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1 INTRODUCTION

ABSTRACT

In weakly collisional plasmas such as the intracluster medium (ICM), heat and momentum
transport become anisotropic with respect to the local magnetic field direction. Anisotropic
heat conduction causes the slow magnetosonic wave to become buoyantly unstable to the
magnetothermal instability (MTI) when the temperature increases in the direction of gravity
and to the heat-flux—driven buoyancy instability (HBI) when the temperature decreases in the
direction of gravity. The local changes in magnetic field strength that attend these instabilities
cause pressure anisotropies that viscously damp motions parallel to the magnetic field. In this
paper we employ a linear stability analysis to elucidate the effects of anisotropic viscosity (i.e.
Braginskii pressure anisotropy) on the MTI and HBI. By stifling the convergence/divergence
of magnetic field lines, pressure anisotropy significantly affects how the ICM interacts with
the temperature gradient. Instabilities which depend upon the convergence/divergence of
magnetic field lines to generate unstable buoyant motions (the HBI) are suppressed over
much of the wavenumber space, whereas those which are otherwise impeded by field-line
convergence/divergence (the MTI) are strengthened. As a result, the wavenumbers at which
the HBI survives largely unsuppressed in the ICM have parallel components too small to
rigorously be considered local. This is particularly true as the magnetic field becomes more
and more orthogonal to the temperature gradient. The field-line insulation found by recent
numerical simulations to be a non-linear consequence of the standard HBI might therefore be
attenuated. In contrast, the fastest growing MTI modes are unaffected by anisotropic viscosity.
However, we find that anisotropic viscosity couples slow and Alfvén waves in such a way as to
buoyantly destabilize Alfvénic fluctuations when the temperature increases in the direction of
gravity. Consequently, many wavenumbers previously considered MTI stable or slow growing
are in fact maximally unstable. We discuss the physical interpretation of these instabilities in
detail.

Key words: conduction — instabilities — magnetic fields — MHD — plasmas — galaxies:
clusters: intracluster medium.

that is warmer than its surroundings and so there is no restoring
buoyancy force, the fluid element continues to rise, and convective

The intracluster medium (ICM) is stratified, not only in pressure,
but also in entropy. Until recently, the latter was thought to be of
paramount importance to the ICM’s dynamical stability. The rea-
son for this is easy to understand. In an atmosphere where entropy
increases upwards, an upward adiabatic displacement of a fluid ele-
ment leaves the element cooler than its surroundings. A cool element
is denser (because of local pressure balance), so the buoyancy force
is restoring. If, on the other hand, the entropy were to decrease up-
wards, an upward adiabatic displacement produces a fluid element

*E-mail: kunz@thphys.ox.ac.uk

instability ensues (Schwarzschild 1958). Careful observations have
shown that the ICM generically has a positive entropy gradient (e.g.
Cavagnolo et al. 2009) and so, by this reasoning, is convectively
stable.

In fact, matters are not this simple. The ICM is not a conventional
fluid. First, it is magnetized. Secondly, particle—particle collisions
are rare. The conductive flow of heat consequently becomes strongly
anisotropic with respect to the local magnetic field direction, since
collisional energy exchange by (predominantly) the electrons can
occur much more readily along the magnetic field than across it.
The heat is then restricted to being channelled along magnetic lines
of force. When the conduction timescale is shorter than any other

© 2011 The Authors
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dynamical timescale in the system, magnetic field lines become
isotherms.

Such aradical change in the thermal behaviour of a weakly colli-
sional plasma profoundly alters its stability properties. Drawing on
the powerful analogy between angular momentum and entropy strat-
ification, Balbus (2000) argued that the temperature gradient takes
precedence over the entropy gradient in determining the convective
stability of a weakly collisional plasma. He supported this conjec-
ture with a linear stability analysis that proved the existence of the
magnetothermal instability (hereafter, MTI; Balbus 2000, 2001),
which is triggered in regions where the temperature (as opposed to
the entropy) increases in the direction of gravity. Subsequent nu-
merical work by Parrish & Stone (2005, 2007) and McCourt et al.
(2011) demonstrated the efficacy of the MTI and extended it into
the non-linear regime. Numerical studies of the effect of the MTI
on the evolution of the outer regions of non-isothermal galaxy clus-
ters, where the temperature decreases with distance from the central
core, followed soon thereafter (Parrish, Stone & Lemaster 2008).

In contrast, the inner ~200kpc or so of non-isothermal clus-
ters are characterized by outwardly increasing temperature profiles
(e.g. Piffaretti et al. 2005; Vikhlinin et al. 2005). Quataert (2008)
showed that the ICM in these inverted temperature profiles is also
buoyantly unstable to a heat-flux—driven instability, now referred
to as the HBI. The HBI arises because perturbed fluid elements
are heated/cooled by a background heat flux in such a way as to
become buoyantly unstable. Recently there has been a surge of nu-
merical efforts to understand the non-linear evolution of the HBI
and its implications for the so-called ‘cooling-flow problem’ exhib-
ited by cool-core clusters (Parrish & Quataert 2008; Bogdanovié
et al. 2009; Parrish, Quataert & Sharma 2009, 2010; Ruszkowski &
Oh 2010; Mikellides, Tassis & Yorke 2011; McCourt et al. 2011).

In this paper, we extend the work of Balbus (2000) and Quataert
(2008) to include the effects of pressure anisotropy (i.e. anisotropic
viscosity). We are motivated by the simple consideration that one
cannot self-consistently take the limit of fast thermal conduction
along magnetic field lines while simultaneously neglecting differ-
ences between the thermal pressure parallel and perpendicular to the
magnetic field direction. While the dynamical effects of pressure
anisotropy occur on a timescale longer than conduction, in weakly
collisional plasmas such as the ICM this timescale is nevertheless
still shorter than (or at least as short as) the dynamical timescale and,
as a consequence, the MTI and HBI growth times. Our principal re-
sult is that, by stifling the convergence/divergence of magnetic field
lines, pressure anisotropy significantly affects how the plasma in
the ICM interacts with the temperature gradient. Instabilities which
depend upon the convergence/divergence of magnetic field lines to
generate unstable buoyant motions (the HBI) are suppressed over
much of the wavenumber space, whereas those which are other-
wise impeded by field-line convergence/divergence (the MTI) are
strengthened. We also comment on how pressure anisotropy af-
fects the heat-flux—driven buoyancy overstability recently found by
Balbus & Reynolds (2010).

The paper is organized as follows. In Section 2, we motivate the
inclusion of pressure anisotropy in our picture of weakly collisional
buoyancy instabilities and provide a qualitative discussion of its
effects. Readers not interested in the mathematical details may read
this section and proceed immediately to the conclusions (Section 5).
In Section 3, we formulate the problem by presenting the basic
equations, linearizing them, and deriving the dispersion relation
governing small perturbations about a simple equilibrium state.
The solutions of this dispersion relation are examined in Section 4.
We conclude in Section 5 with a summary of our results and a brief

© 2011 The Authors, MNRAS 417, 602-616
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discussion of their implications for the structure and evolution of
the ICM.

2 PHYSICAL MOTIVATION AND
THEORETICAL EXPECTATIONS

The HBI and MTI operate most efficiently at sufficiently small
wavelengths for which the conduction rate is much greater than
the local dynamical frequency, i.e. Weona > wayn = (g/H)'* =
vw/H, where g is the gravitational acceleration, H is the thermal-
pressure scaleheight of the plasma, and vy, is the thermal speed of
the ions. This precludes the usual buoyant restoring force, which
would otherwise result in Brunt—Vaisala oscillations, by ensuring
magnetically tethered fluid elements communicate thermodynam-
ically much faster with one another than they do with the ambi-
ent medium. In weakly collisional environments such as the ICM,
this timescale separation is satisfied for a wide range of wavenum-
bers satisfying kj(AmipH)'/? > (me/m)'/* ~ 0.1, where k), is the
wavenumber along the magnetic field, A5 = vi/v; is the particle
mean free path between collisions, and v; is the ion—ion collision
frequency. Typical values of H/Ayg, in the ICM decrease outwards
from ~10° to ~10? in the cool cores of non-isothermal clusters,
and from ~10% to ~10 beyond the cooling radius out to ~1 Mpc.
It is important to note that, while the HBI and MTI owe their ex-
istence to rapid conduction along magnetic field lines, the unstable
perturbations themselves only grow at a rate ~wgy,. This is because
the free energy required to drive the instabilities is extracted from
the background temperature gradient, which is set by macroscale
processes, at a rate determined by gravity.

There is, however, another timescale that ought to be considered.
In a magnetized plasma, any change in magnetic field strength must
be accompanied by a corresponding change in the perpendicular
gas pressure, since the first adiabatic invariant for each particle
is conserved on timescales much longer than the inverse of the
ion cyclotron frequency (which is extremely short in the ICM; see
section 2.2 of Kunz et al. 2011). The resulting pressure anisotropy
is the physical effect behind what is known as Braginskii (1965)
viscosity — the restriction of the viscous damping (to dominant
order in the Larmor radius expansion) to the motions and gradients
parallel to the magnetic field.! This in turn implies that perturbations
in magnetic field strength are erased at the viscous damping rate
wyise (see equation 23). While wy;. is smaller than wo,g by a factor
~10 (see end of Section 3.3), and so it may be tempting to ignore
viscosity relative to conduction, wis is in fact much greater than
the growth rates of the MTI and HBI at most wavelengths at which
the latter are usually thought to operate in the ICM. Here we provide
a qualitative discussion of these effects.

The HBI relies on the presence of a background heat flux, which
may be tapped into by the convergence and divergence of conduct-
ing magnetic field lines. Downwardly displaced fluid elements find
themselves in regions where field lines diverge; they are conduc-
tively cooled via the background heat flux, lose energy, and sink
further down in the gravitational potential. As they sink, the local
field lines diverge further and an instability ensues. By contrast, an
upwardly displaced fluid element gains energy from the converg-
ing heat flux and thus buoyantly rises. Braginskii viscosity hinders

! Pressure anisotropy also leads to microscale plasma instabilities (e.g. see
Schekochihin et al. 2005, and references therein) but here we will consider
perturbations around equilibria that do not trigger those.
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Figure 1. HBI subject to Braginskii viscosity. The plasma is threaded by a
vertical magnetic field (dashed lines) and has a background heat flux in the
—z direction. A perturbation (black arrows) with non-zero &, and k; modifies
the field lines as illustrated (black curves). The heat flux, forced to follow the
perturbed field lines, converges and diverges, leading to heating and cooling
of the plasma. For a plasma with d7/dz > 0, a downwardly displaced fluid
element loses energy, causing it to sink deeper in the gravitational field (and
vice-versa for an upwardly displaced fluid element). The buoyancy force
responsible for this behaviour is denoted by the white solid arrows. The
pressure anisotropy, which is generated by motions along the background
field lines, contributes a Braginskii (viscous) force (denoted by the grey
solid arrows) that impedes this motion. For wavelengths such that wyjsc >
dyn, the two forces become nearly equal and opposite and the convergence
(divergence) of field lines responsible for the HBI is wiped away faster than
upwardly (downwardly) displaced fluid elements can take advantage of the
increased (decreased) heating.

the HBI by damping perturbations to the magnetic field strength
and thereby preventing convergence and divergence of field lines
(see Fig. 1). If wyisc > wqyn, the convergence (divergence) of field
lines responsible for the HBI is wiped away faster than upwardly
(downwardly) displaced fluid elements can take advantage of the
increased (decreased) heating. In fact, as we show in Section 4.1,
the buoyancy and viscous forces become nearly equal and opposite
when the background field is vertical and wyisc >> @qyn. If the fluid
element were to rise buoyantly, it would locally increase the mag-
netic field strength and generate a pressure anisotropy, which would
cause a viscous stress that damps the vertical motion and halts the
HBI. Pressure anisotropy can be therefore thought of as providing
an effective tension that ‘tethers’ a buoyant fluid element to its origi-
nal location, preventing it from rising. The only HBI modes to evade
strong suppression are those which have wavenumbers satisfying
Wyise S Wayn S Weond; these modes are not the same as those usually
thought to be the fastest growing.

Matters are slightly more complicated with the MTI, which owes
its existence to the alignment of isothermal magnetic field lines
with the background temperature gradient. It is this alignment that
allows a downwardly (upwardly) displaced fluid element always to
be cooler (warmer) than the surroundings it is passing through, even
as its temperature rises (falls). As the separation between magneti-
cally connected fluid elements grows, they take the magnetic field

lines with them, aligning these heat conduits ever more parallel to
the background temperature gradient and reinforcing fluid displace-
ments. There is a weak preference for perturbations whose wavevec-
tors are aligned with the background magnetic field; otherwise the
consequent convergence (divergence) of any background heat flux
would heat (cool) downwardly (upwardly) displaced fluid elements
(the exact opposite of what happens with the HBI), thereby under-
mining the destabilizing upward entropy transfer between magnet-
ically connected fluid elements.

One effect of pressure anisotropy is to reinforce this preference
by suppressing motions along field lines. Another potentially more
important effect is to destabilize many wave modes that were pre-
viously thought to be stable to the MTI. One example is shown
in Fig. 2. The panel on the top exhibits a mode that is stable to
the standard MTI: the destabilizing effect of generating a heat flux
along field lines is exactly offset by the stabilizing effect of con-
verging/diverging background heat flux. When Braginskii viscosity
is included and wyjsc >> wqyn, the same exact mode is unstable with
a growth rate ~wgy, (bottom panel). Any motion along the back-
ground magnetic field is rapidly damped and so the background heat
flux cannot interfere with the MTI. In regions where the background
heat flux converges in the x—z plane it diverges in the x—y plane, giv-
ing no net heat extraction. In effect, rapid Braginskii damping effec-
tively endows slow-mode perturbations (which are subject to buoy-
ancy forces) with Alfvénic characteristics (i.e. perturbed magnetic
fields and velocities that are pre-dominantly oriented perpendicular
to the background magnetic field).

In either case, the fundamental point is that Braginskii viscosity
always suppresses perturbations that acquire free energy from the
temperature gradient via a background heat flux (see equation 34).
This is generally bad for the HBI and good for the MTL. In the next
section, we formalize these qualitative expectations.

3 FORMULATION OF THE PROBLEM

3.1 Basic equations
The fundamental equations of motion are the continuity equation

dp

— =—pV -, 1
i o (D
the momentum equation

W_ 1y (p B _BE), )
@& p 8r  4m ) &

and the magnetic induction equation

dB

— =B-Vv— BV v, 3)
dt

where p is the mass density, v the velocity, B the magnetic field,
and g the gravitational acceleration; d/dr = 0/0f + v -V is the
convective (Lagrangian) derivative.

In the momentum equation (2), the sum of the ion and electron
pressures

P=p.l—(p.— ppbb )

is a diagonal tensor whose components perpendicular (p, ) and par-
allel (p)) to the background magnetic field direction b= B/B
are in general different. Differences between the perpendicular and
parallel pressure in a magnetized plasma arise from the conserva-
tion of the first and second adiabatic invariants for each particle on
timescales much greater than the inverse of the cyclotron frequency.
When the magnetic field strength and/or the density change, p, and

© 2011 The Authors, MNRAS 417, 602-616
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Figure 2. Top panel: a stable MTI mode, with Braginskii viscosity ignored,
viewed from the side (solid lines) and from above (dots and crosses). The
background magnetic field B (dashed lines) makes an angle of 45° with
respect to both gravity and the temperature gradient. The field is perturbed
with a wavevector that has equal components in the plane perpendicular
to gravity, as indicated by the vector k. The corresponding eigenvector has
3B, = 6By = 0. This mode is MTI stable because the destabilizing transfer of
entropy from one fluid to another is exactly offset by the stabilizing exchange
of entropy by the convergence/divergence of the background heat flux. Bot-
tom panel: the same mode becomes unstable when Braginskii viscosity is
self-consistently included. Rapid parallel viscous damping effectively ori-
ents the perturbed magnetic field nearly perpendicular to the background
field, thereby precluding any stabilization by the background heat flux. The
perturbed magnetic field has components in all three directions in order to
satisfy the divergence-free constraint (namely, §B; ~ By = —4B,).

p) change in different ways (Chew, Goldberger & Low 1956). For
example, conservation of the first adiabatic invariant u = mv’ /2B
implies that an increase in magnetic field strength must be accom-
panied by a corresponding increase in the perpendicular pressure,
p.1/B ~ constant.

When the collision frequency is larger than the rates of change of
all fields (i.e. v > d/dt) — a condition easily satisfied for buoyancy
instabilities in the ICM - it is straightforward to obtain an equation
for the pressure anisotropy (e.g. see Schekochihin et al. 2010 for a
simple derivation):

3pi d B 3pi (s 1
—-py=——Ih—x = bb : Vv — V. 5
PL p” v dr n 02/3 v ( v 3 v) ) ( )
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where p = (2/3)p, + (1/3)p), is the total plasma pressure.? To obtain

the final equality, we have used equations (1) and (3) to express the

rates of change of the magnetic field strength and density in terms

of velocity gradients. This is referred to as the Braginskii (1965)

anisotropic viscosity. The ion contribution to the Braginskii viscos-

ity dominates over that of the electrons by a factor ~(m;/m,)'/%.
We will also require an internal energy equation,

3 p d B A
EpalnﬁZ(PL—PH)EIHW—V'U’QL (6)
where

Q=—xb-VT M

is the collisional heat flux, T is the temperature, and y . is the thermal
conductivity of the electrons

Xe =6 x 1077 T3 ergem™ K7 (8)

the thermal conductivity of the ions is a factor ~(m./m;)'/> smaller
(Spitzer 1962).3 Equation (7) expresses the fact that, in the presence
of a magnetic field, heat is restricted to flow along magnetic lines of
force when the particle gyroradius is much smaller than the mean
free path between collisions (e.g. Braginskii 1965).

3.2 Background equilibrium and perturbations

For simplicity, we consider a plasma stratified in both density and
temperature in the presence of a uniform gravitational field in the
vertical direction, g = —gZ. The plasma is not self-gravitating, so
that g is a specified function of position. Without loss of generality,
the magnetic field is oriented along b = b, % + b.2. We take the
background pressure to be isotropic and T; = T, = T, so that p; =
pe = p/2. We further assume that the ratio of the ion thermal and
magnetic pressures is large:

Ly ©)
B? vi '
where vy, = (p/p)"/? = 2kgT/m;)'/? and vy = B/(47tp)'/? are the
thermal and Alfvén speeds of the ions, respectively. Observations
of synchrotron radiation, inverse Compton emission, and Faraday
rotation suggest a plasma 8 parameter that ranges from ~10? at the
centres of cool-core clusters to ~10* in the outermost regions of the
ICM (for a review, see Carilli & Taylor 2002). Force balance then
implies
dlnp g
dz v}’

(10)

so that the inverse of the ion sound-crossing time across a thermal
pressure scaleheight is equal to the dynamical frequency:

Wgn = (%) P )

H
In general b-vT # 0, and so there may be a heat flux in the
background state. In order to ensure our background state is in
equilibrium, we must formally assume b-VQ = 0. However, as

2 The numerical pre-factor in equation (5) depends on the exact form of the
collision operator used. A more precise numerical pre-factor is 3075/1068
~ 2.88 (e.g. Catto & Simakov 2004); the ion collision frequency is v; =
4\/?mie4Ai/3mil/2(kB 7})3/2, where A; is the ion Coulomb logarithm.

3 This assumes equal ion and electron temperatures, an assumption that may
not hold in the outermost regions of galaxy clusters.

4 Another approach (see Balbus & Reynolds 2010) is to construct an equi-
librium state in which conductive heating is balanced by radiative cooling.
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long as the timescale for the evolution of the background (global)
state is longer than the local dynamical time, our results do not
depend critically on the system actually being in global steady
state.

We allow perturbations (denoted by a §) about the background
state and order their amplitudes as follows:

sv  6p ST 1 6p 1 éB 1

T v~ 12
vw o T Mp B2 B B2 M (12

where M « 1 is the Mach number. This amounts to the Boussinesq
approximation (i.e. relative changes in the pressure are much smaller
than relative changes in the temperature or density). Sound waves
are then eliminated from the analysis and so the flow behaves as
though it were incompressible, a good approximation in the ICM
where typical velocities are much smaller than the sound speed.

The perturbations are taken to have space-time dependence
exp(ot + ik - r), where the growth rate 0 may be complex and
the wavevector k = k. % + k, y + k.Z. We order the timescales and
the spatial scales as follows:

O 7~ Wdyn ™ Weond ™ Wyisc ™ kvA ~ Mkvth ~ szia (13)
1 M

k~—— ~ 2 14

MH g (14)

The latter ordering means that the relevant wavelengths are interme-
diate between micro and macroscopic, viz. k(Amg,H)'/> ~ 1. Note
that we are formally treating (m./m;)'/ as a parameter of order unity
here — a subsidiary expansion with respect to it will be done later.
This completes the formulation of the problem.

3.3 Linearized equations

With account taken of the ordering introduced in Section 3.2, the
linearized versions of equations (1)—(3) and (5)—(7) are then

k-Sv=0, (15)
) 1486B §B )
o8y = —ikv2 (% + B?H) + ik, vi; —gi;p
. 3 k32 (16)
-b3 1% sy,
Vi
oéB =ik||B(3v, (17)
Sp 3d p 2i 5 A dr
— —v,——In—=—k-(b3Q —5bx.b,— |, 18
Gp v‘Sdznp5/3 5p ( o X 'dz) (18)
. dT .
830 = —xe (szd—z — Xe ik oT, (19)
) 8T
;P - (20)

where the subscript || denotes the vector component parallel to the
background magnetic field (e.g. k) = b-k)and 6b = 8B, /B isthe
perturbation of the unit vector b. Equation (20) expresses pressure
balance for the perturbations, a consequence of our low-Mach-
number ordering (equation 12). The total perpendicular pressure
perturbation 8p, in equation (16) is found by enforcing incom-
pressibility (equation 15).

The linearized entropy equation (18) deserves special attention.
The first term on the right-hand side is responsible for the MTL. If
the temperature increases in the direction of gravity, any alignment

between the perturbed magnetic field direction and the tempera-
ture gradient (8. # 0) is unstable as long as conduction is rapid
enough to ensure approximately isothermal field lines. When the
temperature decreases in the direction of gravity, this term is sta-
bilizing. The second term on the right-hand side is responsible
for the HBI. If the temperature decreases in the direction of grav-
ity, convergence/divergence of heat-flux-channelling magnetic field
lines (k - 8b # 0) leads to buoyantly unstable density perturbations.
When the temperature increases in the direction of gravity, this term
is stabilizing.

Using equations (20) and (19), the linearized internal energy
equation (18) becomes

1) 3d
(0 + Weona) £ = 81}: . In L
0 5dz  p3 ’1
. 6B, —2b,6B, 1 dInT @D
— 1Wcond e

B kH dz

to leading order in M. Here we have introduced the characteristic
conduction frequency,

2 T 32 A; S\
Weond = 7kﬁ Xe = T - kﬁ)"mpr Wdyn
57170 T 10 A. \ 2me
~ lOkﬁ)\mfpl'l @dyn»

(22)

where A; (A.) is the Coulomb logarithm of the ions (electrons).

Equations (15)—(21) differ from those in Quataert (2008) only
by the final term in the momentum equation (16), which is due
to the perturbed pressure anisotropy (Braginskii viscosity). This
term introduces a characteristic frequency associated with viscous
damping:

3kivg 3
3 “vi‘h =3 ke hantp H @y, (23)

which is a factor of ~6 smaller than w¢ynq.

Wyisc =

3.4 Dispersion relation

The dispersion relation that results after combining equations (15)—

(17) and (21) may be written in the following form:
ki
3

— Wyisc

k} +k; dlnT K
2 +wcondng7

B b2k> dInT b2k
o |:0'2(0''i‘wcond)_FU]V2 xzy + ®cond & =2

G2 {52 (0 + Weona) + o N?

ki dz K3

(24)

where k7 = k* — kj is the square of the wavevector component
perpendicular to the background magnetic field,’

0’ =0’ 4 kjv;. (25)
and
K = (1-207) (ki +k}) + 2b.b:k.k.

bZkZ_kZ +b2k2__b2k2+k2+b2k2 (26)
x 1 Ny T z 1l xMye

5 In contrast to our notation, Quataert (2008) and Balbus & Reynolds (2010)
use ki to denote the square of the wavevector component perpendicular to
gravity, not to the background magnetic field.
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We have written /C in three equivalent forms, all of which will prove
useful in our analysis. We have also introduced the Brunt—Vaisala
frequency given by
M=2¢dn? oo @7)
5%dz = p33
Were conduction, pressure anisotropy and the magnetic field all
to be ignored, equation (24) would reduce to the usual dispersion
relation for internal gravity waves, o> = —N*(k} + k)/k°.
It will also be beneficial to have the equations for the perturbations
at hand, written in the limit of fast conduction (wcong > @Wayn ~ 0):

8o 8T __dinT

o T — 5 dz
52k, — 2b-k))) — 0 wyise b (b x k),
~ - dinT ’
o kz — O Wyjisc bx (b X k)) + 8 bebzkx (28)
OB kg, ~ ik
—= = ik)&, =ik,
B Il Il
dinT
52k, + 0 wyise bo(b X Ky + g (1 —2b?)k,
1 it ’
5%k, — O wyise by(b x k)y + g——— 2bbk
(29)
OB, _ b~ ik 1
—_— l v :1 17
B 1Sy Il k)
_ dinT
5 + 0wk + g (1 20) K
x dinT
o k — O Wyise by (b x k), + g 2b, bk,
d1 T
G + o kK + g K
- a7 . G0
52k, — owyise b (b x k), + gTbebka
Z
SB.
=ik £, (31)
B
5B . ,
— =ik ~ ik,
B iky &) ~ ik &,
_ dinT
2kH + 8 (;1 bxkx
x (32)

dInT ’

52k, — 0w bu(b x 0, + g~ —2b.b.k,
Z

— =1 o~ — 1 A X
B IS L B Yy 1152 (Y
dinT
&b x k), + cwnse(b x k), — g bk,
X , (33)
N YN
52k, — O wyise bu(b X k), + g b, bk,

where & = o v is the Lagrangian displacement of a fluid element
(¢, > 0 is upward). Equations (28) and (32) imply that the La-
grangian change in the temperature of a fluid element is

AT 8T dInT dinT _ 2ib.dInT §By

— = —+&— x2b, = = —, (34
L g  a B Y

emphasizing that perturbations in magnetic field strength go hand-

in-hand with changes in temperature. This will turn out to be
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an extremely important property for understanding the results of
Section 4.

3.5 Nature of perturbations

If we set wyie = 0, equation (24) returns the standard MTI-HBI
dispersion relation (see equation 13 of Quataert 2008):

K2+ K2 dInT K
2 =+ Wcond8—— 75 =0. (35)

~2 (=2 2
o |0 (U + wcnnd) +oN dz k2

The 62 = 0 branch of this dispersion relation represents Alfvén
waves that are polarized with § B along the y-axis. They are unaf-
fected by buoyancy. The other three modes are coupled slow and
entropy modes. If we further take the limit of fast conduction (@¢ona
> wgyn ~ 0), the entropy mode becomes 0 > —wong, While the
slow modes satisfy

. dInT K
7T e
When the temperature gradient and /C have opposite signs, one of
the slow modes may become unstable to the MTI/HBI.

Braginskii viscosity modifies this picture in two ways. First con-
sider the limit k, = 0, in which the wavevector lies entirely in the
plane spanned by gravity and the background magnetic field. In this
case, equation (24) becomes

(36)

2

k
k% (U + a)cond)

dinT K

+Oond 8§ 75| =

dz k2

52 52 (G + a)cond) + 0 Wyisc
e+ k2 (37)
+oN =2

k?

The Alfvén-wave branch of the dispersion relation is unchanged,
since Braginskii viscosity does not affect motions perpendicular to
the magnetic field. In contrast, slow-mode—polarized perturbations
with k£, # 0 are damped. This property of Braginskii viscosity is
the root cause of the significant changes to the nature of the allowed
unstable HBI (Section 4.1.1) and MTI (Section 4.2.1) modes.

Next consider the general dispersion relation (24) with k, # 0. In
this case, Braginskii viscosity couples the Alfvén and slow modes.
This can be seen most clearly by taking the fast-conduction limit
(@cond > wayn ~ o) of equation (24):

R e Az K

(38)
When wyisc 3> wayn the slow mode is rapidly damped, leaving only
0 wyise K3 /k* to highest order in the parentheses on the left-hand

side of equation (38). This term cancels the similar factor on the
right-hand side, ultimately leading to

Nz( ki | dinT IC) dInT b3k}
o o”+ O Wyisc 7 X —O0Wyisc §

52~ _gdlnT blk;
- dz k7

: (39

which may be unstable when the temperature increases in the di-
rection of gravity.> We will elaborate on this result in Section 4.2.2,

6 There are other instances of an anisotropic damping mechanism coupling
the Alfvén and slow mode branches of a dispersion relation via a free energy
gradient. In weakly ionized plasmas, the interaction between velocity shear
and anisotropic magnetic resistivity (ambipolar diffusion and the Hall effect)
results in such a coupling — one which ultimately leads to shear-driven
instabilities (Kunz 2008).
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where we discuss this new ‘Alfvénic’ version of the MTI, but for
now we explain the physical content of equations (38) and (39). By
damping motions along field lines, Braginskii viscosity effectively
reorients magnetic field perturbations to be nearly perpendicular
to the background magnetic field (via flux freezing). These modes
therefore display characteristics of both slow and Alfvén modes:
they have density and temperature perturbations, and therefore are
subject to buoyancy forces, but their velocity and magnetic field
perturbations are predominantly polarized across the mean field.

We note in passing the striking similarity between equation (38)
and the dispersion relation for the axisymmetric magnetorotational
instability subject to Braginskii stresses (Balbus 2004; Islam &
Balbus 2005):

ki

et

dln Q* k2
52 (32 + 0 wyise = Z)

drR &?
dIn @ bik; 42 éaz (40)
drR k2 k?

where g = Q2R in a rotating disc. Aside from a 4Q? term due to
epicyclic motions, the equivalence is revealed by relabelling the
disc coordinate system (R, ¢, Z) <> (z, x, ¥) and swapping one free
energy source (temperature gradient) for another (angular velocity
gradient).” Braginskii viscosity couples the Alfvén- and slow-mode
branches of the dispersion relation via the angular velocity gradient
in very much the same way that it coupled these branches via the
temperature gradient in equation (38). Furthermore, when the an-
gular velocity decreases outwards and wy;s. > Q2 ~ o, the first term
on the right-hand side of equation (40) due to Braginskii viscosity
overwhelms the second term due to epicyclic coupling and drives
the magnetoviscous instability (MVI) by endowing slow-mode per-
turbations with Alfvén-mode characteristics (as in equation 38).
We therefore identify the behaviour revealed by equation (39) as
the temperature-gradient analogue of the MVI.

= —O0Wyisc §

4 RESULTS

4.1 d7/dz > 0: heat-flux—driven buoyancy instability

We first investigate the effects of Braginskii viscosity on the stability
of a stratified atmosphere in which the temperature decreases in the
direction of gravity, i.e. d7/dz > 0. Such an atmosphere was shown
by Quataert (2008) to be susceptible to the HBI if K < 0.

4.1.1 Case of k, = 0: standard HBI with and without Braginskii
viscosity

If Braginskii viscosity is ignored, it is straightforward to show from
equation (35) that the maximum HBI growth rate

dInT
Oftbtmas = 8~ — b @1
occurs for wavevectors satisfying
ki o 1|dIn
|| 2 YHBI, max p
— ~b 1+ - 1 42
K ° Weond < +5‘dlnT'> < “42)

to leading order in wgyn/@wcond, Where we have assumed k) H <
b.B'/? — i.e. magnetic tension is negligible on the scales of interest.

7We refer the reader to Balbus (2000, 2001) for a cogent discussion of
the analogy between angular momentum and entropy that underlies these
mathematical similarities.
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Figure 3. HBI growth rate (normalized to the maximum growth rate
/g dInT/dz) without (top panel) and with (bottom panel) Braginskii vis-
cosity for a stratified thermal layer with dIn7/dlnp = —1 threaded by a
vertical magnetic field (b, = 1). Magnetic tension is neglected; its effect is
discussed in Section 4.1.3. Each contour represents an increase in the growth
rate by 5 per cent. The solid lines (given asymptotically by equation (52)
with Braginskii viscosity and equation (43) without Braginskii viscosity)
trace the maximum growth rate for a given total wavenumber k; the max-
imum growth rate is given by equation (49) with Braginskii viscosity and
asymptotically at k| (AmgpH )!/2 > 1 by equation (41) without Braginskii vis-
cosity. Braginskii viscosity dramatically reduces growth rates everywhere
except for a narrow band of wavenumbers around k|| given by equation (52).
Galaxy clusters with cool cores typically have H/Amg ~ 10?-103 at radii
for which the temperature profile increases outwards, and so the maximum
wavenumbers for each axis span the range kH ~ 40-127.

Equation (42) reveals that the HBI has a strong preference for
perpendicular wavenumbers. More precisely, using the definition
of weong (equation 22) in equation (42), we find that the maximum
growth rate occurs along a path through k space on which

1

Ky i H)'? &2 2k Gty H)'4
1/4
5 ) 43)

This behaviour is exhibited in the top panel of Fig. 3, which shows
HBI growth rates in the (k, k) plane for b, = 1 (without Braginskii
viscosity). The solid line in the plot traces the maximum growth rate
through wavenumber space; it quickly asymptotes to equation (43).

dinT |'/®

dln p

dln p
dInT

x 0.6b3/4<1 +
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The HBI’s preference for perpendicular wavenumbers is also
reflected in the corresponding eigenvectors. Using equations (28)
and (36) we find that the density perturbation associated with the
HBI,

5 dinT k> kt
AP b (b2 > (44)

0 Yz k2R

is greatest when ki < A* so that, e.g., upwardly displaced fluid
elements have the largest possible decrease in their density. More-
over, perpendicular wavenumbers are necessary to generate linear
perturbations in magnetic field strength,

L ik & ke (45)
B 1Sz ky ’
which lead to local convergence/divergence of the background heat
flux and consequent heating/cooling of the plasma (equation 34).
The problem is that it is precisely such perturbations that are
damped by Braginskii viscosity (see the bottom panel of Fig. 3). By
equation (34), upward displacements along magnetic field lines go
hand-in-hand with local heating (AT > 0) and a local increase in
the magnetic field strength (3B > 0).% This causes a negative vis-
cous stress that damps motions along field lines, thereby rarefying
the magnetic field and reducing the strength of the perturbed heat
flux. This can be seen quantitatively by explicitly writing down the
buoyancy and viscous forces in the z-component of the momentum
equation (16) for the simple case b, = 1:
d?¢, dinT dg,

ﬁz"'*'g dz gz_wviscdit.- (46)

For wavenumbers satisfying the ordering wyjsc >> @wayn, OF kﬁ AmipH
> 1, itis straightforward to show from equation (38) that the growth
rate is

2

o~ _8 dInT = @4 (47)
Wyisc dZ Wyisc

to leading order in wgyn/@yisc. In other words, the buoyancy and

viscous forces become nearly equal and opposite as the plasma

becomes more and more collisionless. The growth rate decreases

accordingly.

Despite all these, there are modes that remain unstable to the
HBI and retain non-negligible growth rates. However, it turns out
that they are confined to a thin band of wavenumber space in which
conduction is fast but viscous damping is small:

@eond Z wdyn 2 Wyiscs (48&)

or, using the definitions (22) and (23),

3k Oty D'? 2 1 2 kg H)'2. (48b)
Using the fact that k; = k for the fastest growing Braginskii-HBI
modes, it is possible to obtain analytic solutions for the maxi-

mum growth rate and fastest growing wavenumber. Defining ¢ =
Wyisc/Weona ~ 0.1, the maximum growth rate

max 2 |dl 12
o — OHbLm |:1—25'/2 (2+7’ npD

T (-¢) 5(dInT

12 1/2
- +2s dinp n 3_|_4 dlnp
X e+ — & -
dinT 5|dInT

5
(49)

occurs at a parallel wavenumber satisfying

8 While Alfvénically polarized modes suffer no viscous damping, they are
HBI stable because éB)| = 0.
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0-2 max - O-lzl'lx(l + 8)
ki Ay H = —2 : (50)
3O'max Wdyn
20, (2 dlnT |\ '*
~e”27 (g+2'dlnp’) + O(e). (51

Since k| = kb, + k.b., equation (51) implies that the maximum
growth rate is attained along two straight lines in the (k,, k,) plane
given by

by
kz()“mpr)l/z ~ _; kx()‘mpr)l/z

2\'"? /2 dinT|\"*
181/4(37) <§+2‘d12 D + 0@,
2 p (52)

This behaviour can be seen in Fig. 4, which exhibits HBI growth
rates in the (k,, k,) plane with (upper row) and without (lower
row) Braginskii viscosity for k£, = 0 and various magnetic field
orientations. The solid lines trace the maximum growth rate through
wavenumber space; they quickly asymptote to equation (43) without
Braginskii viscosity and equation (52) with Braginskii viscosity.

For a fiducial cool-core temperature profile din7/dlnp = —1,
equations (49) and (50) give 0 max = 0.57b, wayn and kjj sy H)'/* =
0.60 b!/2, respectively. With typical values of H/Ayg ~ 10*-103
in the inner ~200kpc of cool-core clusters where the temperature
increases with height, this implies kyH ~ 6b!/2~19b!/? (increasing
inwards). These modes are quite extended along the magnetic field
direction and cannot be considered local. This is likely to have
important implications for the non-linear evolution of the HBI, par-
ticularly as the HBI reorients the mean magnetic field to be more
and more perpendicular to the temperature gradient. For example,
taking dInT/dln p = —1 and H/Ag, = 200, the parallel wavelength
of maximum growth A ma is equal to the thermal pressure scale-
height H when the magnetic field makes an angle of 6 ~ 33° with
respect to the x-axis. Thus, the field-line insulation found by many
numerical simulations to be a consequence of the standard HBI (e.g.
Bogdanovic et al. 2009; Parrish et al. 2009) may not be as complete
as is currently believed.

Note further that equation (51) in the limit ¢ — 0 does not reduce
to the no-Braginskii case (equation 43). Moreover, the relationship
between k;; and k, for the fastest growing modes discontinuously
changes from k;; le/z without Braginskii viscosity (equation 43)
to k| ~ constant with Braginskii viscosity (equation 51) for per-
pendicular wavenumbers satisfying
dinT ['* 1

dinp| p? (53)

This reflects the fact that including fast anisotropic heat conduc-
tion while neglecting Braginskii viscosity is a singular limit of the
equations.

ki Qo D' 2 0.5

4.1.2 Case of bk, # 0: Alfvénic HBI
If bk, # 0, the situation is actually worse:

[ dInT bXk? 2 Wi, |dInT | k2 [(P2k2 K
ox~1|g - + = —5 - — —
dz k2 e |dInp |22 \ K2 K2

(54

to leading order in wgyn/wyiie < 1. The HBI becomes a slowly
growing overstability for wavevectors satisfying

2
ky >

b, .
Ek“(k X b))

— (k x by}, (55)
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Figure 4. HBI growth rate (normalized to /g dIn7/dz) for k, = 0, dinT/dlnp = —1, and various magnetic field orientations # = cos ~!(b,). Magnetic
tension is neglected; its effect is discussed in Section 4.1.3. Braginskii viscosity is included in the bottom row of plots. Each contour represents an increase in
the growth rate by 5 per cent. The dashed line denotes the direction of the background magnetic field. The solid lines (given asymptotically by equation (52)
with Braginskii viscosity and equation (43) without Braginskii viscosity) trace the maximum growth rate for a given total wavenumber &; the maximum growth
rate is given by equation (49) with Braginskii viscosity and asymptotically at k(A )1/2 > 1 by equation (41) without Braginskii viscosity. The overall
maximum growth rates in each of the Braginskii-HBI plots (bottom row) are reduced by a factor ~1.66 relative to those in the respective standard HBI plots

(top row). The thick black diagonal region in each plot is where k|| = 0.
a weakly damped oscillation for wavevectors satisfying

by " .
k< |5 kitk x b)y| = (ke x B, (56)

Z

and a pure oscillation if the left- and right-hand sides of these
inequalities are in fact equal. Indeed, in the limit wgyn/wyise <K 1
equations (28)—(34) imply

F) dInT . w3,

P ags +io<““y)+o< jy), (57)
P 4 Wyisc Wiiee

AT . Djyn
T~io(t‘;"‘%)+o(a}§%>, (58)
5B " Dy

Bllwio(:‘j‘%)Jro(w;y ) (59)

By effectively reorienting magnetic field perturbations to be nearly
perpendicular to the background magnetic field, Braginskii viscos-
ity prevents slow-mode perturbations from tapping into the free
energy carried by the background heat flux. To highest order in
®ayn/wyise, these modes appear as HBI-stable Alfvén waves whose

magnetic tension has been effectively increased by the adverse tem-
perature gradient.

4.1.3 Effect of magnetic tension on the HBI

When both Braginskii viscosity and magnetic tension are included
there are two parallel-wavenumber cut-offs, the relative magnitude
of which may play an important role in the evolution and non-linear
saturation of the HBI. Roughly speaking, magnetic tension is appre-
ciable for parallel wavenumbers satisfying k|| maxva 2 0 max, Where
kj| max and o max are given by equations (50) and (49), respectively.
For a fiducial cool-core temperature profile, dln7/dlnp = —1, this
amounts to an upper limit on the plasma beta parameter of b.8 <
H/A g, For B less than this value, magnetic tension — not Braginskii
viscosity — sets the fastest growing mode.

4.2 dT/dz < 0: magnetothermal instability

Next we investigate the effects of Braginskii viscosity on the stabil-
ity of a stratified atmosphere in which the temperature increases in
the direction of gravity, that is, d7/dz < 0. Such an atmosphere was
shown by Balbus (2000) to be susceptible to the MTI if X > 0.
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4.2.1 Case of ky = 0: standard MTI with and without Braginskii
viscosity

Consider first the case k, = 0. Equation (38) shows that the maxi-
mum MTI growth rate

dinT

deTI,maX =g ‘ & b’ (60)

X

occurs for k; = 0, where we have assumed that kyH < b,8'/?

(i.e. magnetic tension is negligible on the scales of interest). The
physical reasons for this are simple. Since k- 6B = 0, taking k; =
0 implies 6B, = 0. This not only ensures that any background heat
flux is unable to cool (heat) upwardly (downwardly) displaced fluid
elements (see equation 34), but also that pressure anisotropy cannot
damp these modes.

If we allow for a small wavenumber component perpendicular to
the background field, k2 <« k2, the leading-order solution for the
growth rate is given by

k2 k2
ol ~ aﬁlnmax <1 — b;};2> — OMTI, max a)visck—i‘. (61)

The first negative contribution on the right-hand side of this equa-
tion is tied to the fact that generating a 6B implies k - sb # 0.
Having k - 8b = 0 causes upwardly displaced fluid elements, which
are trying to heat and rise by the MTI, to be cooled by the locally
divergent background heat flux (and vice versa for downward dis-
placements). This reduces the efficiency of the MTI and implies
that unstable modes with large growth rates are confined to a wedge
in wavenumber space of width

ki < bk (62)

As k; increases, more and more perpendicular wavenumber space
becomes available for fast-growing modes (see the top panel of
Fig. 5).

When wyjsc > wayn, however, this term is relatively unimportant
when compared to the last term on the right-hand side of equa-
tion (61). Modes with k3 # 0 are rapidly damped by Braginskii
viscosity. This behaviour continues beyond the small values of k|,
where the growth rate then becomes

dInT| [/ b2k?
| (i) @

to leading order in wayn/wyise <K 1. These effects are evident in
Figs 5 and 6, which exhibit growth rates in the (k,, k,) plane for
various inclinations of the background magnetic field. From equa-
tion (63), we find that unstable modes with large growth rates are
confined by Braginskii viscosity to a narrow band in wavenumber
space of width

din7\"*
ky ()vmpr)l/2 S (m) by (64)

8

Wyisc

about the line k|| b. In contrast with the no-Braginskii case
(equation 62), going to larger k; does not open up more perpen-
dicular wavenumber space for fast-growing modes.

4.2.2 Case of bk, # 0: Alfvénic MTI
Recall equation (38):

K dinT K

dinT bk}
et e e

dz k2’

52 (52 + O Wyisc ) X —O0 Wyisc
(65)
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Figure 5. MTI growth rate (normalised to the maximum growth rate
/—¢dInT/dz) for k, = 0 without (top panel) and with (bottom panel)
Braginskii viscosity for a stratified thermal layer with din7/dlnp = 1/3
threaded by a horizontal magnetic field (b, = 1). Magnetic tension is ne-
glected; its effect is discussed in Section 4.2.3. Each contour represents an
increase in the growth rate by 5 per cent. Braginskii viscosity suppresses
MTI growth rates for k # k| (see equations 61 and 64). Galaxy clusters
typically have H/Angp ~ 10-100 at radii for which the temperature profile
decreases outwards, and so the maximum wavenumbers for each axis span
the range kH ~ 13-40.

which is the general dispersion relation (24) written in the fast-
conduction limit (Weona 3> @ayn ~ ). When b2k%, # 0, the right-
hand side of this equation becomes active and leads to behaviour
otherwise absent without Braginskii viscosity. The Alfvén-mode
branch of the dispersion relation is now coupled to the slow-mode
branch; slow-mode perturbations induce an Alfvénic response.

Consider further the limit wys > @gyn. Then we obtain
equation (39):

6:2

dInT | b2k2
: (66)

=[] %
This is always unstable, regardless of the sign of IC, and is maximal
when kﬁ =k2 (i.e. the projection of k on to the x—z plane is parallel to
the magnetic field). In other words, wavevectors with large parallel
components and any component along the y-axis grow at o mrrmax
(see Fig. 7). Indeed, one can readily show from equation (65) that
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Figure 6. MTI growth rate (normalized to /—g dIn7/dz) for k, = 0, dInT/dlnp = 1/3, and various magnetic field orientations 6 = cos ~1(by). Magnetic

tension is neglected; its effect is discussed in Section 4.2.3. Braginskii viscosity is included in the bottom row of plots. Each contour represents an increase in

the growth rate by 5 per cent. The dashed line denotes the direction of the background magnetic field, which also traces the maximum growth rate for a given

total wavenumber k. The maximum growth rate is given by equation (60) and occurs for k; = 0. Braginskii viscosity suppresses MTI growth rates for k # &

(see equations 61 and 64).

the growth rate for these ki = k3 Alfvénic MTI modes is

wﬁyn dinT bj

~ = 67
o OMTI, ma; e dlnp 2 (67)
to leading order in wgyn/wyisc, SO that one only requires
dinT\"* b
ko H)'? > [ —— : 68
H( fp ) ~ d In p bi/z ( )

to bring the growth rate close to o mrmax (€.2. see the rightmost
panel in the bottom row of Fig. 7). One consequence is that it is
no longer necessary to go to very large parallel wavenumbers (and
risk stabilization by magnetic tension) just to marginally destabilize
ky, # 0 modes at small b, (e.g. see the rightmost panel in the top row
of Fig. 7).

The physical origin of this new behaviour may be uncovered by
computing the eigenvectors (28), (32) and (34) to leading order in
wdyn/ Wyjisc:

5p dinT wayn (dInT\ " 262

— 2 1- —, (69)
dz wyise \ dIn p b,

SB Z (dInT\"* b

=l ik 20 () (70)
wyise \ dIn p b,

AT _
T - Z

dlnT) Wayn (cunT)‘/2 2b? o~

dz bx ’

wyise \ dIn p

These are essentially MTI modes that have been freed from the
unfavourable consequences of having k - sb # 0 by rapid paral-
lel viscous damping. Rapid Braginskii damping endows buoyantly-
unstable slow-mode perturbations (equation 69) with Alfvénic char-
acteristics (i.e. perturbed magnetic fields and velocities that are
predominantly oriented perpendicular to the background magnetic
field — equation 70), which allows fluid elements to approximately
maintain their temperature as they are displaced (equation 71). The
presence of a non-zero k, is necessary in order to ensure B, is van-
ishingly small for arbitrary &, and k,, while simultaneously preserv-
ing the divergence-free constraint on the magnetic field. Therefore,
many wavevectors for which K < 0 that are stable to the standard
MTI (e.g. kﬁ = k*, > k*b*/b?, which is the black region in the
upper-right panel of Fig. 7) are actually unstable with growth rates

:O-MTI,max .

4.2.3 Effect of magnetic tension on the MTI

When k, = 0 the fastest growing MTI modes, those with k = k,
are unaffected by Braginskii viscosity. In this case, magnetic ten-
sion provides the only parallel-wavenumber cut-off by suppressing

© 2011 The Authors, MNRAS 417, 602-616
Monthly Notices of the Royal Astronomical Society © 2011 RAS



4 T T T

no Braginskii
]Cy - ICL
0 = 30°

le ()\mpr) Ve

Dynamical stability of the ICM 613

1.0
0.9

no Braginskii
]Cy =34 ICL
6 = 45°

no Braginskii

l\‘y 1
0 \

— 80° 08
0.7
0.6
05
0.4
0.3
0.2

0.1
0.0

ki (

A H)1/2

mfp

Braginskii
]Cy = ]Cl
6 =30° |

]Cy ()\mpr) V2

T i IS A A AT S I

Braginskii
=k,
0 = 45° ]

Braginskii
le — ]Cl
0 =60°

0 1

k| A gpH) /2 Ky (

mfp

2

A H)1/2

mfp

3
k| Ao /2

mfp

Figure 7. MTI growth rate (normalized to /—g dIn 7 /dz) for k% = k%1, dInT/dInp = 1/3, and various magnetic field orientations 6 = cos ~!(b,). Magnetic
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ky # 0 modes that are either stable or only grow slowly in the absence of Braginskii viscosity become unstable with growth rate o MTI,max When Braginskii

viscosity is included.

wavenumbers for which & va 2 0'MTLmax, OF

72

1/2
kH =k H > g'? <dlLT> b,.

dln p

Setting k H ~ 27t provides a strict lower limit on beta below which
local ky, = 0 MTI modes are stabilized:

2m\?
()
For a fiducial cluster temperature profile beyond the cooling radius,
dinT/dInp = 1/3, this gives 8 < 12062

If we relax our restriction on k,, Braginskii viscosity drives
Alfvénic modes unstable by coupling them to buoyantly-unstable,
rapidly-damped slow modes. Setting kjva ~ Owmrimax iN €qua-
tion (68) we find that, unless

()

there are fast-growing Alfvénic MTI modes. With typical values
of H/Apgp ~ 10-100 and B ~ 10°-10* in the outer regions of the
ICM where the temperature decreases outwards, magnetic tension
is unlikely to affect these modes except possibly when the field is
nearly vertical (b, < 1). Note that increasing k, does not increase
magnetic tension since b L §.

< dlnp
~dInT

(73)

H

BS—
)\mfp

1/2 bz
“z
b}’

dlnp
dinT

(74)
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4.3 dT/dz < 0: heat-flux—driven buoyancy overstability

The reader may have noticed a very thin vertical band of unstable
modes in the & = 60° panels of Fig. 7. These modes, found recently
by Balbus & Reynolds (2010), are g-modes driven overstable by
a background heat flux. They become important only when the
background magnetic field is vertical (b, = 1, K = —k?), since this
field orientation is (linearly) stable to the MTL. In this Section we
analyse these modes while including Braginskii viscosity.’

We begin by finding the fastest-growing mode in the absence
of Braginskii viscosity. Our task is greatly simplified by knowing
a priori that k; ~ k for these modes. We also neglect magnetic
tension; we will verify a posteriori that it is unlikely to affect the
fastest growing mode for conditions found in the outer regions of
the ICM where this overstability may be present. Our dispersion
relation (24) then becomes

dInT

dz

Solutions of this equation have both real and imaginary parts, o =
y + iw. Substituting this decomposition of ¢ into equation (75) and

=0. (75)

03 + szcond + GNZ + Weond 8 '

9 We have chosen not to present a similar analysis for the radiative-cooling-
driven g-mode overstability also found by Balbus & Reynolds (2010) for
dT/dz > 0. The necessary assumption that the local cooling rate is com-
parable to the dynamical frequency conflicts with our assumption of an
equilibrium background state that evolves slower than the instabilities do.
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separating into real and imaginary parts gives two equations for y
and w as functions of w¢one. The maximum growth rate is then found
by differentiating these with respect to wcong, setting 0y /0weong =
0 (so as to maximize the real part of o), and solving these four
equations simultaneously. Here we simply state the result:!°

1 /dinT 1) (dInp\'? 76
Vmxn =@ 5 \ qnp ~5) \dinT )
3 1dInT 1 dlnp\'?
Dmax = Wdyn \ =7 — 7 79 - Tnn amn
10 4dlnp 100dInT
1 /dlnp\'?
cond,max — n Z ) 78
Weond,max. = ©dy 5<dlnT) (78)
so that
dlnp 14
k\\.max(}“mpr)l/2 ~ 0.1 (dln T) ' 7
This mode is overstable if
InT 1
din? 1 (80)
dlnp 5

In order for magnetic tension to significantly affect this mode,
kjj.maxVa 2 ¥max OF, equivalently,

H (dInT 1\ 2/dInT\"?
B < 0.08 nt_- - . 1)
)mep dlnp 5 dlnp

With typical values of H/Ayg ~ 10-100 and B ~ 10°~10 in the
outer regions of the ICM where the temperature decreases outwards,
it is highly unlikely magnetic tension will affect the growth rate of
this mode.

If we take into account Braginskii viscosity, it is straightforward
to show that a necessary condition for stability is given by

’ Wyisc ki Wyisc ki
R + ©eond k7 + Nz (wcond + a)visckT > 07 (82)
where
2dlnp -
R=1—-|(-= -1 . 83
(5 dInT ) (83)

If the temperature profile satisfies equation (80), then R’ < 0
and buoyant modes are potentially overstable (Balbus & Reynolds
2010). A comparison with equation (27) of Balbus & Reynolds
(2010) reveals that Braginskii viscosity modifies this by effectively
increasing R’ by ~wyisc/wcona ~ 0.1 so that equation (80) becomes

dinT 1 1 Wyise
— >
dlnp 5

-1
l——— ~ (.22 84
2 Weond T Wyise ) ( )

and by further stabilizing modes for which

Wyisec Weond 2 _NZR/a (85)

~

or, using the definitions (22) and (23),

86
dlnp 5 (86)

dinT 1\"*
kH(Ampr)l/zzo.6< 1 ) .

10 This assumes N2 > 0 or, equivalently, din 7/dlnp < 2/5.

However, the maximum growth rate of the overstability changes
very little when Braginskii viscosity is included:

e (dlnp\'?
@20 \dinT
1+1dlnp_i dinp 2
5dinT 25 \dInT
to leading order in & = wyisc/@cong ~ 0.1. For a fiducial cluster tem-
perature profile of dln7/dInp = 1/3, the Braginskii term amounts

to a correction <16 per cent. Braginskii viscosity does not signifi-
cantly affect the fastest growing overstable mode.

Y = Vmax
87

X

5 DISCUSSION

The low degree of collisionality found in astrophysical plasmas
such as the ICM causes heat and momentum transport to become
anisotropic with respect to the magnetic field direction. This im-
plies anisotropic heat flux and pressure. The former has been pre-
viously found to play a destabilizing role in thermally stratified
atmospheres, causing instabilities such as the MTI (when the tem-
perature increases in the direction of gravity; Balbus 2000, 2001)
and the HBI (when the temperature decreases in the direction of
gravity; Quataert 2008), as well as g-mode overstabilities (Balbus &
Reynolds 2010). In this paper, we have concentrated on the conse-
quences anisotropic pressure has for the stability of the ICM.

We have argued that one cannot consider the limit of fast con-
duction along field lines while neglecting the Braginskii pressure
anisotropy. Although there is a timescale disparity between the two
effects — anisotropic heat conduction acts on a timescale a factor
of ~10 shorter than does pressure anisotropy — both are generally
much faster than (or at least as fast as) the dynamical timescale.
Since the MTI and HBI occur with a growth rate comparable to the
dynamical frequency, pressure anisotropy affects their dynamics
significantly.

In the case of the HBI, its propensity (or, more accurately, its
need) to generate fluctuations along the background magnetic field
suffers from the requirement for particles in a weakly collisional
plasma to conserve their first and second adiabatic invariants. The
HBI changes the field strength to linear order, which induces a
pressure anisotropy, which manifests itself as Braginskii viscosity
and kills off the motions that generated the change in field strength in
the first place. The only motions to entirely escape this constraining
effect of pressure anisotropy — those that are Alfvénically polarized
— are also those that are stable to the HBI. The fastest growing HBI
modes no longer occur at large parallel wavenumbers, but rather
at wavenumbers satisfying the timescale ordering weond 2, ®dayn 2
Wyjsc, OF

3k iy )2 201 2 Ky ngp HD'2.

~

Perturbations whose wavelengths along the background magnetic
field are smaller than the thermal-pressure scaleheight by at least
a factor of ~27(Amg/H)'/?, while potentially unstable to the
HBYI, are nevertheless strongly damped. Small-wavelength perturba-
tions whose wavevectors have a component perpendicular to both
gravity and the background magnetic field behave like modified
Alfvén waves that are only slowly growing or decaying (depend-
ing on their exact wavevector orientation; see equation 54). Unless
b.B S H/\mgp, Braginskii viscosity — not magnetic tension — sets
the maximum unstable parallel wavenumber.

The situation with the MTI is more complicated. The standard
MTI has a slight preference for wavevectors with projections in
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the x—z plane that are aligned with the background magnetic field
(see the top row of Fig. 6). This obviates heat exchange with any
background heat flux, a stabilizing effect when the temperature in-
creases in the direction of gravity. Pressure anisotropy reinforces
this preference, since perturbations whose projected wavevectors
are not perfectly aligned with the background magnetic field are
subject to strong viscous damping (see bottom row of Fig. 6).
We have also found that many modes that were considered MTI
stable [e.g. k2 = k*; > k*b2/b?] or slowly growing become un-
stable in the presence of Braginskii viscosity and grow at the
maximum possible rate for a given background magnetic field ori-
entation (see Fig. 7). This is because, when k - (i) x g) # 0, Bra-
ginskii viscosity couples the Alfvén- and slow-mode branches of
the dispersion relation, so that slow-mode perturbations excite a
buoyantly unstable Alfvénic response. By damping perturbations
along magnetic field lines, pressure anisotropy frees these modes
from the unfavourable consequences of having local field-line
convergence/divergence.

We anticipate that many of the results found by numerical sim-
ulations of the MTI and HBI will change both quantitatively and
qualitatively when the equations including both anisotropic heat
and momentum transfer are implemented. This will likely have im-
portant consequences for our understanding of the thermodynamic
stability of the ICM.

Depending on the degree of collisionality in the cool cores of
galaxy clusters, the field-line insulation found in many simulations
to be a consequence of the non-linear evolution of the HBI (e.g.
Bogdanovic¢ et al. 2009; Parrish et al. 2009) might be attenuated.
This is because the large wavenumbers required to keep the HBI
in action as the magnetic field becomes more and more horizontal
are strongly suppressed by the pressure anisotropy they generate.
Moreover, the wavenumbers at which the HBI survives largely un-
suppressed have parallel components too small to rigorously be
considered local, especially as the HBI reorients the mean field to
be horizontal (see equation 50). For a fiducial cool-core tempera-
ture profile dln 7/dln p = —1, the parallel wavelength of maximum
growth is equal to the thermal pressure scaleheight when b, &
110An/H . It is therefore tempting to speculate that, in the absence
of strong turbulent stirring by an external agent, there exists a link
between the degree of collisionality in cool cores and the mean
direction of the magnetic field.

In the outer regions of non-isothermal clusters the non-linear evo-
lution of the MTI may be more vigorous than previously thought,
since many modes classified as stable or slow growing are actually
maximally unstable. Moreover, the fact that Braginskii viscosity
couples damped k, # 0 slow modes with MTI-unstable Alfvén
modes, a feature not present in the standard MTI, may profoundly
affect the non-linear evolution of the magnetic field. On the other
hand, the non-linear excitation of the MTI out of its linearly sta-
ble end state (b, = 0), which is triggered by buoyantly neutral
horizontal motions (see McCourt et al. 2011), is unlikely to be af-
fected by Braginskii viscosity. These motions occur perpendicular
to the magnetic field (i.e. k; = 0) and are therefore undamped by
Braginskii viscosity. In either case, the spectrum of unstable modes
will certainly be different, not only due to the presence of a parallel
viscous cut-off but also because pressure anisotropy significantly
modifies the dependence of growth rate on wavenumber.

The heat-flux—driven buoyancy overstability elucidated ana-
Iytically by Balbus & Reynolds (2010) and numerically by T.
Bogdanovi¢ (private communication) is not significantly affected
by pressure anisotropy. This is because the overstability occurs at
sufficiently small wavenumbers such that conduction (and therefore
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viscosity) is not overwhelming (see equations 79 and 87). Braginskii
viscosity only shifts the stability boundary slightly (equation 82).
The non-linear evolution of the MTI and HBI in the presence of
anisotropic viscosity is, at least in principle, amenable to numeri-
cal simulation. The Athena code affords one promising venue, as
it is already set up for the inclusion of both anisotropic conduc-
tion and anisotropic viscosity (J. Stone, private communication). In
practise, however, the implementation of pressure anisotropy into a
numerical code is rather nuanced. If the pressure anisotropy exceeds
~1/p, very fast microscale instabilities (e.g. firechose, mirror) can
be triggered, which will grow rapidly at the grid scale and wreak
havoc upon a simulation if left unchecked. Exactly how such insta-
bilities non-linearly saturate remains very much an open question
(e.g. see Sharma et al. 2006; Schekochihin et al. 2008; Rosin et al.
2011) and, in lieu of performing a full kinetic calculation, important
choices will need to be made by the simulator regarding anisotropy
limiters. Despite these rather foreboding complications, properly
simulating the ICM with equations that include both anisotropic
heat and momentum transfer would be a major step forward in our
understanding of the dynamical stability of the ICM.
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