spread was not detected in
our earlier investigation, due to the larger fluctuations in trans-
port related to the box aspect ratio, as discussed earlier. In fact,
this dispersion seems to be an effect of the magnetic Reynolds
number. To illustrate this point, the transport is represented in
Fig. 6 as a function of Rm (left panel) and Re (right panel),
for Pm ≤ 1; the colors describe different field strengths (β = 102

to 104 from top to bottom). The statistics in the number of points
at any given Re or Rm is rather low; however, it appears quite
clearly that the dispersion of the points at any given Reynolds
number is substantially larger in Re (with varying Rm) than
in Rm (with varying Re). The largest Reynolds number data
strongly support this conclusion. Furthermore, the fits5 of the
transport as a function of Rm indicate the Rm dependence of the
transport for Pm ≤ 1 is very similar to its Pm dependence as
shown in Fig. 5. This strongly suggests that the Pm dependence
observed on this figure is in fact mostly a Rm dependence for
Pm ≤ 1. Including the Pm = 4 data destroys this correlation,
which strengthens the idea that there are two regimes, depend-
ing on the Prandtl number (a feature that may be related to the
existence of a transition around Pm = 2 in zero net flux shear-
ing box simulations). The relevant results of Simon & Hawley
(2009); although less detailed, are consistent with these findings
(see their Fig. 7).

5. Role of channel and parasitic modes

5.1. Linear physics and turbulent transport

Lesur & Longaretti (2007) concluded that there was no di-
rect connection between the Prandtl dependence of MRI-driven

5 The Re = 20 000 data points have not been included in this fit to
make the comparison between the two dependences in the same condi-
tions.
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Figure 5. Time- and volume-averaged stress parameter α as a function of Rm in
the YN simulations; α ≡ 〈〈ρvxδvy − BxBy〉〉/Po. The time average runs from
50 orbits onward, and the volume average is calculated over the entire simulation
domain. The colors correspond to Re values, and the symbols correspond to
Pm values. Red symbols are Re = 400, green Re = 800, dark blue Re = 1600,
black Re = 3200, pink Re = 6400, and light blue are Re = 12800. Circles are
Pm = 0.25, crosses Pm = 0.5, asterisks Pm = 1, diamonds Pm = 2, triangles
Pm = 4, squares Pm = 8, and X’s are Pm = 16. Note that some of the decayed
turbulence (α = 0) simulations are not plotted for clarity. Increasing Rm results
in larger α values, and for Rm less than 800–1600, the turbulence decays.
(A color version of this figure is available in the online journal.)

Figure 6. Time- and volume-averaged stress parameter α as a function of Re in
the YN simulations; α ≡ 〈〈ρvxδvy − BxBy〉〉/Po. The time average runs from
50 orbits onward, and the volume average is calculated over the entire simulation
domain. The colors correspond to Rm values, and the symbols correspond to
Pm values. Light blue symbols are Rm = 800, green Rm = 1600, dark blue
Rm = 3200, black Rm = 6400, and red are Rm = 12800. Circles are Pm = 0.25,
crosses Pm = 0.5, asterisks Pm = 1, diamonds Pm = 2, triangles Pm = 4,
squares Pm = 8, and X’s are Pm = 16. Note that some of the decayed turbulence
(α = 0) simulations are not plotted for clarity. Increasing Re leads to decreasing
α values.
(A color version of this figure is available in the online journal.)

different Re values. The clearest trend is that if Rm is large
enough to sustain turbulence, increasing Pm leads to larger α
values. Note that turbulence can be sustained even for Pm less
than unity, if Rm is large enough. At constant Rm, we find that
α ∝ Reδ1 , with δ1 ranging from −0.1 to −0.3 (calculated by
a linear fit to the data in log space for non-decayed turbulence
simulations only). At constant Re value, we find α ∝ Rmδ2

with δ2 in the range 0.4–0.8 and δ2 generally decreasing with
increasing Re.

These results naturally lead to the question of why increasing
ν or decreasing η causes an increase in turbulence. Magnetic
reconnection and dissipation of field lines, either due to an
explicit resistivity or to grid-scale effects, presumably play the
primary role in limiting the amplitude of the MHD turbulence.
Balbus & Hawley (1998) hypothesized that increased viscosity
would inhibit reconnection by preventing velocity motions that
would bring field together on small scales. When Pm > 1, the
viscous length is greater than the resistive one, and magnetic
field dissipation becomes less efficient, leading to an increase in
turbulent stress (e.g., Balbus & Henri 2008). If this hypothesis is

Figure 7. Time- and volume-averaged stress parameter α as a function of Pm;
α ≡ 〈〈ρvxδvy −BxBy〉〉/Po. The time average runs from 50 orbits onward, and
the volume average is calculated over the entire simulation domain. The colors
correspond to Rm values, and the symbols to Re values. Light blue symbols
are Rm = 800, green Rm = 1600, dark blue Rm = 3200, black Rm = 6400, and
red are Rm = 12800. Crosses are Re = 400, asterisks Re = 800, diamonds Re
= 1600, triangles Re = 3200, squares Re = 6400, and circles are Re = 12800.
Note that some of the decayed turbulence (α = 0) simulations are not plotted
for clarity. The average stress increases with increasing Pm.
(A color version of this figure is available in the online journal.)

correct, there may also be a change in the dissipation of kinetic
and magnetic energy into heat. To investigate this possibility, we
carry out an analysis of viscous and resistive heating for several
of the simulations.

Consider the volume-averaged kinetic and magnetic energy
evolution equations, Equations (15) and (16) in Simon et al.
(2009),

K̇ = −
〈
∇ ·

[
v

(
1
2
ρv2 +

1
2
B2 + P + ρΦ

)
− B(v · B)

]〉

+
〈(

P +
1
2
B2

)
∇ · v

〉
− 〈B · (B · ∇v)〉 − Ġ − Qk,

(15)

and

Ṁ = −
〈
∇ ·

(
1
2
B2v

)〉
−

〈
1
2
B2∇ · v

〉
+ 〈B · (B · ∇v)〉 − Qm.

(16)
Here, K̇ and Ṁ are the time derivatives of the volume-
averaged kinetic and magnetic energies, respectively. The time
derivative of the volume-averaged gravitational potential energy
is given by Ġ, and Qk and Qm are the volume-averaged
kinetic and magnetic energy dissipation rates, respectively. The
gravitational potential is Φ = qΩ2

(L2
x

12 − x2
)
.

We determine Qk and Qm for select YN models by computing
the time average of each of the source terms in the energy
evolution equations using 200 data files equally spaced in time
over 20 orbits. We assume that Ġ is zero in the time average;
the analysis of Simon et al. (2009) found that Ġ is always
negligibly small. The time derivatives, K̇ and Ṁ , are calculated
by differentiating the volume-averaged kinetic and magnetic
energy history data with respect to time and then sampling these
data to the times associated with the data files. The dissipation
terms Qk and Qm, which include both physical and numerical
effects, are the remainder after all the other terms are calculated.

Figure 8 shows the ratio of the time average 〈Qk〉 to 〈Qm〉
as a function of Pm and α for selected YN runs. The colors
and symbols are the same as in Figure 6. The time average is
calculated from t = 70–90 orbits for YNRe400Pm16 (black
X) and YNRe12800Pm0.25 (blue circle), t = 110–130 orbits
for YNRe800Pm2 (green diamond) and YNRe800Pm8 (black

� = 100

↵ = ↵(Pm,�, topology)

• Weaker transport with a mean toroidal field

• Same trend with Pm

No. 1, 2009 VISCOUS AND RESISTIVE EFFECTS ON THE MRI WITH A NET TOROIDAL FIELD 839

dimensionless stress, where the time average is calculated on-
ward from orbit 50.

The column labeled “〈〈Λ〉〉” gives a time- and volume-
averaged Λ value in the final state of each simulation. Unlike
Rm, Λ will change with the evolving magnetic field strength.
Beginning with Equation (10), we write

β = 2c2
s 〈ρ〉

〈B2〉
(12)

to give

〈Λ〉 = Rm

c2
s

〈B2〉
〈ρ〉

, (13)

where the angled brackets denote a volume average. One could
also volume average the square of the Alfvén speed in the
calculation of β instead of averaging B2 and ρ separately (e.g.,
β = 2c2

s /〈v2
A〉). We have calculated 〈Λ〉 using both types of

averages for several frames in the saturated state of a few
simulations. We have found at most a factor of 2 difference
between the different calculations. Since 〈B2〉 varies by a similar
factor in the saturated state (see Figure 4), this factor of 2
difference is within the uncertainty of Λ at any given time. The
time average of the volume-averaged Elsasser number, 〈〈Λ〉〉,
as given in the table, is calculated from orbit 50 until the end
of the simulation. For the decayed turbulence simulations in
which the turbulence has not fully decayed by orbit 50, the
time average is calculated onward from a point at which the
volume-averaged magnetic energy is constant in time. Note that
for these decayed turbulence simulations, 〈〈Λ〉〉 should equal the
β = 100 value associated with the net toroidal field, as given
in Table 2. However, because of the evolution of the net By (see
Section 2), the value of 〈〈Λ〉〉 after the turbulence has decayed
will be slightly different than the β = 100 value.

Since the magnetic field varies within the domain, the local
value of Λ can also vary from the overall average. Histograms
showing the number of grid zones with v2

A of a certain value
reveal that the percentage of grid zones that have Λ < 1 is at
most ∼0.01%. For the sustained turbulence models, 〈〈Λ〉〉 is
typically on the order of 100–1000; the smallest value for a run
with sustained turbulence is 106, and the largest value associated
with a run that decays is 30.

The behavior of the MRI is often characterized by the
vertical component of the Alfvén speed, and as such, we have
also calculated the Elsasser number using only the vertical
component of the magnetic field,

〈Λz〉 = Rm

c2
s

〈B2
z 〉

〈ρ〉
, (14)

where the angled brackets denote a volume average. We have
calculated the time average of this number, 〈〈Λz〉〉, onward from
orbit 50 for all the sustained turbulence YN simulations. This
number is displayed in the last column of Table 3. The decayed
turbulence simulations have Bz approaching zero, and we do not
calculate a vertical Elsasser number for these. Again, we cal-
culated the vertical Elsasser number both by averaging B2

z and
ρ separately as well as by averaging the ratio B2

z /ρ. We com-
pared the two calculations for several frames and found at most
a factor of 1.3 difference between them.

The 〈〈Λz〉〉 values for the runs that have Rm closest to the
critical value are on the order unity, with the smallest value
being 3.87. As touched upon by Fleming et al. (2000), growth
of the vertical field MRI is largely suppressed for v2

Az/(ηΩ) ! 1

Figure 4. Time evolution of volume-averaged magnetic energy density normal-
ized by the gas pressure for the YN runs with Re = 25600 (black curve) and
Re = 1600 (colored curves). The volume average is calculated over the entire
simulation domain. The colors indicate Pm; green corresponds to Rm = 800
(Pm = 0.5), light blue to Rm = 1600 (Pm = 1), red to Rm = 3200 (Pm = 2),
and dark blue to Rm = 6400 (Pm = 4). Increasing Rm (Pm) leads to enhanced
turbulence.
(A color version of this figure is available in the online journal.)

(i.e., for vertical Elsasser numbers less than unity). That we
find 〈〈Λz〉〉 ∼ 1 close to the “decayed turbulence” regime
may suggest that the vertical field MRI plays an important
role in the sustained nonlinear turbulence of these toroidal
field simulations. One trend to note from these data is that
the ratio of 〈〈Λz〉〉 to 〈〈Λ〉〉 increases with both decreasing ν
and decreasing η; the vertical magnetic energy becomes a larger
fraction of the total magnetic energy as either dissipation term is
reduced.

The evolution of the magnetic energy in a typical set of
simulations is shown in Figure 4. For these runs, Re = 1600
and Rm varies by factors of 2 from Rm = 800 to 6400.
The black line shows the initial evolution of YLRe25600Pm4,
whose state at 36 orbits serves as the initial condition. It is
clear that decreasing the resistivity (increasing the Pm number)
enhances the saturation level, and for a large enough resistivity,
the turbulence decays.

To quantify the dependence of the saturation amplitude on the
dissipation coefficients, we plot the α values for the ensemble
of simulations as a function of Re, Rm, and Pm. Figure 5 shows
α versus Rm; the color indicates Re value, and the symbols
correspond to the Pm value. The simulations with α = 0 are
those where the turbulence decayed away, which include all
simulations with Rm " 800 and the Re = 400, Rm = 1600
simulation. Overall there is a general trend of increasing α value
with decreasing resistivity.

The dependence of α on Re is shown in Figure 6. Here, the
color indicates the Rm value, whereas Pm is again represented by
a symbol. Evidently, if the resistivity is low enough, increasing
the viscosity will increase the α values. However, consider the
YN simulations with Rm = 1600. These simulations suggest
that if the resistivity is close to some critical value, increasing
the viscosity will cause the turbulence to decay. Another
feature of note is that as Re increases, the range of α for
different Rm values becomes smaller, and α appears to converge
to ∼0.02–0.04 for all Rm. This could indicate that as ν
and η decrease, their influence on the turbulence level might
decrease. However, for large values of Re or Rm, the dissipation
lengthscales are under-resolved, and higher resolution is needed
to test this possibility.

We plot the dependence of α on Pm in Figure 7. In this figure,
the colors represent varying Rm, while the symbols denote
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Fig. 11. Summary of the state (turbulent or not) of the flow in an (Re,Pm) plane (left panel) and in an (Re,ReM) plane (right panel) for the
models presented in this paper. In the later, the dashed line represents the Pm = 1 case. On both panels, “YES” means that a non vanishing
transport coefficient α was measure while “NO” means that MHD turbulence eventually decays: α = 0. All cases use a resolution (Nx,Ny, Nz) =
(128, 200, 128), except the models appearing in a solid squared box, for which the resolution was doubled. The model appearing in a dashed line
squared box corresponds to the marginal model described in Fig. 7.

Fig. 12. Snapshots of By in the (x, z) plane at time t = 66 in
model 256Re12500Pm2. The structure of the flow and the typical length
scale of the fluctuations are similar to that obtained in model STD128 in
Paper I (see the middle panel of Fig. 4 in Paper I with which the present
figure should be compared).

Paper I, we found a time averaged value Ly(By) = 0.045, very
close to the value 0.04 we obtained for model STD128.

It is also possible to compare the results of model STD64
of Paper I to the results of the present paper. We recall here
that we found the rate of angular momentum transfer in this
model to be such that α ∼ 0.004 when time averaged over
the simulation. For model STD64, we estimated in Paper I that
ReM ∼ 104 and a similar value for the magnetic Prandtl num-
ber as for model STD128. This would correspond to Reynolds
number somewhat smaller than 10 000. In the present paper,
we found that α ∼ 0.01 for model 128Re3125Pm4, for which
Re = 3125 and Pm = 4, while model 128Re3125Pm2, hav-
ing Re = 3125 and Pm = 2 was shown to decay. It is there-
fore tempting to identify model STD64 with a model that would
be intermediate between the last two cases. Using the PENCIL
code, we ran such a model, having Re = 3125 and Pm = 3, and
found α = 0.007 which is close to the result of model STD64.

We want to stress, however, that it would be dangerous to
push such comparisons further than that. Indeed, we demon-
strated in Paper I that numerical dissipation generally departs
from a pure Laplacian dissipation in ZEUS. Moreover, we
stressed in Paper I that an accurate estimate for the magnetic
Prandtl number is difficult to obtain for a given simulation, as it
depends on the nature of the flow itself. A one to one compari-
son between the results of Papers I and II is therefore difficult to
carry and may not bear much significance.

5.2. Small scales

The results of this paper together with Paper I indicate the impor-
tance of flow phenomena occurring at the smallest scales avail-
able in a simulation, at least at currently feasible resolutions. In
fact the importance of small scales determined by the transport
coefficients is not unexpected when one considers previous work
on the maintenance of a kinematic magnetic dynamo.

Although a kinematic dynamo considers only the induction
equation with an imposed velocity field, some issues arising in
that case may be relevant, especially if one wishes to consider
the likely behaviour of turbulence driven by the MRI when the
transport coefficients are reduced to very small values.

If a dynamo is to be maintained in a domain such as a shear-
ing box with no net flux, one would expect that the magnitude of
a magnetic field could be amplified from a small value through
the action of some realised velocity field. Furthermore if such an
amplification occurs within a specified time scale and for arbi-
trarily small resistivity, it would be classified as a fast dynamo.
In the special case when the imposed velocity field is stationary
Moffatt & Proctor (1985) have shown that the field produced by
such a dynamo must have a small spatial scale determined by
the resistivity. A well known example of this type is generated
by the so called “ABC” flow (see Teyssier et al. 2006, and ref-
erences therein). This example also shows that certain quantities
such has the growth rate of the dynamo do not have a simple de-
pendence on magnetic Reynolds number when that is relatively
small and thus caution should be exercised in making any simple
extrapolation.

Although the case of a steady state velocity field is rather
special, the result can be very easily seen to hold more generally

Pm < 2
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• Similar behaviour in the limit of small Pm ?
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(a) (b)

Figure 1. (a) Growth/decay rate of 〈|B|2〉 versus Pm for five values of Rm
(Rm ∼ 60: run a0 and series H0; Rm ∼ 110: series A and HA; Rm ∼ 230: series
B and HB; Rm ∼ 450: series C and HC; Rm ∼ 830: series D and HD). The round
points were obtained using the code written by J Maron, the square points using the
code written byA Iskakov. The unit of the growth rate is approximately one inverse
turnover time at the outer scale (the precise units of time are set by ε = 1 and
the box size = 1). (b) Growth/decay rates in the parameter space (Re, Rm). The
filled points correspond to runs with Laplacian viscosity, the empty ones to runs
with 8th-order hyperviscosity. The interpolated stability curves Rmc(Re) based
on the Laplacian and hyperviscous runs are shown separately. For comparison,
we also plot the Rmc(Re) curve obtained by Ponty et al (2006) for the turbulence
with a mean flow (see section 2.5 for discussion).

are shown in figure 2 and contrasted with similar snapshots for a run (C1) that has approximately
the same value of Rm $ 440 but Pm = 1 and in which the magnetic field exhibits a folded
structure characteristic of the fluctuation dynamo at Pm ! 1 (Brandenburg and Subramanian
2005, Schekochihin et al 2004b, Wilkin et al 2007).

Figure 1(b) presents the magnetic-energy growth/decay rates in the two-dimensional
parameter space (Re, Rm). We also include the growth/decay rates for the Pm ! 1 runs published
in Schekochihin et al (2004a) and (2004b) to give a complete picture of what is known about
the dependence γ(Re, Rm) (these runs are not shown in tables 1 and 2). We are now able to
reconstruct the stability curve Rmc(Re): each point on the curve is a linear interpolation between
a decaying and a growing case (this is done separately for the Laplacian and hyperviscous runs).
We see that Rmc increases with Re, reaches a maximum around Rm(max)

c ∼ 350 and Re ∼ 3000,
and then decreases (rather sharply). We expect that

Rmc(Re) → Rm(∞)
c = const. as Re → ∞, (6)

again on the grounds that exactly where the viscous cutoff is cannot matter in this limit, but
we cannot as yet obtain the asymptotic value Rm(∞)

c . Discounting the unlikely possibility that
the stability curve has multiple extrema at larger Re, we expect the asymptotic value to be

New Journal of Physics 9 (2007) 300 (http://www.njp.org/)
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Fig. 12. Snapshots of By in the (x, z) plane at time t = 66 in
model 256Re12500Pm2. The structure of the flow and the typical length
scale of the fluctuations are similar to that obtained in model STD128 in
Paper I (see the middle panel of Fig. 4 in Paper I with which the present
figure should be compared).

Paper I, we found a time averaged value Ly(By) = 0.045, very
close to the value 0.04 we obtained for model STD128.

It is also possible to compare the results of model STD64
of Paper I to the results of the present paper. We recall here
that we found the rate of angular momentum transfer in this
model to be such that α ∼ 0.004 when time averaged over
the simulation. For model STD64, we estimated in Paper I that
ReM ∼ 104 and a similar value for the magnetic Prandtl num-
ber as for model STD128. This would correspond to Reynolds
number somewhat smaller than 10 000. In the present paper,
we found that α ∼ 0.01 for model 128Re3125Pm4, for which
Re = 3125 and Pm = 4, while model 128Re3125Pm2, hav-
ing Re = 3125 and Pm = 2 was shown to decay. It is there-
fore tempting to identify model STD64 with a model that would
be intermediate between the last two cases. Using the PENCIL
code, we ran such a model, having Re = 3125 and Pm = 3, and
found α = 0.007 which is close to the result of model STD64.

We want to stress, however, that it would be dangerous to
push such comparisons further than that. Indeed, we demon-
strated in Paper I that numerical dissipation generally departs
from a pure Laplacian dissipation in ZEUS. Moreover, we
stressed in Paper I that an accurate estimate for the magnetic
Prandtl number is difficult to obtain for a given simulation, as it
depends on the nature of the flow itself. A one to one compari-
son between the results of Papers I and II is therefore difficult to
carry and may not bear much significance.

5.2. Small scales

The results of this paper together with Paper I indicate the impor-
tance of flow phenomena occurring at the smallest scales avail-
able in a simulation, at least at currently feasible resolutions. In
fact the importance of small scales determined by the transport
coefficients is not unexpected when one considers previous work
on the maintenance of a kinematic magnetic dynamo.

Although a kinematic dynamo considers only the induction
equation with an imposed velocity field, some issues arising in
that case may be relevant, especially if one wishes to consider
the likely behaviour of turbulence driven by the MRI when the
transport coefficients are reduced to very small values.

If a dynamo is to be maintained in a domain such as a shear-
ing box with no net flux, one would expect that the magnitude of
a magnetic field could be amplified from a small value through
the action of some realised velocity field. Furthermore if such an
amplification occurs within a specified time scale and for arbi-
trarily small resistivity, it would be classified as a fast dynamo.
In the special case when the imposed velocity field is stationary
Moffatt & Proctor (1985) have shown that the field produced by
such a dynamo must have a small spatial scale determined by
the resistivity. A well known example of this type is generated
by the so called “ABC” flow (see Teyssier et al. 2006, and ref-
erences therein). This example also shows that certain quantities
such has the growth rate of the dynamo do not have a simple de-
pendence on magnetic Reynolds number when that is relatively
small and thus caution should be exercised in making any simple
extrapolation.

Although the case of a steady state velocity field is rather
special, the result can be very easily seen to hold more generally

?

Zero net flux MRI
(Fromang et al. 2007)

Small scale dynamo
(Schekochihin et al. 2006)
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• Identify dynamo cycles and characterise their 
mechanism

• Turbulent transport can be described as a sum on 
these cycles
A systematic way to characterise the transport due 
to the MRI?

Herault et al. 2011
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PERIODIC MAGNETOROTATIONAL DYNAMO ACTION AS A . . . PHYSICAL REVIEW E 84, 036321 (2011)

Refs. [37,38]) with constant ky and kz wave numbers and
constant shearwise Lagrangian wave number k(0)

x is used to
represent the various fields in the sheared Lagragian frame.
The shearing of nonaxisymmetric perturbations in this model
is described using time-dependent Eulerian shearwise wave
numbers,

kx(t) = k(0)
x + kySt. (4)

This equation for the radial wave number provides an exact
description of the evolution of nonaxisymmetric waves with
initially leading polarization (k(0)

x ky < 0) into trailing waves
[kx(t) ky > 0, corresponding to a trailing spiral in cylindrical
geometry] under the action of shear.

An important comment is in order at this stage. If we were
to simply consider the evolution of a given initial set of such
waves, we would only be able to observe dynamics that decay
on long times. Indeed, the fate of all shearing waves is to evolve
into strongly trailing structures with ever smaller scale in x, and
such structures are extremely efficiently dissipated by viscous
and resistive processes (see, e.g., Refs. [39,40]). In order
to accommodate for possible physical interactions leading
to long-lived nonlinear dynamics in numerical shearing box
simulations, a procedure must therefore be used that leaves
open the possibility of physical generation and dynamical
evolution of new leading nonaxisymmetric structures in the
course of the simulations. The solution to this problem is
to regularly “remap” the basis of shearing waves used to
describe the various fields. At regular time intervals during the
simulations, the energy content of strongly trailing shearing
waves is set to zero, the corresponding basis vector is pruned
and replaced by a new shearing wave basis vector with strongly
leading wave number (see Ref. [41], Chap. 5, Sec. 4). If
the simulation is well resolved spatially (as is the case for
the results presented in this paper), the energy contained
into strongly trailing waves when they are pruned should be
negligible (as a result of their enhanced dissipation), and the
remap procedure should not therefore artificially affect the
dynamical evolution of the system in any significant way.
A way to check this is to compare the energy lost by this
procedure with the energy dissipated by viscous and resistive
diffusion. We always find that artificial energy losses are
negligible in SNOOPY for spatially well-resolved simulations
[42]. We also point out that the remap procedure does not
by itself inject energy into new leading waves but merely
provides room for them in the wave number grid. Finally,
we emphasize that all nonlinearities of the shearing sheet
MHD Eqs. (1)–(3), including nonlinear interactions between
all the shearing waves present at a given spatial resolution, are
retained in our numerical model. A standard pseudospectral
method with de-aliasing is used to compute all nonlinear terms
at each time step.

D. Newton’s method for computing nonlinear cycles

Newton’s method is a standard tool for computing nonlinear
coherent structures such as saddle points, traveling waves, or
nonlinear cycles in high-dimensional dynamical systems. In
recent years, the method has been applied successfully to the
three-dimensional Navier-Stokes equations for various wall-
bounded shear flows [21–24,27,28] and to the MHD equations
in Keplerian plane Couette flow [10]. For the purpose of this

study, we developed a new Newton solver called PEANUTS.
The solver makes use of the PETSC toolkit [43] and is based on
an efficient matrix-free Newton-Krylov algorithm particularly
well adapted to calculations for high-dimensional dynamical
systems such as those resulting from the discretization of
the three-dimensional partial differential equations of fluid
dynamics. It can be used to compute nonlinear equilibria,
traveling waves, and limit cycles for a variety of partial
differential equations. For a nonlinear cycle search, the code
minimizes ||X(T ) − X(0)||2/||X(0)||2, where X(t) is a state
vector containing all independent field components at time t ,
and T is a guess for the period [27]. An eigenvalue solver
based on the SLEPC toolkit [44] was implemented to compute
the stability of nonlinear states. The code was tested against
solutions to the Kuramoto-Sivashinsky equation [45] before
being implemented for the 3D MHD equations in the shearing
box, using SNOOPY as time integrator.

III. EXCITATION OF RECURRENT DYNAMICS

In this section we describe our strategy to approach a
nonlinear MRI dynamo cycle using DNS of the 3D MHD
equations in the shearing box. We first discuss in detail what
is the “minimal” set of initial conditions required to excite a
long-lived MRI dynamo in direct numerical simulations. We
then explain how smooth-enough pseudocyclic dynamics can
be excited at moderate Re and Rm with this kind of initial
conditions by varying the aspect ratio of the simulations and
by restricting the dynamics to an invariant subspace associated
with a natural symmetry of the original equations.

A. Devising a good initial guess for a Newton search

Previous work has demonstrated that instability-driven
dynamo action requires a dynamical interplay between a
“large-scale” axisymmetric, instability-supporting magnetic
field and perturbations unstable to nonaxisymmetric MHD
instabilities, whose amplification to nonlinear levels may gen-
erate an electromotive force (EMF) with the ability to sustain
the large-scale field [7–11,13,14,46]. The basic processes
thought to be responsible for MRI dynamo action are described
below and in Fig. 2. Let us focus on the time evolution of
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MRI waves
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Regeneration of MRI 
unstable fluctuations
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FIG. 2. (Color online) Suggested physical mechanism of the MRI
dynamo. Full arrows: main dynamo loop. Dashed arrows: nonlinear
regeneration of MRI-unstable fluctuations. The various colors are
used to identify the active modes taking part in the cyclic MRI dynamo
described in Fig. 5: red (top left box) and blue (top right box) denote
axisymmetric field components, different colors in the bottom boxes
denote successive nonaxisymmetric MRI waves.
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MRI simulations
Conclusion
How big is    -MRI ?

• It depends on the field strength

• It depends on the field topology

• It depends on the magnetic Prandtl number

↵

Overall, we don’t really know...

0 . ↵ . 10�1
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Outline
• Accretion disks and jets: what are they

• Accretion disks in nature

• Jets in nature

• The physics of accretion

• Turbulent disks

• Disk Instabilities

• The shearing box model

• The case of the MRI

• Outflows in disks

• Jet launching mechanisms

• MRI & disk winds

• disk wind stability
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Remember: disks and jets 
in nature

• Disks are very general in nature

• Almost all of them are associated to
powerful jets (with the notable 
exception of CVs)
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Launching a jet
• Blandford-Znajek: energy extracted by the magnetic field 

surrounding a rotating black hole (Blandford & Znajek 1977)

• X-wind: ejection from a reconnection point in the disk (Shu et 
al. 1994)

• Disk wind: ejection due to a magnetocentrifugal acceleration 
process in the disk (Blandford & Payne 1982)

• Stellar wind

central
object

Disk wind
X-wind
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Which Jet launching 
mechanism in young stars?

792 J. Ferreira et al.: Which jet launching mechanism(s) for T Tauri stars?

Fig. 3. Comparison of predicted specific angular momentum vs. poloidal velocities with observations of T Tauri microjets. Full and dashed curves
show expected theoretical relations for MHD disc and stellar winds (same as Fig. 2, on a linear scale). Plotted in symbols are jet kinematics
measured at distance z ! 50 AU in the DG Tau, RW Aur, and Th 28 jets. The infrared HH 212 jet is also shown for comparison. See text for more
details on how the data points and their associated error bars are computed.

(Testi et al. 2002) and transverse shift variations across and
along the jet are in excellent agreement with detailed pre-
dictions for a full MHD solution of an extended disc wind
(Pesenti et al. 2004).

Care must however be exercised as currently detected veloc-
ity shifts are close to the detection limit and are thus affected by
large uncertainties. Additional effects, such as intrinsic asym-
metric velocity structure in the flow and/or contamination by
entrained material, cannot be fully excluded. Detected velocity
shifts may therefore correspond only to upper limits to the true
jet azimuthal velocities. For example, tentative rotation signa-
tures reported by Woitas et al. (2005) in the bipolar RW Aur jet
appear to be in opposite sense to the disc rotation (Cabrit et al.
2006), and are thus likely only upper limits.

In Fig. 3, we plot the derived specific angular momen-
tum versus poloidal velocities for all of the above jets (except
LkHα321, for which inclination is unknown), with distinct sym-
bols for redshifted and blueshifted lobes. In this graph, we con-
sider only significant measurements obtained towards outer jet
streamlines at transverse distances d⊥ ≥ 20 AU from the jet axis,
as detailed modelling shows that more axial jet regions are heav-
ily affected by projection and beam dilution effects, leading to
severe underestimation of their azimuthal velocity (Pesenti et al.
2004). As a consequence, current observations are only probing
the launching radius re of the outer streamlines of the optical jet.
For the DG Tau microjet, we average velocity shifts and radial
velocities reported by Bacciotti et al. (2002) at d⊥ = 30 AU for
distances along the jet between 40 and 60 AU. For the RW Aur
microjet, we adopt the values of vφ and vp published by Woitas
et al. (2005, their Table 1). However, given the discrepancy be-
tween jet and disk rotation sense, we take these values as up-
per limits. For the Th 28 redshifted flow, we average velocity
shifts and radial velocities observed by Coffey et al. (2004) at
d⊥ = 34 AU in the [O ] 6300 Å and [S ] 6716, 6731 Å lines.
For the Th 28 blueshifted flow, we take the measurements at
d⊥ = 25 AU in the [N ] 6583 Å line.

Table 1 summarizes the adopted values of stellar mass, jet
inclination i, and vp and vφ at transverse distance d⊥ together
with their error bars. To place observed data points in Fig. 3,
we have taken into account a 10% (DG Tau, RW Aur) to 20%
(Th 28, HH 212) uncertainty on the value of the central stellar
mass.

4.2. Constraints on wind launching radii and magnetic lever
arms

Several general conclusions may be drawn from the comparison
of data points with model predictions in Fig. 3. (i) Dynamically
cold disc winds (with magnetic lever arms λ ≥ 50) are excluded
(in agreement with the conclusions of Garcia et al. 2001; Pesenti
et al. 2004), since they would predict rotation rates largely in
excess of what is observed; (ii) X-winds and stellar winds pre-
dict 10–100 times smaller angular momentum than suggested
by current tentative rotation signatures in TTS jets; (iii) if these
signatures indeed trace pure rotation in the jet material, then ex-
tended disc winds with re of !0.2 to 3 AU and moderate mag-
netic lever arm parameters λφ ! 4–18 (corresponding to “warm”
solutions) are needed. In particular, it is interesting to note that
most of the current measurements, including the upper limits in
the RW Aur jet, appear roughly compatible with the extended
MHD disc wind model with λ = 13 that fits (Pesenti et al. 2004)
the DG Tau jet dataset (thick curve in the figure).

The values of λφ and re inferred from comparison with disc
wind predictions using Eqs. (10) and (11) are listed in Table 1.
Although derived only from the most reliable subset among
available data (see previous section), they remain within the er-
ror bars of previously published estimates (Bacciotti et al. 2002;
Anderson et al. 2003; Coffey et al. 2004; Woitas et al. 2005).

We recall that if detected velocity shifts include other ef-
fects than rotation, they give only upper limits to the true jet
azimuthal velocities. The derived launching radii and magnetic
lever arms are then also upper limits to the true disc wind

Jets are rotating            disk winds are favoured

Ferreira et al. 2006
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Launching a jet
The Blandford & Payne launching mechanism

i

i > 30�

Launching a particle at rest from z=0 requires

i > 30�

Jet launching from accretion discs 1319

Figure 1. Contours of the effective potential experienced by matter that
is forced to rotate with the Keplerian angular velocity at radius r0. The
contour values are unequally spaced. Dotted contours correspond to values
lower than that of the saddle point.

Figure 2. The shearing sheet or local approximation. Coordinates x, y and
z are measured in the radial, azimuthal and vertical directions.

the equation of mass conservation:

∂ρ

∂t
+ ∇ · (ρu) = 0, (2)

the induction equation:

∂B
∂t

= ∇ × (u × B − η∇ × B), (3)

and the solenoidal condition:

∇ · B = 0. (4)

Here # = 1
2 $2(z2 −3x2) is the effective (tidal) potential in the local

approximation, which comes from expanding the sum of the grav-
itational and centrifugal potentials to second order in the distance
from the centre of the sheet. Also J = µ−1

0 ∇ × B is the electric
current density and Tij = ρν(ui,j + uj,i) + ρ(νb − 2

3 ν)uk,kδij is the
viscous stress tensor. We assume that the kinematic shear and bulk
viscosities ν and νb and the magnetic diffusivity η are uniform.

The hyperbolic contours of # in the xz plane agree with those
of the effective potential plotted in Fig. 1 close to the saddle point
and reproduce the critical inclination of 30◦. The reason for this

is of course that # is the effective potential experienced by matter
that is forced to rotate with the Keplerian angular velocity $ of the
reference point.

The basic state of the shearing sheet in the absence of magnetic
fields consists of the Keplerian shear flow u = − 3

2 $x ey together
with the hydrostatic density distribution ρ = ρ0exp (−z2/2H2),
where ρ0 is a constant and H = cs/$ is the isothermal scale height.
The departure from the basic Keplerian flow is denoted by v =
u + 3

2 $x ey .
This system of equations can be solved numerically in a finite

shearing box (e.g. Hawley, Gammie & Balbus 1995), in which case
shearing-periodic horizontal boundary conditions apply to the solu-
tion (to v rather than u), while various vertical boundary conditions
are permissible. The shearing box has been widely employed in
treatments of the magnetorotational instability (MRI) (Balbus &
Hawley 1998, and references therein), but has not been used for
studies of jet launching. [The recent work of Suzuki & Inutsuka
(2009) and Suzuki, Muto & Inutsuka (2010) finds mass loss from
the computational domain but does not consider the systematically
inclined fields relevant for the mechanism of Blandford & Payne
(1982).]

2.2 Vertical boundary conditions

For any choice of vertical boundary conditions at z = ±Z, and with
shearing-periodic horizontal boundary conditions, the horizontal
average over the box of Bz is independent of z and t, and is deter-
mined by the initial conditions. Within the local approximation, the
type of poloidal magnetic field configuration that is favourable for
jet launching consists of a uniform vertical field Bz together with
a radial field Bx that is odd in z and tends to a non-zero constant
at large z; this represents a field that is straight, inclined, current-
free and therefore force-free in the low-density gas at large |z| and
bends symmetrically as it passes through the disc, producing a radial
Lorentz force through the azimuthal current Jy (Fig. 3).

In this type of study, where a thin disc is to be connected to a
jet, the question arises of which quantities are determined by the
disc and which by the jet (see Ogilvie & Livio 2001, and references
therein). Efficient outflows pass through a slow magnetosonic point
not far above the surface of the disc and through an Alfvén point

Figure 3. Geometry of the poloidal magnetic field in the (x, z) plane that
is favourable for jet launching in the local approximation. The field lines
could equally well bend the other way.

C© 2012 The Author, MNRAS 423, 1318–1324
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Large scale magnetic configuration

i > 30�

• Ejection requires relatively inclined field lines (i>30°)

•  How is it sustained?
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Less magnetic diffusion

Lubow et al. 1994

• Need magnetic diffusion (so that matter can be accreted)

• Not too much ! (otherwise i=0°)
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Launching a jet
Global (2D) Self-similar solutions

Ferreira 1997

– 13 –

Fig. 1.— Left: self-collimated jets from a keplerian accretion disc, with streamlines (black
solid), contours of equal total velocity (white dashed) and density stratification in grayscale

(Ferreira (1997)). Right: sketch of the magnetic configuration leading to ”Reconnection X-
winds” above the magnetic neutral line. Arrows show the expected time-dependent plasma

motion (Ferreira et al. (2000)).
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Launching a jet
Global simulation (2.5 D) with magnetic diffusion

Zanni et al. 2007
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Condition of existence
Disk wind scenario

• Magnetic diffusion 

• Poloidal field at equipartition 

Refs: Ferreira 1997, Casse & Ferreira 2000, Zanni et al. 2007

↵M ⇠ 1
� ⇠ 1

Turbulence?

One need to understand the interplay 
between the MRI and jet launching 

mechanisms

Outflows in a shearing box
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Turbulent driven «evaporation»

•MRI with outflow boundary conditions

• «Escape» speed~sound speed

•No wind driving mechanism (matter 
ultimately falls back?)

Suzuki & Inutsuka (2009)

No. 1, 2009 DISK WINDS DRIVEN BY MRI L51

Figure 2. Time–height diagram of the mass flux, ρvz, normalized by ρ0cs . ρvz

is averaged on the x–y plane at each height, z (vertical axis). The unit of the
horizontal axis is the rotation period (2π/Ω0).

and lower boundaries. The mass fluxes near the surface regions
are highly time dependent with a quasiperiodic cycle of ∼ 5–10
rotations. Moreover, from z ∼ ±2H0 the mass fluxes direct to
the midplane, almost coinciding with the periodicities of the
outflow fluxes. In other words, the mass flows are ejected to
both upward and downward directions from “injection regions”
located at z ∼ ±2H0.

These features are consequences of the breakup of channel
flows (e.g., Sano & Inutsuka 2001; Sano et al. 2004). At
z ∼ ±2H0, the wavelength of the most unstable mode with
respect to MRI, λmax, is comparable with the scale height, H0.
In the region |z| > 2H0, λmax > H0; hence, it is stable against
MRI. In the region |z| < 2H0, smaller-scale turbulence develops
preferentially because λmax < H0. Therefore, at z ∼ ±2H0
the largest scale channel flows develop, and their breakup
by reconnections4 drives the mass flows to both upward and
downward directions. In the region |z| < 2H0, the gas pressure
largely dominates the magnetic pressure so that strong mass
flows cannot be driven by the magnetic force associated with
reconnections between small-scale turbulent fields. The periodic
oscillation of 1 Keplerian rotation time around the midplane is
the vertical (epicycle) motion.

Figure 3 presents the disk wind structure averaged over 200–
400 rotations. The variables are averaged on the x–y plane at each
z point. The top panel shows that the average outflow velocity
is nearly the sound speed at the upper and lower surfaces. The
second panel presents the structures of density and plasma β
value. The comparison of the final density structure (solid) with

4 We do not explicitly include the physical resistivity term in the calculation
shown in this Letter, and so the reconnections are due to the numerical effect
determined by the grid scale.

Figure 3. Time-averaged disk structure during t = 200–400 rotations. The
variables are also averaged on the x–y plane at each z grid. The top panel shows
vz/cs (solid), whereas the dotted line is the initial condition (vz/cs = 0). The
second panel presents density (solid; left axis) and plasma β (dashed; right axis),
in comparison with the initial condition (dotted; for both density and plasma β).
The third panel presents the magnetic energy, B2/4π . The dashed, solid, and
dotted lines correspond to the x-, y-, and z-components, and the y-component
shows both mean (thick) and fluctuation (thin) components. The bottom panel
illustrates the energy flux in units of ρ0(H0Ω)3. The solid and dotted lines are
the Poynting flux associated with the magnetic tension (−Bzδv⊥B⊥/4π ) and
the magnetic energy (B2

⊥vz/4π ). The dot-dashed line is the net energy flux
due to sound waves (δρδvzc

2
s : see the text). The dashed line is the term

concerning the potential energy (ρvzΦ). The circles are the “injection regions”
defined as the locations where the signs of −Bzδv⊥B⊥/4π change.

the initial hydrostatic structure (dotted) shows that the mass is
loaded up to the onset regions of outflows from z ≈ ±2H0. In
the wind region |z| ! 3H0, β is below unity; the disk winds
start to accelerate when the magnetic pressure dominates the
gas pressure.

z

� = 104—105
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MRI in a strongly magnetised 
& stratified box

!4 � !2[2 + 2(k · vA)2] + (k · vA)2
"
(k · vA)2 +

d⌦2

d lnR

#
= 0

MRI dispersion relation:

MRI is quenched when: k · vA =
p
3⌦

k ⇠ H1Assuming and using cs = ⌦H : �quench ⇠ 1

Geoffroy Lesur, Jonathan Ferreira and Gordon I. Ogilvie: The magnetorotational instability as a jet launching mechanism
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Fig. 2. Growth rates of the largest stratified MRI eigenmodes as a func-
tion of µ. These growth rates were deduced from eq. (18) in Latter et al.
(2010).

Although surprising at first sight, this result can be under-
stood using parasitic modes phenomenology. First, it should be
noted that the most unstable parasitic modes are usually Kelvin-
Helmoltz modes (Latter et al. 2009) growing on MRI modes.
The maximum growth rate of Kelvin-Helmoltz modes can be
estimated by the local vertical shear rate. If we consider a pri-
mary MRI mode of amplitude δv with a characteristic verti-
cal size δl, then the maximum growth rate of the secondary
mode is γS ∼ δv/δl. For the secondary mode to have an im-
pact on the MRI mode, we require γS " γ which implies
δv " δlγ. Moreover, following Latter et al. (2010), we have
δb ∼ Bz0δv/ΩH where δb is the magnetic perturbation of the
MRI mode and Bz0 is the mean vertical field. Therefore, the par-
asitic mode can destroy the MRI mode only if

δb" B0z
δl
H
γ

Ω
(9)

In our system, the MRI mode characteristic length δl, growth
rate γ and the mean field amplitude are all of the order of 1 (in
code units, see §2.1). This implies that parasitic modes will ap-
pear only when δb " 1. However, as it can be seen in fig. 1, the
outflow starts when δb ! 1, i.e. before parasitic modes could act
on the MRI mode. This result is due to the large magnetisation
used in these simulations: µ ! 1. This large magnetisation im-
plies the production of a large scale MRI mode whose growth
rate is of the order of the orbital time scale. This makes the out-
flow more favourable compared to secondary instabilities. On
the contrary, when the magnetisation is small, Dominant MRI
modes are found at smaller scale (large n, see fig. 2). In this case,
parasitic modes are favoured and a turbulent flow is obtained.

We should emphasize that the presence of an outflow does
not mean that parasitic instabilities are totally absent from this
picture. As we will show later (§4), solutions exhibiting an out-
flow are themself subject to parasitic-like instabilities. However,
these instabilities have nothing in common with the traditional
parasitic instabilities of MRI eigenmodes.

We have seen above that the evolution of a large scale MRI
mode in a strongly magnetised shearing box leads naturally to
the production of a magnetically-driven outflow. This steady
outflow is essentially one dimensional and can be described
by v(z), ρ(z),B(z). In the following we will concentrate on the
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Fig. 3. Streamlines (red dashed lines) and field lines (blue plain lines)
of our steady solution obtained at t = 95.

structure of this outflow: phenomenology, critical points, bound-
ary conditions and conserved quantities.

3.2. Outflow phenomenology
As we have shown above, the outflow is primarily produced
by the magnetic pressure gradient. The magnetic pressure be-
ing maximum at the “top” of the dic (z ∼ 1.5), it pushes up the
outflow at z > 2.0 but it also compresses the bulk of the disc.
An alternative view of this effect can be obtained looking at cur-
rents. The outflow is in this case due to horizontal currents which
are reversed at z ∼ 1.5. We typically have Jx > 0 and Jy > 0 in
the bulk of the disc whereas Jx < 0 and Jy < 0 in the atmo-
sphere z > 2. It is important to note that the outflow acceleration
can occur only if these currents are non zero. This remark jus-
tifies the absence of any outflow with “zero gradient” boundary
conditions (see §3.4).

It is of interest to put these outflow solutions in the context
of the Blandford & Payne (1982) disc wind paradigm. In this
model, the outflow is initiated by a magnetocentrifugal effect:
the poloidal magnetic field lines are considered as rigid wires
anchored in the bulk of the disc and fluid particles are allowed to
drift along these wires. If the field lines are sufficiently inclined
(typically more than 30◦ with respect to the vertical axis), then
the particle are azimuthally accelerated by the anchored field
lines. This leads to a centrifugal effect which ejects fluid par-
ticles along field lines. In this picture, the ejection is driven by
an exchange of angular momentum: angular momentum is taken
from the disc by the field line and it is then released in the ejected
material.

In order to compare this mechanism to outflow solutions
driven by MRI modes, we show on Fig. 3 the poloidal stream-
lines and field lines of such a solution. We first note that poloidal
streamlines and fieldlines are not aligned. This property is al-
lowed by the shearing box boundary conditions, but it physically
mean that magnetic flux is “accreted” toward the centre of the
disc2. In a more realistic model (cylindrical), such a state could
not be sustained for a long time because magnetic flux would
get accumulated at the disc centre, thereby modifying the disc
properties (especially its rotational profile). This is the princi-
ple motivation for the presence of a strong “magnetic diffusiv-
ity” in disc wind models, either assuming the presence of small
scale turbulence (Ferreira & Pelletier 1993), ambipolar diffusion

2 In a shearing box, the flux coming in the box through the x = +Lx/2
boundary condition is equal to the flux leaving the box through the
x = −Lx/2 boundary condition, making the magnetic field configura-
tion overall stationary. Such a solution is however very specific to the
shearing box and does not represent the general situation of an accretion
disc

4
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(

−s cos θ + 3
2

sin θ

)
G = u0 sin θ

dF

dz
, (15)

where vA = B0/
√

4πρ00 is the equilibrium Alfvén speed at the
mid-plane. The four functional equations can be satisfied if

F = − 1
Kh

dG

dz
, G = 1

K

dF

dz
, (16)

which together return the linear second-order ordinary differential
equation

d2F

dz2
+ K2 h F = 0, (17)

where the ‘vertical wavenumber’ K, a constant, is yet to be de-
termined. Note that equation (17) was also derived by Gammie &
Balbus (1994) (cf. their equation 23).

Equation (17) with suitable boundary conditions describes a
1D eigenvalue problem for the vertical MRI modes with K as
eigenvalue. Because h is always positive, the equation is in clas-
sical Sturm–Liouville form and so we are assured of a dis-
crete set of real eigenvalues {Kn} and eigenfunctions {Fn}. More-
over, the eigenfunctions are orthogonal under integration with
weight h (Arfken 1970). The solutions possess the symmetry
(Kn, Fn, Gn) → (−Kn, Fn, −Gn). Notice that the lowest-order
solution is trivial, K0 = 0 and F a constant, but this does not
correspond to the MRI.

The boundary condition comes from the requirement that the
Alfvén speed of the perturbation (vch

A )2 ∝ G2/h must never diverge.
Thus G (and hence dF/dz) must go to zero at the disc boundaries.
Solutions to equation (17) are computed in the following subsection
for various equilibria.

Returning to equations (12)–(15), the z functions factor out and
we are left with the unstratified incompressible, but discrete, dis-
persion relation of the MRI. Eliminating θ and u0 we get for a given
n mode

s4 +
(
$2 + 2v2

AK2
n

)
s2 + v2

AK2
n

(
v2

AK2
n − 3$2

)
= 0. (18)

If time and space are scaled by $−1 and H, respectively, the dis-
persion relation only depends on the two dimensionless quantities
β and n. Evidently, the basic physics of the MRI is shared at each
separate z, and the instability is not dramatically altered by the
stratification. Note that equation (18) was recovered in Gammie &
Balbus (1994) and Liverts & Mond (2009). In the latter it appears
in their equation (19), if one sets Kn = π (n+ 1/2)/&(−z0) in their
notation. To complete the description we need θ and u0, which can
be computed from

sin2 θ = −1
6

(
1 −

√

1 + 32
K2

nH
2

β

)
, (19)

u0 = 3$

2Kn

sin2 θ . (20)

The quantity u0/(H$) may be regarded as the Mach number of
the channel. Exactly as in the unstratified MRI, the fastest grow-
ing mode possesses the orientation angle nearest π/4, and the
flow speed is always sub-Alfvénic (GX94; LLB09). Finally, equa-
tion (19) yields a critical β below which there can be no MRI at
all: we find the critical value to be βc = (32/15)(K1H )2. Because
the longest mode (n = 1) will generally possess a wavenumber
K1 ! 1/H , we obtain βc ! 2. This is the well-known linear result
that instability is suppressed when the magnetic field (in fact, the
magnetic torsional stress) is too strong (Balbus & Hawley 1991). Of
course, this low-β regime is not relevant to our large-β non-linear
solutions.
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Figure 1. Eigenfunctions Fn and Gn of order n = 1, 2, 3, 4 and 10
computed numerically for the isothermal model of Section 2.4.2. The
functions are plotted with solid lines and are normalized so that the
maximum of |Gn| is 1. The corresponding wavenumbers are KnH =
1.1584, 2.0796, 2.9829, 3.8798 and K10H = 9.2239. The dashed lines
are the corresponding approximations of Section 2.4.3, using the Legendre
polynomials. The corresponding eigenvalues are 1.4142, 2.4495, 3.4641,
4.4641, 10.4881.

2.4 Examples

2.4.1 Unstratified disc

The unstratified theory (Balbus & Hawley 1991; GX94) is recovered
by setting h = 1 and sending the vertical boundary conditions to
positive and negative infinity. Equation (17) is then the harmonic
oscillator equation, and

F = sin(Kz). (21)

Because the boundary conditions have been dropped, the vertical
wavenumber K is a free parameter, and because H has disappeared
from the problem, the plasma β has as well. Equation (21) also
corresponds to the ‘local’ (WKBJ) solution of (17), which assumes
that the eigenfunction varies on scales much shorter than H.

2.4.2 Isothermal disc

The isothermal ideal gas equation of state is P = c2
s ρ, where cs is the

constant sound speed. This yields a Gaussian equilibrium density
stratification: h = exp[−z2/(2H 2)], with H = cs/$. In this case
the eigenvalue equation cannot be solved analytically. But it is a
straightforward task to compute the eigenfunctions using a pseudo-
spectral method. We solve for G rather than F as it decays as |z| →
∞ and so we can employ a basis of Whitakker cardinal functions
(Boyd 2001; also see Section 4.4).3 MRI channel eigenfunctions
are plotted in Fig. 1 for n = 1 to 4 and n = 10.

As is clear, the MRI flow resembles a vertical sequence of planar
‘channels’ or ‘jets’. The centre of each jet corresponds to a magnetic
null surface. This is a general result which follows from the second

3The numerical script that solves the isothermal eigenproblem is available
on email request.

C© 2010 The Authors. Journal compilation C© 2010 RAS, MNRAS 406, 848–862
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Outflow streamline configuration
Geoffroy Lesur, Jonathan Ferreira and Gordon I. Ogilvie: The magnetorotational instability as a jet launching mechanism
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Fig. 2. Growth rates of the largest stratified MRI eigenmodes as a func-
tion of µ. These growth rates were deduced from eq. (18) in Latter et al.
(2010).

Although surprising at first sight, this result can be under-
stood using parasitic modes phenomenology. First, it should be
noted that the most unstable parasitic modes are usually Kelvin-
Helmoltz modes (Latter et al. 2009) growing on MRI modes.
The maximum growth rate of Kelvin-Helmoltz modes can be
estimated by the local vertical shear rate. If we consider a pri-
mary MRI mode of amplitude δv with a characteristic verti-
cal size δl, then the maximum growth rate of the secondary
mode is γS ∼ δv/δl. For the secondary mode to have an im-
pact on the MRI mode, we require γS " γ which implies
δv " δlγ. Moreover, following Latter et al. (2010), we have
δb ∼ Bz0δv/ΩH where δb is the magnetic perturbation of the
MRI mode and Bz0 is the mean vertical field. Therefore, the par-
asitic mode can destroy the MRI mode only if

δb" B0z
δl
H
γ

Ω
(9)

In our system, the MRI mode characteristic length δl, growth
rate γ and the mean field amplitude are all of the order of 1 (in
code units, see §2.1). This implies that parasitic modes will ap-
pear only when δb " 1. However, as it can be seen in fig. 1, the
outflow starts when δb ! 1, i.e. before parasitic modes could act
on the MRI mode. This result is due to the large magnetisation
used in these simulations: µ ! 1. This large magnetisation im-
plies the production of a large scale MRI mode whose growth
rate is of the order of the orbital time scale. This makes the out-
flow more favourable compared to secondary instabilities. On
the contrary, when the magnetisation is small, Dominant MRI
modes are found at smaller scale (large n, see fig. 2). In this case,
parasitic modes are favoured and a turbulent flow is obtained.

We should emphasize that the presence of an outflow does
not mean that parasitic instabilities are totally absent from this
picture. As we will show later (§4), solutions exhibiting an out-
flow are themself subject to parasitic-like instabilities. However,
these instabilities have nothing in common with the traditional
parasitic instabilities of MRI eigenmodes.

We have seen above that the evolution of a large scale MRI
mode in a strongly magnetised shearing box leads naturally to
the production of a magnetically-driven outflow. This steady
outflow is essentially one dimensional and can be described
by v(z), ρ(z),B(z). In the following we will concentrate on the
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Fig. 3. Streamlines (red dashed lines) and field lines (blue plain lines)
of our steady solution obtained at t = 95.

structure of this outflow: phenomenology, critical points, bound-
ary conditions and conserved quantities.

3.2. Outflow phenomenology
As we have shown above, the outflow is primarily produced
by the magnetic pressure gradient. The magnetic pressure be-
ing maximum at the “top” of the dic (z ∼ 1.5), it pushes up the
outflow at z > 2.0 but it also compresses the bulk of the disc.
An alternative view of this effect can be obtained looking at cur-
rents. The outflow is in this case due to horizontal currents which
are reversed at z ∼ 1.5. We typically have Jx > 0 and Jy > 0 in
the bulk of the disc whereas Jx < 0 and Jy < 0 in the atmo-
sphere z > 2. It is important to note that the outflow acceleration
can occur only if these currents are non zero. This remark jus-
tifies the absence of any outflow with “zero gradient” boundary
conditions (see §3.4).

It is of interest to put these outflow solutions in the context
of the Blandford & Payne (1982) disc wind paradigm. In this
model, the outflow is initiated by a magnetocentrifugal effect:
the poloidal magnetic field lines are considered as rigid wires
anchored in the bulk of the disc and fluid particles are allowed to
drift along these wires. If the field lines are sufficiently inclined
(typically more than 30◦ with respect to the vertical axis), then
the particle are azimuthally accelerated by the anchored field
lines. This leads to a centrifugal effect which ejects fluid par-
ticles along field lines. In this picture, the ejection is driven by
an exchange of angular momentum: angular momentum is taken
from the disc by the field line and it is then released in the ejected
material.

In order to compare this mechanism to outflow solutions
driven by MRI modes, we show on Fig. 3 the poloidal stream-
lines and field lines of such a solution. We first note that poloidal
streamlines and fieldlines are not aligned. This property is al-
lowed by the shearing box boundary conditions, but it physically
mean that magnetic flux is “accreted” toward the centre of the
disc2. In a more realistic model (cylindrical), such a state could
not be sustained for a long time because magnetic flux would
get accumulated at the disc centre, thereby modifying the disc
properties (especially its rotational profile). This is the princi-
ple motivation for the presence of a strong “magnetic diffusiv-
ity” in disc wind models, either assuming the presence of small
scale turbulence (Ferreira & Pelletier 1993), ambipolar diffusion

2 In a shearing box, the flux coming in the box through the x = +Lx/2
boundary condition is equal to the flux leaving the box through the
x = −Lx/2 boundary condition, making the magnetic field configura-
tion overall stationary. Such a solution is however very specific to the
shearing box and does not represent the general situation of an accretion
disc

4

✤ Streamlines inclination~30° (Satisfies Blandford & Payne criterion)
✤ Poloidal v and B not aligned            magnetic flux is advected.
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Angular momentum conservation

• Angular momentum conservation equation reads:

• «Effective» angular momentum conserved along a 
streamline

• Demonstrates the magnetocentrifugal effect is 
driving the outflow

Geoffroy Lesur, Jonathan Ferreira and Gordon I. Ogilvie: The magnetorotational instability as a jet launching mechanism
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Fig. 2. Growth rates of the largest stratified MRI eigenmodes as a func-
tion of µ. These growth rates were deduced from eq. (18) in Latter et al.
(2010).

Although surprising at first sight, this result can be under-
stood using parasitic modes phenomenology. First, it should be
noted that the most unstable parasitic modes are usually Kelvin-
Helmoltz modes (Latter et al. 2009) growing on MRI modes.
The maximum growth rate of Kelvin-Helmoltz modes can be
estimated by the local vertical shear rate. If we consider a pri-
mary MRI mode of amplitude δv with a characteristic verti-
cal size δl, then the maximum growth rate of the secondary
mode is γS ∼ δv/δl. For the secondary mode to have an im-
pact on the MRI mode, we require γS " γ which implies
δv " δlγ. Moreover, following Latter et al. (2010), we have
δb ∼ Bz0δv/ΩH where δb is the magnetic perturbation of the
MRI mode and Bz0 is the mean vertical field. Therefore, the par-
asitic mode can destroy the MRI mode only if

δb" B0z
δl
H
γ

Ω
(9)

In our system, the MRI mode characteristic length δl, growth
rate γ and the mean field amplitude are all of the order of 1 (in
code units, see §2.1). This implies that parasitic modes will ap-
pear only when δb " 1. However, as it can be seen in fig. 1, the
outflow starts when δb ! 1, i.e. before parasitic modes could act
on the MRI mode. This result is due to the large magnetisation
used in these simulations: µ ! 1. This large magnetisation im-
plies the production of a large scale MRI mode whose growth
rate is of the order of the orbital time scale. This makes the out-
flow more favourable compared to secondary instabilities. On
the contrary, when the magnetisation is small, Dominant MRI
modes are found at smaller scale (large n, see fig. 2). In this case,
parasitic modes are favoured and a turbulent flow is obtained.

We should emphasize that the presence of an outflow does
not mean that parasitic instabilities are totally absent from this
picture. As we will show later (§4), solutions exhibiting an out-
flow are themself subject to parasitic-like instabilities. However,
these instabilities have nothing in common with the traditional
parasitic instabilities of MRI eigenmodes.

We have seen above that the evolution of a large scale MRI
mode in a strongly magnetised shearing box leads naturally to
the production of a magnetically-driven outflow. This steady
outflow is essentially one dimensional and can be described
by v(z), ρ(z),B(z). In the following we will concentrate on the
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Fig. 3. Streamlines (red dashed lines) and field lines (blue plain lines)
of our steady solution obtained at t = 95.

structure of this outflow: phenomenology, critical points, bound-
ary conditions and conserved quantities.

3.2. Outflow phenomenology
As we have shown above, the outflow is primarily produced
by the magnetic pressure gradient. The magnetic pressure be-
ing maximum at the “top” of the dic (z ∼ 1.5), it pushes up the
outflow at z > 2.0 but it also compresses the bulk of the disc.
An alternative view of this effect can be obtained looking at cur-
rents. The outflow is in this case due to horizontal currents which
are reversed at z ∼ 1.5. We typically have Jx > 0 and Jy > 0 in
the bulk of the disc whereas Jx < 0 and Jy < 0 in the atmo-
sphere z > 2. It is important to note that the outflow acceleration
can occur only if these currents are non zero. This remark jus-
tifies the absence of any outflow with “zero gradient” boundary
conditions (see §3.4).

It is of interest to put these outflow solutions in the context
of the Blandford & Payne (1982) disc wind paradigm. In this
model, the outflow is initiated by a magnetocentrifugal effect:
the poloidal magnetic field lines are considered as rigid wires
anchored in the bulk of the disc and fluid particles are allowed to
drift along these wires. If the field lines are sufficiently inclined
(typically more than 30◦ with respect to the vertical axis), then
the particle are azimuthally accelerated by the anchored field
lines. This leads to a centrifugal effect which ejects fluid par-
ticles along field lines. In this picture, the ejection is driven by
an exchange of angular momentum: angular momentum is taken
from the disc by the field line and it is then released in the ejected
material.

In order to compare this mechanism to outflow solutions
driven by MRI modes, we show on Fig. 3 the poloidal stream-
lines and field lines of such a solution. We first note that poloidal
streamlines and fieldlines are not aligned. This property is al-
lowed by the shearing box boundary conditions, but it physically
mean that magnetic flux is “accreted” toward the centre of the
disc2. In a more realistic model (cylindrical), such a state could
not be sustained for a long time because magnetic flux would
get accumulated at the disc centre, thereby modifying the disc
properties (especially its rotational profile). This is the princi-
ple motivation for the presence of a strong “magnetic diffusiv-
ity” in disc wind models, either assuming the presence of small
scale turbulence (Ferreira & Pelletier 1993), ambipolar diffusion

2 In a shearing box, the flux coming in the box through the x = +Lx/2
boundary condition is equal to the flux leaving the box through the
x = −Lx/2 boundary condition, making the magnetic field configura-
tion overall stationary. Such a solution is however very specific to the
shearing box and does not represent the general situation of an accretion
disc
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Fig. 5. Angular momentum along one streamline computed according
to (21). The angular momentum is initially stored in the torooidal field
before being transferred to the flow.

However, as we will see later, this term is important only in the
bulk of the disc, so that the flux defined above will be approxi-
mately invariant along a streamline. Comparing this invariant to
the one defined in global geometry, we note the presence of a
new term in our case Bxv∗x/α. As shown before, this term de-
scribes the energy associated to the field lines being advected.
We will see later the role it plays in the ejection process.

We show the different terms involved in the Bernouilli in-
variant (23) on Fig. 6. One should note that magnetic con-
tribution are separated in two parts: (i) the conservative part
(Byv∗y − Bxv∗x)/α and (ii) the non-conservative part

∫

dl qΩρByv∗x
where the integral is computed along a streamline.

We first find that the invariant is approximately conserved for
z > 0.2. Initially (up to z ∼ 1.5) the energy is stored in the con-
servative component of the magnetic field. The non-conservative
part, is constantly decreasing, demonstrating that this term is
helping the outflow in the bulk of the disc. Higher in the out-
flow, the magnetic energy is converted into kinetic and potential
energy. Finally, we find that the thermal energy plays essentially
no role in the ejection energetics.

The fact that potential energy increases along a streamline
might look at first surprising since in a typical Blandford &
Payne (1982) situation, one would expect the potential energy
(gravitational+centrifugal) to decrease along a field line. This is
not the case here because the inclination angle of the outflowing
streamlines is slightly less than 30◦ (see §3.2).

3.6. Magnetisation dependency

In previous discussion, we kept a constant equivalent surface
density Σ by artificially injecting mass in the disc midplane.
This approximation, although partly motivated by the global
disc structure, should be tested more extensively. To do so, we
have performed simulations without mass injection. By defini-
tion these simulations cannot achieve a steady state. They are
however representative of an extreme case in which no mass is
coming from the outer disc.

It should first be pointed out that the outcome of these sim-
ulations depends strongly on the nature of the upper boundary
condition. This is because as the disc mass is loss, the Alfvén
point moves higher up in the atmosphere (see Fig 7). At some
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Conservative magnetic energy, EBnc: non-conservative magnetic energy.
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Critical points

• Critical points are points (planes) where vz is equal to a wave speed (slow 
magnetosonic, Alfvén and fast magnetosonic points)

• An outflow is fully determined by its launching conditions once it has crossed 
all the critical points

The MRI outflow is sub-fast: some quantities are boundary condition 
dependent.

L
By/
Total
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(Wardle &Königl 1993) or Hall and Ohm diffusion (Königl et al.
2010).

Despite this difference, we recover most of the phenomeno-
logical properties of the Blandford & Payne (1982) paradigm:
field lines are inclined and drive an outflow which is inclined to-
ward the same direction. This indicates that angular momentum
is exchanged between the field and the flow. As we will see be-
low (§3.5.3), angular momentum is effectively taken away from
the disc by the field and then released to the ejected material.
Because angular momentum is taken from the disc by the field,
a strong radial flow is produced which explains the streamlines
orientation for z < 1. Finally, we find an inclination angle of
∼ 40◦ for the poloidal magnetic field line and ∼ 25◦ for the
poloidal velocity field. This last value is very close to the critical
value of Blandford & Payne (1982).

3.3. Critical points

In principle, it is possible to look systematically for a steady 1D
solution of equations (1)—(3). This is done writing the equations
of motion in the formM · X = Y, where

M =













































vz 0 0 ρ 0 0
0 ρvz 0 0 −Bz 0
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whereM and Y are a matrix and a vector which do not contain
any spatial derivative. In order to solve this nonlinear system,
one then invert the above system of equation to get a set of ordi-
nary differential equationsX =M−1 ·Y. However, when a critical
point is reached,M is singular and the system cannot be inverted
anymore. In this case, the physical system needs to satisfy an ex-
tra condition in order to get through the critical point.

In the shearing box, we find six potential singular points:

– two slow magnetosonic points

v2z =
1
2

[

V2A + c
2 −
√

(V2A + c2)2 − 4c2V
2
Az

]

, (12)

– two Alfvén points

v2z = V
2
Az, (13)

– and two fast magnetosonic points

v2z =
1
2

[

V2A + c
2 +
√

(V2A + c2)2 − 4c2V
2
Az

]

, (14)

where VA =
√

B2/ρ and VAz = Bz/
√
ρ. In the following, thanks

to symmetries, we will only consider solutions with vz > 0 so
that only one critical point of each kind will be present.

We present the MHDwave speeds and flow speeds on Fig. 4.
We find that the slow point is located around z = 0.52 and the
Alfvén point if found at z = 2.47. The flow does not cross the fast
Alfvén point, however we find that the fast speed and the flow
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Fig. 4. Vertical velocity and MHD wave speeds for the fiducial outflow
solution at t = 60.

vertical speed tend do converge near the upper boundary condi-
tion. This result indicates that the flow is still causally connected
to the disc and therefore the boundary condition we impose at
the top of the box still has an impact on the flow structure itself.
This point will be discussed in the next section.

3.4. Influence of the upper boundary condition

We have seen above that the outflow was still physically con-
nected to the disc since it was not superfast. Moreover, it looks
as if the fast magnetosonic point is located close to the imposed
upper boundary condition. One might wonder what is the exact
role played by this boundary condition. In order to investigate
this issue, we have performed two kinds of test, either modifying
the altitude zB of the vertical boundary condition of modifying
the nature of the upper boundary condition we apply.

First, varying the altitude of the vertical boundary condi-
tion zB led to the results presented in Tab. 3.4. One find that
modifying the altitude of the boundary condition strongly mod-
ify the outflow properties. In particular, we find that increasing
the altitude of the boundary condition leads to a decrease in
the flow ejection rate. This evolution is accompanied by a slow
point moving closer to the midplane and an Alfvén point mov-
ing higher up in the atmosphere. This result clearly demonstrates
that because the flow has not crossed the fast Alfvén point, the
solution we obtain is still constrained by the boundary condition
we impose at zB. In all the solutions described in Tab. 3.4, we
have observed a “convergence” of the fast magnetosonic speed
and the flow speed when approaching zB, similarly to what we
find on Fig. 4. This surprising result tends to indicate that our
boundary conditions somehow force the fast point to be close to
the upper boundary conditions.

We have also tried to modify the nature of the upper bound-
ary conditions. First, instead of imposing Bx(zB) = 0, we have
imposed a fixed angle to the poloidal field, i.e. Bx(zB) = tan(θ)Bz
with θ = 30◦ ; 45◦. Surprisingly this did not modify strongly the
outflow solution we obtained: the field amplitudes are modified
by less than 5%. This can be explained by the fact that the in-
clination angle is set by crossing conditions at the Alfvén point
of the solution cite Ogilvie. Since the upper boundary condition
is in a super-Alfvénic region of the flow, forcing an inclination
angle do not have any impact on the sub-Alfvénic region which

5
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Mass loss rate
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Mass loss rate is boundary condition dependent !

Refs: Fromang et al. (2013), Lesur et al. (2013)
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MRI & Disk winds

For strong enough fields (               ) MRI modes spontaneously evolve into disk wind

• Driven by magneto-centrifugal acceleration à la Blandford & Payne (1982)

• Super-Alfvenic but sub-fast

Limitations (due to shearing box)

• Mass-loss rate depends on boundary conditions

• Magnetic field is dragged inward (unrealistic for a quasi steady solution)

• Is the outflow really escaping the system?

� . 10



02/27/2013The stability of accretion disks and windsGeoffroy Lesur

x (=R)y (=φ)

z

Outflow stability



02/27/2013The stability of accretion disks and windsGeoffroy Lesur

Long term evolution
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Fig. 10. Spacetime diagram of horizontally averaged quantities in a µ = 8 × 10−2 simulation. Top: log10(ρ), middle: poloidal magnetic field line
inclination with respect to the vertical axis(in ◦), bottom: vertical velocity.
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(see text).
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Outflow instability properties
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Fig. 14. Density fluctuations corresponding to the n = 4 eigenmode.
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the 1D solution corresponding to the final state of run 1DRef to
which a small amplitude (10−3) 3D white noise was added. Since
the growth phase of the instability implies only x-dependent
modes, we use a Fourier decomposition in the x direction to
characterise growing modes:

ρ = ρ0(z) + δρ(x, z) (24)

δρ(x, z) = "
[

∑

k

ρk(z) exp(ikx)
]

(25)

and similarly for v and B. In this expansion, we have assumed
the instability was growing on the top of the 1D solution ρ0(z)

given by the final state of run 1DRef. We first present the tem-

poral evolution of the fluctuation
√

δρ2 in Fig. 12. We find that
perturbations grow exponentially with a growth rate γ = 0.33Ω
up to t # 40 where a saturation is reached. To further inves-
tigate the behaviour of this instability, we present the temporal
evolution of maxx[|ρk(x)|] as a function of k on Fig. 13. As it
can readily be seen, the growth is dominated by modes having
n ≡ kLx/2π = 4 which is consistent with the 4 “spots” ob-
served in Fig. 11. The measured growth rate of this mode is
γ = 0.33Ω which explains its fast appearance in 3D simula-
tions once an outflow has formed. However, other neighbouring
modes are growing as well (n = 3; 5; 6) although not as fast as
the n = 4 mode. Finally once the n = 4 mode reaches large am-
plitudes (|ρk | ∼ 1), we note the sudden growth of the n = 8 and
n = 9 modes which are the result of nonlinear interactions of the
fastest growing modes n = 3; 4; 5; 6.

In order to analyse the physics underlying the n = 4 mode,
we present on Fig. 14 the density fluctuations corresponding
to that eigenmode. We first note that the density fluctuation is
highly localised in z around z ∼ 0.5. In addition, this eigenmode
has a tail whose inclination and shape closely follow that of the
outflow poloidal magnetic field (Fig. 3). The localisation of the
eigenmode is rather surprising and requires some explanation.
We first note that this localisation is much higher than the top
of the mass injection region (Hinj = 0.1). However, comparing
the relative vorticity component ωy = ∂zvx of the 1D outflow
(Fig. 15) to the vertical profile of the eigenmode (Fig 16), we find
that the density perturbation is localised close to a maximum of
ωy. This tends to suggest that this instability is somehow linked
to the vertical ωy profile of the outflow solution, and therefore to
a kind of Kelvin-Helmoltz driven solution. This potential link is
also consistent with the growth rate γ ! max(ωy) and with the
most unstable mode whose length scale H which is of the order
of the width of the vorticity peak.

We would like to stress that these remarks are not a proof
that this outflow instability is a of the Kelvin-Helmoltz type.
Among the effect we did not take into account in that analy-
sis are the magnetic field, compressibility and the presence of a
large vz up in the atmosphere. However, if we assume that the
source of the instability lies around z ∼ 0.5 as suggested by the
eigenmodes, then time scales, length scales and phenomenology
matches that of a Kelvin-Helmoltz instability. To ascertain these
claims, a proper linear study taking into account the complete
topological properties of the outflow are required, which is well
beyond the scope of this paper.

5. Appendix
Acknowledgements. Any of you fucking pricks move, and I’ll execute every
motherfucking last one of you.
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the 1D solution corresponding to the final state of run 1DRef to
which a small amplitude (10−3) 3D white noise was added. Since
the growth phase of the instability implies only x-dependent
modes, we use a Fourier decomposition in the x direction to
characterise growing modes:

ρ = ρ0(z) + δρ(x, z) (24)

δρ(x, z) = "
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]

(25)

and similarly for v and B. In this expansion, we have assumed
the instability was growing on the top of the 1D solution ρ0(z)

given by the final state of run 1DRef. We first present the tem-

poral evolution of the fluctuation
√

δρ2 in Fig. 12. We find that
perturbations grow exponentially with a growth rate γ = 0.33Ω
up to t # 40 where a saturation is reached. To further inves-
tigate the behaviour of this instability, we present the temporal
evolution of maxx[|ρk(x)|] as a function of k on Fig. 13. As it
can readily be seen, the growth is dominated by modes having
n ≡ kLx/2π = 4 which is consistent with the 4 “spots” ob-
served in Fig. 11. The measured growth rate of this mode is
γ = 0.33Ω which explains its fast appearance in 3D simula-
tions once an outflow has formed. However, other neighbouring
modes are growing as well (n = 3; 5; 6) although not as fast as
the n = 4 mode. Finally once the n = 4 mode reaches large am-
plitudes (|ρk | ∼ 1), we note the sudden growth of the n = 8 and
n = 9 modes which are the result of nonlinear interactions of the
fastest growing modes n = 3; 4; 5; 6.

In order to analyse the physics underlying the n = 4 mode,
we present on Fig. 14 the density fluctuations corresponding
to that eigenmode. We first note that the density fluctuation is
highly localised in z around z ∼ 0.5. In addition, this eigenmode
has a tail whose inclination and shape closely follow that of the
outflow poloidal magnetic field (Fig. 3). The localisation of the
eigenmode is rather surprising and requires some explanation.
We first note that this localisation is much higher than the top
of the mass injection region (Hinj = 0.1). However, comparing
the relative vorticity component ωy = ∂zvx of the 1D outflow
(Fig. 15) to the vertical profile of the eigenmode (Fig 16), we find
that the density perturbation is localised close to a maximum of
ωy. This tends to suggest that this instability is somehow linked
to the vertical ωy profile of the outflow solution, and therefore to
a kind of Kelvin-Helmoltz driven solution. This potential link is
also consistent with the growth rate γ ! max(ωy) and with the
most unstable mode whose length scale H which is of the order
of the width of the vorticity peak.

We would like to stress that these remarks are not a proof
that this outflow instability is a of the Kelvin-Helmoltz type.
Among the effect we did not take into account in that analy-
sis are the magnetic field, compressibility and the presence of a
large vz up in the atmosphere. However, if we assume that the
source of the instability lies around z ∼ 0.5 as suggested by the
eigenmodes, then time scales, length scales and phenomenology
matches that of a Kelvin-Helmoltz instability. To ascertain these
claims, a proper linear study taking into account the complete
topological properties of the outflow are required, which is well
beyond the scope of this paper.
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