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ABSTRACT

In weakly collisional plasmas such as the intracluster medium (ICM), heat and momentum

transport become anisotropic with respect to the local magnetic field direction. Anisotropic

heat conduction causes the slow magnetosonic wave to become buoyantly unstable to the

magnetothermal instability (MTI) when the temperature increases in the direction of gravity

and to the heat-flux–driven buoyancy instability (HBI) when the temperature decreases in the

direction of gravity. The local changes in magnetic field strength that attend these instabilities

cause pressure anisotropies that viscously damp motions parallel to the magnetic field. In this

paper we employ a linear stability analysis to elucidate the effects of anisotropic viscosity (i.e.

Braginskii pressure anisotropy) on the MTI and HBI. By stifling the convergence/divergence

of magnetic field lines, pressure anisotropy significantly affects how the ICM interacts with

the temperature gradient. Instabilities which depend upon the convergence/divergence of

magnetic field lines to generate unstable buoyant motions (the HBI) are suppressed over

much of the wavenumber space, whereas those which are otherwise impeded by field-line

convergence/divergence (the MTI) are strengthened. As a result, the wavenumbers at which

the HBI survives largely unsuppressed in the ICM have parallel components too small to

rigorously be considered local. This is particularly true as the magnetic field becomes more

and more orthogonal to the temperature gradient. The field-line insulation found by recent

numerical simulations to be a non-linear consequence of the standard HBI might therefore be

attenuated. In contrast, the fastest growing MTI modes are unaffected by anisotropic viscosity.

However, we find that anisotropic viscosity couples slow and Alfvén waves in such a way as to

buoyantly destabilize Alfvénic fluctuations when the temperature increases in the direction of

gravity. Consequently, many wavenumbers previously considered MTI stable or slow growing

are in fact maximally unstable. We discuss the physical interpretation of these instabilities in

detail.

Key words: conduction – instabilities – magnetic fields – MHD – plasmas – galaxies:

clusters: intracluster medium.

1 IN T RO D U C T I O N

The intracluster medium (ICM) is stratified, not only in pressure,

but also in entropy. Until recently, the latter was thought to be of

paramount importance to the ICM’s dynamical stability. The rea-

son for this is easy to understand. In an atmosphere where entropy

increases upwards, an upward adiabatic displacement of a fluid ele-

ment leaves the element cooler than its surroundings. A cool element

is denser (because of local pressure balance), so the buoyancy force

is restoring. If, on the other hand, the entropy were to decrease up-

wards, an upward adiabatic displacement produces a fluid element

⋆E-mail: kunz@thphys.ox.ac.uk

that is warmer than its surroundings and so there is no restoring

buoyancy force, the fluid element continues to rise, and convective

instability ensues (Schwarzschild 1958). Careful observations have

shown that the ICM generically has a positive entropy gradient (e.g.

Cavagnolo et al. 2009) and so, by this reasoning, is convectively

stable.

In fact, matters are not this simple. The ICM is not a conventional

fluid. First, it is magnetized. Secondly, particle–particle collisions

are rare. The conductive flow of heat consequently becomes strongly

anisotropic with respect to the local magnetic field direction, since

collisional energy exchange by (predominantly) the electrons can

occur much more readily along the magnetic field than across it.

The heat is then restricted to being channelled along magnetic lines

of force. When the conduction timescale is shorter than any other
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dynamical timescale in the system, magnetic field lines become

isotherms.

Such a radical change in the thermal behaviour of a weakly colli-

sional plasma profoundly alters its stability properties. Drawing on

the powerful analogy between angular momentum and entropy strat-

ification, Balbus (2000) argued that the temperature gradient takes

precedence over the entropy gradient in determining the convective

stability of a weakly collisional plasma. He supported this conjec-

ture with a linear stability analysis that proved the existence of the

magnetothermal instability (hereafter, MTI; Balbus 2000, 2001),

which is triggered in regions where the temperature (as opposed to

the entropy) increases in the direction of gravity. Subsequent nu-

merical work by Parrish & Stone (2005, 2007) and McCourt et al.

(2011) demonstrated the efficacy of the MTI and extended it into

the non-linear regime. Numerical studies of the effect of the MTI

on the evolution of the outer regions of non-isothermal galaxy clus-

ters, where the temperature decreases with distance from the central

core, followed soon thereafter (Parrish, Stone & Lemaster 2008).

In contrast, the inner ∼200 kpc or so of non-isothermal clus-

ters are characterized by outwardly increasing temperature profiles

(e.g. Piffaretti et al. 2005; Vikhlinin et al. 2005). Quataert (2008)

showed that the ICM in these inverted temperature profiles is also

buoyantly unstable to a heat-flux–driven instability, now referred

to as the HBI. The HBI arises because perturbed fluid elements

are heated/cooled by a background heat flux in such a way as to

become buoyantly unstable. Recently there has been a surge of nu-

merical efforts to understand the non-linear evolution of the HBI

and its implications for the so-called ‘cooling-flow problem’ exhib-

ited by cool-core clusters (Parrish & Quataert 2008; Bogdanović

et al. 2009; Parrish, Quataert & Sharma 2009, 2010; Ruszkowski &

Oh 2010; Mikellides, Tassis & Yorke 2011; McCourt et al. 2011).

In this paper, we extend the work of Balbus (2000) and Quataert

(2008) to include the effects of pressure anisotropy (i.e. anisotropic

viscosity). We are motivated by the simple consideration that one

cannot self-consistently take the limit of fast thermal conduction

along magnetic field lines while simultaneously neglecting differ-

ences between the thermal pressure parallel and perpendicular to the

magnetic field direction. While the dynamical effects of pressure

anisotropy occur on a timescale longer than conduction, in weakly

collisional plasmas such as the ICM this timescale is nevertheless

still shorter than (or at least as short as) the dynamical timescale and,

as a consequence, the MTI and HBI growth times. Our principal re-

sult is that, by stifling the convergence/divergence of magnetic field

lines, pressure anisotropy significantly affects how the plasma in

the ICM interacts with the temperature gradient. Instabilities which

depend upon the convergence/divergence of magnetic field lines to

generate unstable buoyant motions (the HBI) are suppressed over

much of the wavenumber space, whereas those which are other-

wise impeded by field-line convergence/divergence (the MTI) are

strengthened. We also comment on how pressure anisotropy af-

fects the heat-flux–driven buoyancy overstability recently found by

Balbus & Reynolds (2010).

The paper is organized as follows. In Section 2, we motivate the

inclusion of pressure anisotropy in our picture of weakly collisional

buoyancy instabilities and provide a qualitative discussion of its

effects. Readers not interested in the mathematical details may read

this section and proceed immediately to the conclusions (Section 5).

In Section 3, we formulate the problem by presenting the basic

equations, linearizing them, and deriving the dispersion relation

governing small perturbations about a simple equilibrium state.

The solutions of this dispersion relation are examined in Section 4.

We conclude in Section 5 with a summary of our results and a brief

discussion of their implications for the structure and evolution of

the ICM.

2 PH Y S I C A L M OT I VAT I O N A N D
T H E O R E T I C A L E X P E C TAT I O N S

The HBI and MTI operate most efficiently at sufficiently small

wavelengths for which the conduction rate is much greater than

the local dynamical frequency, i.e. ωcond ≫ ωdyn ≡ (g/H)1/2 =
vth/H, where g is the gravitational acceleration, H is the thermal-

pressure scaleheight of the plasma, and vth is the thermal speed of

the ions. This precludes the usual buoyant restoring force, which

would otherwise result in Brunt–Väisälä oscillations, by ensuring

magnetically tethered fluid elements communicate thermodynam-

ically much faster with one another than they do with the ambi-

ent medium. In weakly collisional environments such as the ICM,

this timescale separation is satisfied for a wide range of wavenum-

bers satisfying k||(λmfpH)1/2 ≫ (me/mi)
1/4 ∼ 0.1, where k|| is the

wavenumber along the magnetic field, λmfp = vth/ν i is the particle

mean free path between collisions, and ν i is the ion–ion collision

frequency. Typical values of H/λmfp in the ICM decrease outwards

from ∼103 to ∼102 in the cool cores of non-isothermal clusters,

and from ∼102 to ∼10 beyond the cooling radius out to ∼1 Mpc.

It is important to note that, while the HBI and MTI owe their ex-

istence to rapid conduction along magnetic field lines, the unstable

perturbations themselves only grow at a rate ∼ωdyn. This is because

the free energy required to drive the instabilities is extracted from

the background temperature gradient, which is set by macroscale

processes, at a rate determined by gravity.

There is, however, another timescale that ought to be considered.

In a magnetized plasma, any change in magnetic field strength must

be accompanied by a corresponding change in the perpendicular

gas pressure, since the first adiabatic invariant for each particle

is conserved on timescales much longer than the inverse of the

ion cyclotron frequency (which is extremely short in the ICM; see

section 2.2 of Kunz et al. 2011). The resulting pressure anisotropy

is the physical effect behind what is known as Braginskii (1965)

viscosity – the restriction of the viscous damping (to dominant

order in the Larmor radius expansion) to the motions and gradients

parallel to the magnetic field.1 This in turn implies that perturbations

in magnetic field strength are erased at the viscous damping rate

ωvisc (see equation 23). While ωvisc is smaller than ωcond by a factor

∼10 (see end of Section 3.3), and so it may be tempting to ignore

viscosity relative to conduction, ωvisc is in fact much greater than

the growth rates of the MTI and HBI at most wavelengths at which

the latter are usually thought to operate in the ICM. Here we provide

a qualitative discussion of these effects.

The HBI relies on the presence of a background heat flux, which

may be tapped into by the convergence and divergence of conduct-

ing magnetic field lines. Downwardly displaced fluid elements find

themselves in regions where field lines diverge; they are conduc-

tively cooled via the background heat flux, lose energy, and sink

further down in the gravitational potential. As they sink, the local

field lines diverge further and an instability ensues. By contrast, an

upwardly displaced fluid element gains energy from the converg-

ing heat flux and thus buoyantly rises. Braginskii viscosity hinders

1 Pressure anisotropy also leads to microscale plasma instabilities (e.g. see

Schekochihin et al. 2005, and references therein) but here we will consider

perturbations around equilibria that do not trigger those.
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Figure 1. HBI subject to Braginskii viscosity. The plasma is threaded by a

vertical magnetic field (dashed lines) and has a background heat flux in the

−z direction. A perturbation (black arrows) with non-zero kx and kz modifies

the field lines as illustrated (black curves). The heat flux, forced to follow the

perturbed field lines, converges and diverges, leading to heating and cooling

of the plasma. For a plasma with dT/dz > 0, a downwardly displaced fluid

element loses energy, causing it to sink deeper in the gravitational field (and

vice-versa for an upwardly displaced fluid element). The buoyancy force

responsible for this behaviour is denoted by the white solid arrows. The

pressure anisotropy, which is generated by motions along the background

field lines, contributes a Braginskii (viscous) force (denoted by the grey

solid arrows) that impedes this motion. For wavelengths such that ωvisc ≫
ωdyn, the two forces become nearly equal and opposite and the convergence

(divergence) of field lines responsible for the HBI is wiped away faster than

upwardly (downwardly) displaced fluid elements can take advantage of the

increased (decreased) heating.

the HBI by damping perturbations to the magnetic field strength

and thereby preventing convergence and divergence of field lines

(see Fig. 1). If ωvisc ≫ ωdyn, the convergence (divergence) of field

lines responsible for the HBI is wiped away faster than upwardly

(downwardly) displaced fluid elements can take advantage of the

increased (decreased) heating. In fact, as we show in Section 4.1,

the buoyancy and viscous forces become nearly equal and opposite

when the background field is vertical and ωvisc ≫ ωdyn. If the fluid

element were to rise buoyantly, it would locally increase the mag-

netic field strength and generate a pressure anisotropy, which would

cause a viscous stress that damps the vertical motion and halts the

HBI. Pressure anisotropy can be therefore thought of as providing

an effective tension that ‘tethers’ a buoyant fluid element to its origi-

nal location, preventing it from rising. The only HBI modes to evade

strong suppression are those which have wavenumbers satisfying

ωvisc � ωdyn � ωcond; these modes are not the same as those usually

thought to be the fastest growing.

Matters are slightly more complicated with the MTI, which owes

its existence to the alignment of isothermal magnetic field lines

with the background temperature gradient. It is this alignment that

allows a downwardly (upwardly) displaced fluid element always to

be cooler (warmer) than the surroundings it is passing through, even

as its temperature rises (falls). As the separation between magneti-

cally connected fluid elements grows, they take the magnetic field

lines with them, aligning these heat conduits ever more parallel to

the background temperature gradient and reinforcing fluid displace-

ments. There is a weak preference for perturbations whose wavevec-

tors are aligned with the background magnetic field; otherwise the

consequent convergence (divergence) of any background heat flux

would heat (cool) downwardly (upwardly) displaced fluid elements

(the exact opposite of what happens with the HBI), thereby under-

mining the destabilizing upward entropy transfer between magnet-

ically connected fluid elements.

One effect of pressure anisotropy is to reinforce this preference

by suppressing motions along field lines. Another potentially more

important effect is to destabilize many wave modes that were pre-

viously thought to be stable to the MTI. One example is shown

in Fig. 2. The panel on the top exhibits a mode that is stable to

the standard MTI: the destabilizing effect of generating a heat flux

along field lines is exactly offset by the stabilizing effect of con-

verging/diverging background heat flux. When Braginskii viscosity

is included and ωvisc ≫ ωdyn, the same exact mode is unstable with

a growth rate ∼ωdyn (bottom panel). Any motion along the back-

ground magnetic field is rapidly damped and so the background heat

flux cannot interfere with the MTI. In regions where the background

heat flux converges in the x–z plane it diverges in the x–y plane, giv-

ing no net heat extraction. In effect, rapid Braginskii damping effec-

tively endows slow-mode perturbations (which are subject to buoy-

ancy forces) with Alfvénic characteristics (i.e. perturbed magnetic

fields and velocities that are pre-dominantly oriented perpendicular

to the background magnetic field).

In either case, the fundamental point is that Braginskii viscosity

always suppresses perturbations that acquire free energy from the

temperature gradient via a background heat flux (see equation 34).

This is generally bad for the HBI and good for the MTI. In the next

section, we formalize these qualitative expectations.

3 FO R M U L AT I O N O F TH E P RO B L E M

3.1 Basic equations

The fundamental equations of motion are the continuity equation

dρ

dt
= −ρ∇ · v, (1)

the momentum equation

dv

dt
= −

1

ρ
∇ ·

(
P + I

B2

8π
−

B B

4π

)
+ g, (2)

and the magnetic induction equation

dB

dt
= B · ∇v − B∇ · v, (3)

where ρ is the mass density, v the velocity, B the magnetic field,

and g the gravitational acceleration; d/dt ≡ ∂/∂t + v · ∇ is the

convective (Lagrangian) derivative.

In the momentum equation (2), the sum of the ion and electron

pressures

P = p⊥ I − (p⊥ − p||)b̂b̂ (4)

is a diagonal tensor whose components perpendicular (p⊥) and par-

allel (p||) to the background magnetic field direction b̂ ≡ B/B

are in general different. Differences between the perpendicular and

parallel pressure in a magnetized plasma arise from the conserva-

tion of the first and second adiabatic invariants for each particle on

timescales much greater than the inverse of the cyclotron frequency.

When the magnetic field strength and/or the density change, p⊥ and
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Figure 2. Top panel: a stable MTI mode, with Braginskii viscosity ignored,

viewed from the side (solid lines) and from above (dots and crosses). The

background magnetic field B (dashed lines) makes an angle of 45◦ with

respect to both gravity and the temperature gradient. The field is perturbed

with a wavevector that has equal components in the plane perpendicular

to gravity, as indicated by the vector k. The corresponding eigenvector has

δBx = δBy = 0. This mode is MTI stable because the destabilizing transfer of

entropy from one fluid to another is exactly offset by the stabilizing exchange

of entropy by the convergence/divergence of the background heat flux. Bot-

tom panel: the same mode becomes unstable when Braginskii viscosity is

self-consistently included. Rapid parallel viscous damping effectively ori-

ents the perturbed magnetic field nearly perpendicular to the background

field, thereby precluding any stabilization by the background heat flux. The

perturbed magnetic field has components in all three directions in order to

satisfy the divergence-free constraint (namely, δBz ≈ δBy = −δBx).

p|| change in different ways (Chew, Goldberger & Low 1956). For

example, conservation of the first adiabatic invariant μ = mv2
⊥/2B

implies that an increase in magnetic field strength must be accom-

panied by a corresponding increase in the perpendicular pressure,

p⊥/B ∼ constant.

When the collision frequency is larger than the rates of change of

all fields (i.e. ν ≫ d/dt) – a condition easily satisfied for buoyancy

instabilities in the ICM – it is straightforward to obtain an equation

for the pressure anisotropy (e.g. see Schekochihin et al. 2010 for a

simple derivation):

p⊥ − p|| =
3pi

νi

d

dt
ln

B

ρ2/3
=

3pi

νi

(
b̂b̂ : ∇v −

1

3
∇ · v

)
, (5)

where p = (2/3)p⊥ + (1/3)p|| is the total plasma pressure.2 To obtain

the final equality, we have used equations (1) and (3) to express the

rates of change of the magnetic field strength and density in terms

of velocity gradients. This is referred to as the Braginskii (1965)

anisotropic viscosity. The ion contribution to the Braginskii viscos-

ity dominates over that of the electrons by a factor ∼(mi/me)
1/2.

We will also require an internal energy equation,

3

2
p

d

dt
ln

p

ρ5/3
= (p⊥ − p||)

d

dt
ln

B

ρ2/3
− ∇ · (b̂ Q), (6)

where

Q = −χe b̂ · ∇T (7)

is the collisional heat flux, T is the temperature, and χ e is the thermal

conductivity of the electrons

χe ≃ 6 × 10−7 T 5/2 erg cm−1 K−1; (8)

the thermal conductivity of the ions is a factor ∼(me/mi)
1/2 smaller

(Spitzer 1962).3 Equation (7) expresses the fact that, in the presence

of a magnetic field, heat is restricted to flow along magnetic lines of

force when the particle gyroradius is much smaller than the mean

free path between collisions (e.g. Braginskii 1965).

3.2 Background equilibrium and perturbations

For simplicity, we consider a plasma stratified in both density and

temperature in the presence of a uniform gravitational field in the

vertical direction, g = −g ẑ. The plasma is not self-gravitating, so

that g is a specified function of position. Without loss of generality,

the magnetic field is oriented along b̂ = bx x̂ + bz ẑ. We take the

background pressure to be isotropic and T i = Te = T , so that pi =
pe = p/2. We further assume that the ratio of the ion thermal and

magnetic pressures is large:

β ≡
8πpi

B2
=

v2
th

v2
A

≫ 1, (9)

where vth ≡ (p/ρ)1/2 = (2kBT/mi)
1/2 and vA ≡ B/(4πρ)1/2 are the

thermal and Alfvén speeds of the ions, respectively. Observations

of synchrotron radiation, inverse Compton emission, and Faraday

rotation suggest a plasma β parameter that ranges from ∼102 at the

centres of cool-core clusters to ∼104 in the outermost regions of the

ICM (for a review, see Carilli & Taylor 2002). Force balance then

implies

d ln p

dz
= −

g

v2
th

, (10)

so that the inverse of the ion sound-crossing time across a thermal

pressure scaleheight is equal to the dynamical frequency:

ωdyn ≡
( g

H

)1/2

=
vth

H
. (11)

In general b̂ · ∇T �= 0, and so there may be a heat flux in the

background state. In order to ensure our background state is in

equilibrium, we must formally assume b̂ · ∇Q = 0.4 However, as

2 The numerical pre-factor in equation (5) depends on the exact form of the

collision operator used. A more precise numerical pre-factor is 3075/1068

≃ 2.88 (e.g. Catto & Simakov 2004); the ion collision frequency is νi =
4
√

πnie
4
i/3m

1/2
i (kBTi)

3/2, where 
i is the ion Coulomb logarithm.
3 This assumes equal ion and electron temperatures, an assumption that may

not hold in the outermost regions of galaxy clusters.
4 Another approach (see Balbus & Reynolds 2010) is to construct an equi-

librium state in which conductive heating is balanced by radiative cooling.
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long as the timescale for the evolution of the background (global)

state is longer than the local dynamical time, our results do not

depend critically on the system actually being in global steady

state.

We allow perturbations (denoted by a δ) about the background

state and order their amplitudes as follows:

δv

vth

∼
δρ

ρ
∼

δT

T
∼

1

M

δp

p
∼

1

β1/2

δB

B
∼

1

β1/2
∼ M, (12)

whereM ≪ 1 is the Mach number. This amounts to the Boussinesq

approximation (i.e. relative changes in the pressure are much smaller

than relative changes in the temperature or density). Sound waves

are then eliminated from the analysis and so the flow behaves as

though it were incompressible, a good approximation in the ICM

where typical velocities are much smaller than the sound speed.

The perturbations are taken to have space–time dependence

exp(σ t + ik · r), where the growth rate σ may be complex and

the wavevector k = kx x̂ + ky ŷ + kz ẑ. We order the timescales and

the spatial scales as follows:

σ ∼ ωdyn ∼ ωcond ∼ ωvisc ∼ kvA ∼ M kvth ∼ M
2νi, (13)

k ∼
1

MH
∼

M

λmfp

. (14)

The latter ordering means that the relevant wavelengths are interme-

diate between micro and macroscopic, viz. k(λmfpH)1/2 ∼ 1. Note

that we are formally treating (me/mi)
1/2 as a parameter of order unity

here – a subsidiary expansion with respect to it will be done later.

This completes the formulation of the problem.

3.3 Linearized equations

With account taken of the ordering introduced in Section 3.2, the

linearized versions of equations (1)–(3) and (5)–(7) are then

k · δv = 0, (15)

σδv = −ik v2
th

(
δp⊥

p
+

1

β

δB||

B

)
+ ik|| v

2
A

δB

B
− g ẑ

δρ

ρ

− b̂
3

2

k2
||v

2
th

νi

δv||,

(16)

σδB = ik||Bδv, (17)

σ
δρ

ρ
− δvz

3

5

d

dz
ln

p

ρ5/3
=

2i

5p
k ·

(
b̂ δQ − δ b̂ χebz

dT

dz

)
, (18)

δQ = −χe δ b̂z

dT

dz
− χe ik||δT , (19)

δρ

ρ
= −

δT

T
, (20)

where the subscript || denotes the vector component parallel to the

background magnetic field (e.g. k|| = b̂ · k) and δ b̂ = δB⊥/B is the

perturbation of the unit vector b̂. Equation (20) expresses pressure

balance for the perturbations, a consequence of our low-Mach-

number ordering (equation 12). The total perpendicular pressure

perturbation δp⊥ in equation (16) is found by enforcing incom-

pressibility (equation 15).

The linearized entropy equation (18) deserves special attention.

The first term on the right-hand side is responsible for the MTI. If

the temperature increases in the direction of gravity, any alignment

between the perturbed magnetic field direction and the tempera-

ture gradient (δ b̂z �= 0) is unstable as long as conduction is rapid

enough to ensure approximately isothermal field lines. When the

temperature decreases in the direction of gravity, this term is sta-

bilizing. The second term on the right-hand side is responsible

for the HBI. If the temperature decreases in the direction of grav-

ity, convergence/divergence of heat-flux-channelling magnetic field

lines (k · δ b̂ �= 0) leads to buoyantly unstable density perturbations.

When the temperature increases in the direction of gravity, this term

is stabilizing.

Using equations (20) and (19), the linearized internal energy

equation (18) becomes

(σ + ωcond)
δρ

ρ
= δvz

3

5

d

dz
ln

p

ρ5/3

− i ωcond

δBz − 2bzδB||

B

1

k||

d ln T

dz

(21)

to leading order in M. Here we have introduced the characteristic

conduction frequency,

ωcond ≡
2

5
k2

||
χeT

p
=

3.2

10


i


e

(
mi

2me

)1/2

k2
||λmfpH ωdyn

≈ 10 k2
||λmfpH ωdyn,

(22)

where 
i (
e) is the Coulomb logarithm of the ions (electrons).

Equations (15)–(21) differ from those in Quataert (2008) only

by the final term in the momentum equation (16), which is due

to the perturbed pressure anisotropy (Braginskii viscosity). This

term introduces a characteristic frequency associated with viscous

damping:

ωvisc ≡
3

2

k2
||v

2
th

νi

=
3

2
k2

||λmfpH ωdyn, (23)

which is a factor of ≈6 smaller than ωcond.

3.4 Dispersion relation

The dispersion relation that results after combining equations (15)–

(17) and (21) may be written in the following form:

−ωvisc

k2
⊥

k2

=
σ̃ 2

[
σ̃ 2 (σ + ωcond) + σN 2

k2
x + k2

y

k2
+ ωcond g

d ln T

dz

K

k2

]

σ

[
σ̃ 2 (σ + ωcond) + σN 2

b2
xk

2
y

k2
⊥

+ ωcond g
d ln T

dz

b2
xk

2
y

k2
⊥

] ,

(24)

where k2
⊥ ≡ k2 − k2

|| is the square of the wavevector component

perpendicular to the background magnetic field,5

σ̃ 2 ≡ σ 2 + k2
||v

2
A, (25)

and

K ≡
(
1 − 2b2

z

) (
k2

x + k2
y

)
+ 2bxbzkxkz

= b2
xk

2 − k2
⊥ + b2

xk
2
y = −b2

zk
2 + k2

|| + b2
xk

2
y .

(26)

5 In contrast to our notation, Quataert (2008) and Balbus & Reynolds (2010)

use k2
⊥ to denote the square of the wavevector component perpendicular to

gravity, not to the background magnetic field.
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We have written K in three equivalent forms, all of which will prove

useful in our analysis. We have also introduced the Brunt–Väisälä

frequency given by

N 2 ≡
3

5
g

d

dz
ln

p

ρ5/3
> 0. (27)

Were conduction, pressure anisotropy and the magnetic field all

to be ignored, equation (24) would reduce to the usual dispersion

relation for internal gravity waves, σ 2 = −N2(k2
x + k2

y)/k2.

It will also be beneficial to have the equations for the perturbations

at hand, written in the limit of fast conduction (ωcond ≫ ωdyn ∼ σ ):

δρ

ρ
= −

δT

T
≃ ξz

d ln T

dz

×

⎡
⎢⎣

σ̃ 2(kz − 2bzk||) − σωvisc bx(b̂ × k)y

σ̃ 2kz − σωvisc bx(b̂ × k)y + g
d ln T

dz
2bxbzkx

⎤
⎥⎦ ,

(28)

δBx

B
= ik||ξx ≃ ik||ξz

×

⎡
⎢⎣

σ̃ 2kx + σωvisc bz(b̂ × k)y + g
d ln T

dz

(
1 − 2b2

z

)
kx

σ̃ 2kz − σωvisc bx(b̂ × k)y + g
d ln T

dz
2bxbzkx

⎤
⎥⎦ ,

(29)

δBy

B
= ik||ξy ≃ ik||ξz

1

ky

×

⎡
⎢⎣

σ̃ 2k2
y + σωvisc k2

y + g
d ln T

dz

(
1 − 2b2

z

)
k2

y

σ̃ 2kz − σωvisc bx(b̂ × k)y + g
d ln T

dz
2bxbzkx

−
σ̃ 2k2 + σωvisc k2

⊥ + g
d ln T

dz
K

σ̃ 2kz − σωvisc bx(b̂ × k)y + g
d ln T

dz
2bxbzkx

⎤
⎥⎦ , (30)

δBz

B
= ik||ξz, (31)

δB||

B
= ik||ξ|| ≃ ik||ξz

×

⎡
⎢⎣

σ̃ 2k|| + g
d ln T

dz
bxkx

σ̃ 2kz − σωvisc bx(b̂ × k)y + g
d ln T

dz
2bxbzkx

⎤
⎥⎦ , (32)

δB⊥

B
= ik||ξ⊥ ≃

δBy

B
ŷ + ik||ξz ( ŷ × b̂)

×

⎡
⎢⎣

σ̃ 2(b̂ × k)y + σωvisc(b̂ × k)y − g
d ln T

dz
bzkx

σ̃ 2kz − σωvisc bx(b̂ × k)y + g
d ln T

dz
2bxbzkx

⎤
⎥⎦ , (33)

where ξ = σδv is the Lagrangian displacement of a fluid element

(ξ z > 0 is upward). Equations (28) and (32) imply that the La-

grangian change in the temperature of a fluid element is


T

T
=

δT

T
+ ξz

d ln T

dz
≃ 2bzξ||

d ln T

dz
= −

2ibz

k||

d ln T

dz

δB||

B
, (34)

emphasizing that perturbations in magnetic field strength go hand-

in-hand with changes in temperature. This will turn out to be

an extremely important property for understanding the results of

Section 4.

3.5 Nature of perturbations

If we set ωvisc = 0, equation (24) returns the standard MTI–HBI

dispersion relation (see equation 13 of Quataert 2008):

σ̃ 2

[
σ̃ 2 (σ + ωcond) + σN 2

k2
x + k2

y

k2
+ ωcond g

d ln T

dz

K

k2

]
= 0. (35)

The σ̃ 2 = 0 branch of this dispersion relation represents Alfvén

waves that are polarized with δB along the y-axis. They are unaf-

fected by buoyancy. The other three modes are coupled slow and

entropy modes. If we further take the limit of fast conduction (ωcond

≫ ωdyn ∼ σ ), the entropy mode becomes σ ≃ −ωcond, while the

slow modes satisfy

σ̃ 2 ≃ −g
d ln T

dz

K

k2
. (36)

When the temperature gradient and K have opposite signs, one of

the slow modes may become unstable to the MTI/HBI.

Braginskii viscosity modifies this picture in two ways. First con-

sider the limit ky = 0, in which the wavevector lies entirely in the

plane spanned by gravity and the background magnetic field. In this

case, equation (24) becomes

σ̃ 2

[
σ̃ 2 (σ + ωcond) + σωvisc

k2
⊥

k2
(σ + ωcond)

+ σN 2
k2

x + k2
y

k2
+ ωcond g

d ln T

dz

K

k2

]
= 0.

(37)

The Alfvén-wave branch of the dispersion relation is unchanged,

since Braginskii viscosity does not affect motions perpendicular to

the magnetic field. In contrast, slow-mode–polarized perturbations

with k⊥ �= 0 are damped. This property of Braginskii viscosity is

the root cause of the significant changes to the nature of the allowed

unstable HBI (Section 4.1.1) and MTI (Section 4.2.1) modes.

Next consider the general dispersion relation (24) with ky �= 0. In

this case, Braginskii viscosity couples the Alfvén and slow modes.

This can be seen most clearly by taking the fast-conduction limit

(ωcond ≫ ωdyn ∼ σ ) of equation (24):

σ̃ 2

(
σ̃ 2 + σωvisc

k2
⊥

k2
+ g

d ln T

dz

K

k2

)
≃ −σωvisc g

d ln T

dz

b2
xk

2
y

k2
.

(38)

When ωvisc ≫ ωdyn the slow mode is rapidly damped, leaving only

σωvisc k2
⊥/k2 to highest order in the parentheses on the left-hand

side of equation (38). This term cancels the similar factor on the

right-hand side, ultimately leading to

σ̃ 2 ≃ −g
d ln T

dz

b2
xk

2
y

k2
⊥

, (39)

which may be unstable when the temperature increases in the di-

rection of gravity.6 We will elaborate on this result in Section 4.2.2,

6 There are other instances of an anisotropic damping mechanism coupling

the Alfvén and slow mode branches of a dispersion relation via a free energy

gradient. In weakly ionized plasmas, the interaction between velocity shear

and anisotropic magnetic resistivity (ambipolar diffusion and the Hall effect)

results in such a coupling – one which ultimately leads to shear-driven

instabilities (Kunz 2008).
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where we discuss this new ‘Alfvénic’ version of the MTI, but for

now we explain the physical content of equations (38) and (39). By

damping motions along field lines, Braginskii viscosity effectively

reorients magnetic field perturbations to be nearly perpendicular

to the background magnetic field (via flux freezing). These modes

therefore display characteristics of both slow and Alfvén modes:

they have density and temperature perturbations, and therefore are

subject to buoyancy forces, but their velocity and magnetic field

perturbations are predominantly polarized across the mean field.

We note in passing the striking similarity between equation (38)

and the dispersion relation for the axisymmetric magnetorotational

instability subject to Braginskii stresses (Balbus 2004; Islam &

Balbus 2005):

σ̃ 2

(
σ̃ 2 + σωvisc

k2
⊥

k2
+ g

d ln �2

dR

k2
Z

k2

)

= −σωvisc g
d ln �2

dR

b2
φk2

Z

k2
− 4�2 k2

Z

k2
σ 2 (40)

where g = �2R in a rotating disc. Aside from a 4�2 term due to

epicyclic motions, the equivalence is revealed by relabelling the

disc coordinate system (R, φ, Z) ↔ (z, x, y) and swapping one free

energy source (temperature gradient) for another (angular velocity

gradient).7 Braginskii viscosity couples the Alfvén- and slow-mode

branches of the dispersion relation via the angular velocity gradient

in very much the same way that it coupled these branches via the

temperature gradient in equation (38). Furthermore, when the an-

gular velocity decreases outwards and ωvisc ≫ � ∼ σ , the first term

on the right-hand side of equation (40) due to Braginskii viscosity

overwhelms the second term due to epicyclic coupling and drives

the magnetoviscous instability (MVI) by endowing slow-mode per-

turbations with Alfvén-mode characteristics (as in equation 38).

We therefore identify the behaviour revealed by equation (39) as

the temperature-gradient analogue of the MVI.

4 R ESULTS

4.1 dT/dz > 0: heat-flux–driven buoyancy instability

We first investigate the effects of Braginskii viscosity on the stability

of a stratified atmosphere in which the temperature decreases in the

direction of gravity, i.e. dT/dz > 0. Such an atmosphere was shown

by Quataert (2008) to be susceptible to the HBI if K < 0.

4.1.1 Case of ky = 0: standard HBI with and without Braginskii

viscosity

If Braginskii viscosity is ignored, it is straightforward to show from

equation (35) that the maximum HBI growth rate

σ 2
HBI,max ≃ g

d ln T

dz
b2

z (41)

occurs for wavevectors satisfying

k2
||

k2
⊥

≃ b2
z

σHBI,max

ωcond

(
1 +

1

5

∣∣∣∣
d ln p

d ln T

∣∣∣∣
)

≪ 1 (42)

to leading order in ωdyn/ωcond, where we have assumed k||H ≪
bzβ

1/2 – i.e. magnetic tension is negligible on the scales of interest.

7 We refer the reader to Balbus (2000, 2001) for a cogent discussion of

the analogy between angular momentum and entropy that underlies these

mathematical similarities.

Figure 3. HBI growth rate (normalized to the maximum growth rate√
g d ln T /dz) without (top panel) and with (bottom panel) Braginskii vis-

cosity for a stratified thermal layer with dln T/dln p = −1 threaded by a

vertical magnetic field (bz = 1). Magnetic tension is neglected; its effect is

discussed in Section 4.1.3. Each contour represents an increase in the growth

rate by 5 per cent. The solid lines (given asymptotically by equation (52)

with Braginskii viscosity and equation (43) without Braginskii viscosity)

trace the maximum growth rate for a given total wavenumber k; the max-

imum growth rate is given by equation (49) with Braginskii viscosity and

asymptotically at k||(λmfpH)1/2 ≫ 1 by equation (41) without Braginskii vis-

cosity. Braginskii viscosity dramatically reduces growth rates everywhere

except for a narrow band of wavenumbers around k|| given by equation (52).

Galaxy clusters with cool cores typically have H/λmfp ∼ 102–103 at radii

for which the temperature profile increases outwards, and so the maximum

wavenumbers for each axis span the range kH ∼ 40–127.

Equation (42) reveals that the HBI has a strong preference for

perpendicular wavenumbers. More precisely, using the definition

of ωcond (equation 22) in equation (42), we find that the maximum

growth rate occurs along a path through k space on which

k||(λmfpH )1/2 ≈ ±k
1/2
⊥ (λmfpH )1/4

× 0.6b3/4
z

(
1 +

1

5

∣∣∣∣
d ln p

d ln T

∣∣∣∣
)1/4 ∣∣∣∣

d ln T

d ln p

∣∣∣∣
1/8

.
(43)

This behaviour is exhibited in the top panel of Fig. 3, which shows

HBI growth rates in the (k||, k⊥) plane for bz = 1 (without Braginskii

viscosity). The solid line in the plot traces the maximum growth rate

through wavenumber space; it quickly asymptotes to equation (43).
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The HBI’s preference for perpendicular wavenumbers is also

reflected in the corresponding eigenvectors. Using equations (28)

and (36) we find that the density perturbation associated with the

HBI,

δρ

ρ
≃ −ξz

d ln T

dz

k2

k2
x

(
b2

z −
k2

||

k2

)
, (44)

is greatest when k2
|| ≪ k2 so that, e.g., upwardly displaced fluid

elements have the largest possible decrease in their density. More-

over, perpendicular wavenumbers are necessary to generate linear

perturbations in magnetic field strength,

δB||

B
≃ ik||ξz

k⊥

kx

, (45)

which lead to local convergence/divergence of the background heat

flux and consequent heating/cooling of the plasma (equation 34).

The problem is that it is precisely such perturbations that are

damped by Braginskii viscosity (see the bottom panel of Fig. 3). By

equation (34), upward displacements along magnetic field lines go

hand-in-hand with local heating (
T > 0) and a local increase in

the magnetic field strength (δB|| > 0).8 This causes a negative vis-

cous stress that damps motions along field lines, thereby rarefying

the magnetic field and reducing the strength of the perturbed heat

flux. This can be seen quantitatively by explicitly writing down the

buoyancy and viscous forces in the z-component of the momentum

equation (16) for the simple case bz = 1:

d2ξz

dt2
= · · · + g

d ln T

dz
ξz − ωvisc

dξz

dt
. (46)

For wavenumbers satisfying the ordering ωvisc ≫ ωdyn, or k2
||λmfpH

≫ 1, it is straightforward to show from equation (38) that the growth

rate is

σ ≃
g

ωvisc

d ln T

dz
∼

ω2
dyn

ωvisc

(47)

to leading order in ωdyn/ωvisc. In other words, the buoyancy and

viscous forces become nearly equal and opposite as the plasma

becomes more and more collisionless. The growth rate decreases

accordingly.

Despite all these, there are modes that remain unstable to the

HBI and retain non-negligible growth rates. However, it turns out

that they are confined to a thin band of wavenumber space in which

conduction is fast but viscous damping is small:

ωcond � ωdyn � ωvisc, (48a)

or, using the definitions (22) and (23),

3 k||(λmfpH )1/2 � 1 � k||(λmfpH )1/2. (48b)

Using the fact that k⊥ ≃ k for the fastest growing Braginskii-HBI

modes, it is possible to obtain analytic solutions for the maxi-

mum growth rate and fastest growing wavenumber. Defining ε ≡
ωvisc/ωcond ∼ 0.1, the maximum growth rate

σmax =
σHBI,max

(1 − ε)

[
1 − 2ε1/2

(
2 +

2

5

∣∣∣∣
d ln p

d ln T

∣∣∣∣
)1/2

×
(

1 + ε +
2ε

5

∣∣∣∣
d ln p

d ln T

∣∣∣∣
)1/2

+ ε

(
3 +

4

5

∣∣∣∣
d ln p

d ln T

∣∣∣∣
)]1/2

(49)

occurs at a parallel wavenumber satisfying

8 While Alfvénically polarized modes suffer no viscous damping, they are

HBI stable because δB|| = 0.

k2
||λmfpH =

σ 2
HBI,max − σ 2

max(1 + ε)

3 σmax ωdyn

(50)

≈ ε1/2 2bz

3

(
2

5
+ 2

∣∣∣∣
d ln T

d ln p

∣∣∣∣
)1/2

+ O(ε). (51)

Since k|| = kxbx + kzbz, equation (51) implies that the maximum

growth rate is attained along two straight lines in the (kx, kz) plane

given by

kz(λmfpH )1/2 ≈ −
bx

bz

kx(λmfpH )1/2

± ε1/4

(
2

3bz

)1/2 (
2

5
+ 2

∣∣∣∣
d ln T

d ln p

∣∣∣∣
)1/4

+ O(ε3/4).

(52)

This behaviour can be seen in Fig. 4, which exhibits HBI growth

rates in the (kx, kz) plane with (upper row) and without (lower

row) Braginskii viscosity for ky = 0 and various magnetic field

orientations. The solid lines trace the maximum growth rate through

wavenumber space; they quickly asymptote to equation (43) without

Braginskii viscosity and equation (52) with Braginskii viscosity.

For a fiducial cool-core temperature profile dln T/dln p = −1,

equations (49) and (50) give σ max = 0.57bz ωdyn and k||(λmfpH)1/2 =
0.60 b1/2

z , respectively. With typical values of H/λmfp ∼ 102–103

in the inner ∼200kpc of cool-core clusters where the temperature

increases with height, this implies k||H ∼ 6b1/2
z –19b1/2

z (increasing

inwards). These modes are quite extended along the magnetic field

direction and cannot be considered local. This is likely to have

important implications for the non-linear evolution of the HBI, par-

ticularly as the HBI reorients the mean magnetic field to be more

and more perpendicular to the temperature gradient. For example,

taking dln T/dln p = −1 and H/λmfp = 200, the parallel wavelength

of maximum growth λ||,max is equal to the thermal pressure scale-

height H when the magnetic field makes an angle of θ ≃ 33◦ with

respect to the x-axis. Thus, the field-line insulation found by many

numerical simulations to be a consequence of the standard HBI (e.g.

Bogdanović et al. 2009; Parrish et al. 2009) may not be as complete

as is currently believed.

Note further that equation (51) in the limit ε → 0 does not reduce

to the no-Braginskii case (equation 43). Moreover, the relationship

between k|| and k⊥ for the fastest growing modes discontinuously

changes from k|| ∝ k
1/2
⊥ without Braginskii viscosity (equation 43)

to k|| ∼ constant with Braginskii viscosity (equation 51) for per-

pendicular wavenumbers satisfying

k⊥(λmfpH )1/2 � 0.5

∣∣∣∣
d ln T

d ln p

∣∣∣∣
1/4

1

b
1/2
z

. (53)

This reflects the fact that including fast anisotropic heat conduc-

tion while neglecting Braginskii viscosity is a singular limit of the

equations.

4.1.2 Case of bxky �= 0: Alfvénic HBI

If bxky �= 0, the situation is actually worse:

σ ≃ i

(
g

d ln T

dz

b2
xk

2
y

k2
⊥

)1/2

+
ω2

dyn

ωvisc

∣∣∣∣
d ln T

d ln p

∣∣∣∣
k2

2k2
⊥

(
b2

xk
2
y

k2
⊥

−
K

k2

)

(54)

to leading order in ωdyn/ωvisc ≪ 1. The HBI becomes a slowly

growing overstability for wavevectors satisfying

k2
y >

∣∣∣∣
bx

bz

k||(k × b̂)y

∣∣∣∣ − (k × b̂)2
y, (55)
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Figure 4. HBI growth rate (normalized to
√

g d ln T /dz) for ky = 0, dln T/dln p = −1, and various magnetic field orientations θ ≡ cos −1(bx). Magnetic

tension is neglected; its effect is discussed in Section 4.1.3. Braginskii viscosity is included in the bottom row of plots. Each contour represents an increase in

the growth rate by 5 per cent. The dashed line denotes the direction of the background magnetic field. The solid lines (given asymptotically by equation (52)

with Braginskii viscosity and equation (43) without Braginskii viscosity) trace the maximum growth rate for a given total wavenumber k; the maximum growth

rate is given by equation (49) with Braginskii viscosity and asymptotically at k||(λmfpH)1/2 ≫ 1 by equation (41) without Braginskii viscosity. The overall

maximum growth rates in each of the Braginskii-HBI plots (bottom row) are reduced by a factor ≃1.66 relative to those in the respective standard HBI plots

(top row). The thick black diagonal region in each plot is where k|| = 0.

a weakly damped oscillation for wavevectors satisfying

k2
y <

∣∣∣∣
bx

bz

k||(k × b̂)y

∣∣∣∣ − (k × b̂)2
y, (56)

and a pure oscillation if the left- and right-hand sides of these

inequalities are in fact equal. Indeed, in the limit ωdyn/ωvisc ≪ 1

equations (28)–(34) imply

δρ

ρ
≃ ξz

d ln T

dz
+ iO

(
ωdyn

ωvisc

)
+ O

(
ω2

dyn

ω2
visc

)
, (57)


T

T
∼ iO

(
ωdyn

ωvisc

)
+ O

(
ω2

dyn

ω2
visc

)
, (58)

δB||

B
∼ iO

(
ωdyn

ωvisc

)
+ O

(
ω2

dyn

ω2
visc

)
. (59)

By effectively reorienting magnetic field perturbations to be nearly

perpendicular to the background magnetic field, Braginskii viscos-

ity prevents slow-mode perturbations from tapping into the free

energy carried by the background heat flux. To highest order in

ωdyn/ωvisc, these modes appear as HBI-stable Alfvén waves whose

magnetic tension has been effectively increased by the adverse tem-

perature gradient.

4.1.3 Effect of magnetic tension on the HBI

When both Braginskii viscosity and magnetic tension are included

there are two parallel-wavenumber cut-offs, the relative magnitude

of which may play an important role in the evolution and non-linear

saturation of the HBI. Roughly speaking, magnetic tension is appre-

ciable for parallel wavenumbers satisfying k||,maxvA � σ max, where

k||,max and σ max are given by equations (50) and (49), respectively.

For a fiducial cool-core temperature profile, dln T/dln p = −1, this

amounts to an upper limit on the plasma beta parameter of bzβ �

H/λmfp. For β less than this value, magnetic tension – not Braginskii

viscosity – sets the fastest growing mode.

4.2 dT/dz < 0: magnetothermal instability

Next we investigate the effects of Braginskii viscosity on the stabil-

ity of a stratified atmosphere in which the temperature increases in

the direction of gravity, that is, dT/dz < 0. Such an atmosphere was

shown by Balbus (2000) to be susceptible to the MTI if K > 0.
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4.2.1 Case of ky = 0: standard MTI with and without Braginskii

viscosity

Consider first the case ky = 0. Equation (38) shows that the maxi-

mum MTI growth rate

σ 2
MTI,max = g

∣∣∣∣
d ln T

dz

∣∣∣∣ b2
x (60)

occurs for k⊥ = 0, where we have assumed that k||H ≪ bxβ
1/2

(i.e. magnetic tension is negligible on the scales of interest). The

physical reasons for this are simple. Since k · δB = 0, taking k⊥ =
0 implies δB|| = 0. This not only ensures that any background heat

flux is unable to cool (heat) upwardly (downwardly) displaced fluid

elements (see equation 34), but also that pressure anisotropy cannot

damp these modes.

If we allow for a small wavenumber component perpendicular to

the background field, k2
⊥ ≪ k2, the leading-order solution for the

growth rate is given by

σ 2 ≃ σ 2
MTI,max

(
1 −

k2
⊥

b2
xk

2

)
− σMTI,max ωvisc

k2
⊥

k2
. (61)

The first negative contribution on the right-hand side of this equa-

tion is tied to the fact that generating a δB|| implies k · δ b̂ �= 0.

Having k · δ b̂ �= 0 causes upwardly displaced fluid elements, which

are trying to heat and rise by the MTI, to be cooled by the locally

divergent background heat flux (and vice versa for downward dis-

placements). This reduces the efficiency of the MTI and implies

that unstable modes with large growth rates are confined to a wedge

in wavenumber space of width

k⊥ � bxk||. (62)

As k|| increases, more and more perpendicular wavenumber space

becomes available for fast-growing modes (see the top panel of

Fig. 5).

When ωvisc ≫ ωdyn, however, this term is relatively unimportant

when compared to the last term on the right-hand side of equa-

tion (61). Modes with k2
⊥ �= 0 are rapidly damped by Braginskii

viscosity. This behaviour continues beyond the small values of k⊥,

where the growth rate then becomes

σ ≃
g

ωvisc

∣∣∣∣
d ln T

dz

∣∣∣∣
(

b2
xk

2

k2
⊥

− 1

)
(63)

to leading order in ωdyn/ωvisc ≪ 1. These effects are evident in

Figs 5 and 6, which exhibit growth rates in the (kx, kz) plane for

various inclinations of the background magnetic field. From equa-

tion (63), we find that unstable modes with large growth rates are

confined by Braginskii viscosity to a narrow band in wavenumber

space of width

k⊥
(
λmfpH

)1/2
�

(
d ln T

d ln p

)1/4

b1/2
x (64)

about the line k || b̂. In contrast with the no-Braginskii case

(equation 62), going to larger k|| does not open up more perpen-

dicular wavenumber space for fast-growing modes.

4.2.2 Case of bxky �= 0: Alfvénic MTI

Recall equation (38):

σ̃ 2

(
σ̃ 2 + σωvisc

k2
⊥

k2
+ g

d ln T

dz

K

k2

)
≃ −σωvisc g

d ln T

dz

b2
xk

2
y

k2
,

(65)

Figure 5. MTI growth rate (normalised to the maximum growth rate√
−g d ln T /dz) for ky = 0 without (top panel) and with (bottom panel)

Braginskii viscosity for a stratified thermal layer with dln T/dln p = 1/3

threaded by a horizontal magnetic field (bx = 1). Magnetic tension is ne-

glected; its effect is discussed in Section 4.2.3. Each contour represents an

increase in the growth rate by 5 per cent. Braginskii viscosity suppresses

MTI growth rates for k �= k|| (see equations 61 and 64). Galaxy clusters

typically have H/λmfp ∼ 10–100 at radii for which the temperature profile

decreases outwards, and so the maximum wavenumbers for each axis span

the range kH ∼ 13–40.

which is the general dispersion relation (24) written in the fast-

conduction limit (ωcond ≫ ωdyn ∼ σ ). When b2
xk2

y �= 0, the right-

hand side of this equation becomes active and leads to behaviour

otherwise absent without Braginskii viscosity. The Alfvén-mode

branch of the dispersion relation is now coupled to the slow-mode

branch; slow-mode perturbations induce an Alfvénic response.

Consider further the limit ωvisc ≫ ωdyn. Then we obtain

equation (39):

σ̃ 2 ≃ g

∣∣∣∣
d ln T

dz

∣∣∣∣
b2

xk
2
y

k2
⊥

. (66)

This is always unstable, regardless of the sign of K, and is maximal

when k2
y = k2

⊥ (i.e. the projection of k on to the x–z plane is parallel to

the magnetic field). In other words, wavevectors with large parallel

components and any component along the y-axis grow at σ MTI,max

(see Fig. 7). Indeed, one can readily show from equation (65) that
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Figure 6. MTI growth rate (normalized to
√

−g d ln T /dz) for ky = 0, dln T/dln p = 1/3, and various magnetic field orientations θ ≡ cos −1(bx). Magnetic

tension is neglected; its effect is discussed in Section 4.2.3. Braginskii viscosity is included in the bottom row of plots. Each contour represents an increase in

the growth rate by 5 per cent. The dashed line denotes the direction of the background magnetic field, which also traces the maximum growth rate for a given

total wavenumber k. The maximum growth rate is given by equation (60) and occurs for k⊥ = 0. Braginskii viscosity suppresses MTI growth rates for k �= k||
(see equations 61 and 64).

the growth rate for these k2
y = k2

⊥ Alfvénic MTI modes is

σ ≃ σMTI,max −
ω2

dyn

ωvisc

d ln T

d ln p

b2
z

2
(67)

to leading order in ωdyn/ωvisc, so that one only requires

k||(λmfpH )1/2 �

(
d ln T

d ln p

)1/4
bz

b
1/2
x

(68)

to bring the growth rate close to σ MTI,max (e.g. see the rightmost

panel in the bottom row of Fig. 7). One consequence is that it is

no longer necessary to go to very large parallel wavenumbers (and

risk stabilization by magnetic tension) just to marginally destabilize

ky �= 0 modes at small bx (e.g. see the rightmost panel in the top row

of Fig. 7).

The physical origin of this new behaviour may be uncovered by

computing the eigenvectors (28), (32) and (34) to leading order in

ωdyn/ωvisc:

δρ

ρ
≃ −ξz

∣∣∣∣
d ln T

dz

∣∣∣∣

[
1 −

ωdyn

ωvisc

(
d ln T

d ln p

)1/2
2b2

z

bx

]
, (69)

δB||

B
≃ ik||ξz

ωdyn

ωvisc

(
d ln T

d ln p

)1/2
bz

bx

. (70)


T

T
≃ −ξz

∣∣∣∣
d ln T

dz

∣∣∣∣
ωdyn

ωvisc

(
d ln T

d ln p

)1/2
2b2

z

bx

. (71)

These are essentially MTI modes that have been freed from the

unfavourable consequences of having k · δ b̂ �= 0 by rapid paral-

lel viscous damping. Rapid Braginskii damping endows buoyantly-

unstable slow-mode perturbations (equation 69) with Alfvénic char-

acteristics (i.e. perturbed magnetic fields and velocities that are

predominantly oriented perpendicular to the background magnetic

field – equation 70), which allows fluid elements to approximately

maintain their temperature as they are displaced (equation 71). The

presence of a non-zero ky is necessary in order to ensure δB|| is van-

ishingly small for arbitrary kx and kz, while simultaneously preserv-

ing the divergence-free constraint on the magnetic field. Therefore,

many wavevectors for which K ≤ 0 that are stable to the standard

MTI (e.g. k2
y = k2

⊥ ≥ k2b2
x /b2

z , which is the black region in the

upper-right panel of Fig. 7) are actually unstable with growth rates

≃σ MTI,max.

4.2.3 Effect of magnetic tension on the MTI

When ky = 0 the fastest growing MTI modes, those with k = k||,

are unaffected by Braginskii viscosity. In this case, magnetic ten-

sion provides the only parallel-wavenumber cut-off by suppressing
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Figure 7. MTI growth rate (normalized to
√

−g d ln T /dz) for k2
y = k2

⊥, dln T/dln p = 1/3, and various magnetic field orientations θ ≡ cos −1(bx). Magnetic

tension is neglected; Braginskii viscosity is included in the bottom row of plots. Each contour represents an increase in the growth rate by 5 per cent. Many

ky �= 0 modes that are either stable or only grow slowly in the absence of Braginskii viscosity become unstable with growth rate σMTI,max when Braginskii

viscosity is included.

wavenumbers for which k||vA � σ MTI,max, or

kH = k||H � β1/2

(
d ln T

d ln p

)1/2

bx . (72)

Setting kH ∼ 2π provides a strict lower limit on beta below which

local ky = 0 MTI modes are stabilized:

β �
d ln p

d ln T

(
2π

bx

)2

. (73)

For a fiducial cluster temperature profile beyond the cooling radius,

dln T/dln p = 1/3, this gives β � 120 b−2
x .

If we relax our restriction on ky, Braginskii viscosity drives

Alfvénic modes unstable by coupling them to buoyantly-unstable,

rapidly-damped slow modes. Setting k||vA ∼ σ MTI,max in equa-

tion (68) we find that, unless

β �
H

λmfp

(
d ln p

d ln T

)1/2
b2

z

b3
x

, (74)

there are fast-growing Alfvénic MTI modes. With typical values

of H/λmfp ∼ 10–100 and β ∼ 103–104 in the outer regions of the

ICM where the temperature decreases outwards, magnetic tension

is unlikely to affect these modes except possibly when the field is

nearly vertical (bx ≪ 1). Note that increasing ky does not increase

magnetic tension since b̂ ⊥ ŷ.

4.3 dT/dz < 0: heat-flux–driven buoyancy overstability

The reader may have noticed a very thin vertical band of unstable

modes in the θ = 60◦ panels of Fig. 7. These modes, found recently

by Balbus & Reynolds (2010), are g-modes driven overstable by

a background heat flux. They become important only when the

background magnetic field is vertical (bz = 1, K = −k2
⊥), since this

field orientation is (linearly) stable to the MTI. In this Section we

analyse these modes while including Braginskii viscosity.9

We begin by finding the fastest-growing mode in the absence

of Braginskii viscosity. Our task is greatly simplified by knowing

a priori that k⊥ ≃ k for these modes. We also neglect magnetic

tension; we will verify a posteriori that it is unlikely to affect the

fastest growing mode for conditions found in the outer regions of

the ICM where this overstability may be present. Our dispersion

relation (24) then becomes

σ 3 + σ 2ωcond + σN 2 + ωcond g

∣∣∣∣
d ln T

dz

∣∣∣∣ = 0. (75)

Solutions of this equation have both real and imaginary parts, σ =
γ + iω. Substituting this decomposition of σ into equation (75) and

9 We have chosen not to present a similar analysis for the radiative-cooling-

driven g-mode overstability also found by Balbus & Reynolds (2010) for

dT/dz > 0. The necessary assumption that the local cooling rate is com-

parable to the dynamical frequency conflicts with our assumption of an

equilibrium background state that evolves slower than the instabilities do.

C© 2011 The Authors, MNRAS 417, 602–616

Monthly Notices of the Royal Astronomical Society C© 2011 RAS



614 M. W. Kunz

separating into real and imaginary parts gives two equations for γ

and ω as functions of ωcond. The maximum growth rate is then found

by differentiating these with respect to ωcond, setting ∂γ /∂ωcond =
0 (so as to maximize the real part of σ ), and solving these four

equations simultaneously. Here we simply state the result:10

γmax = ωdyn

1

2

(
d ln T

d ln p
−

1

5

) (
d ln p

d ln T

)1/2

, (76)

ωmax = ωdyn

(
3

10
−

1

4

d ln T

d ln p
−

1

100

d ln p

d ln T

)1/2

, (77)

ωcond,max = ωdyn

1

5

(
d ln p

d ln T

)1/2

, (78)

so that

k||,max(λmfpH )1/2 ≈ 0.1

(
d ln p

d ln T

)1/4

. (79)

This mode is overstable if

d ln T

d ln p
>

1

5
. (80)

In order for magnetic tension to significantly affect this mode,

k||,maxvA � γ max or, equivalently,

β � 0.08
H

λmfp

(
d ln T

d ln p
−

1

5

)−2 (
d ln T

d ln p

)1/2

. (81)

With typical values of H/λmfp ∼ 10–100 and β ∼ 103–104 in the

outer regions of the ICM where the temperature decreases outwards,

it is highly unlikely magnetic tension will affect the growth rate of

this mode.

If we take into account Braginskii viscosity, it is straightforward

to show that a necessary condition for stability is given by

R
′ +

ωvisc

ωcond

k2
⊥

k2
+

ωvisc

N 2

(
ωcond + ωvisc

k2
⊥

k2

)
> 0, (82)

where

R
′ ≡ 1 −

(
2

5

d ln p

d ln T
− 1

)−1

. (83)

If the temperature profile satisfies equation (80), then R′ < 0

and buoyant modes are potentially overstable (Balbus & Reynolds

2010). A comparison with equation (27) of Balbus & Reynolds

(2010) reveals that Braginskii viscosity modifies this by effectively

increasing R′ by ≃ωvisc/ωcond ∼ 0.1 so that equation (80) becomes

d ln T

d ln p
>

1

5

(
1 −

1

2

ωvisc

ωcond + ωvisc

)−1

≃ 0.22 (84)

and by further stabilizing modes for which

ωvisc ωcond � −N 2
R

′, (85)

or, using the definitions (22) and (23),

k||(λmfpH )1/2 � 0.6

(
d ln T

d ln p
−

1

5

)1/4

. (86)

10 This assumes N2 > 0 or, equivalently, dln T/dln p < 2/5.

However, the maximum growth rate of the overstability changes

very little when Braginskii viscosity is included:

γ ≃ γmax − ωdyn

ε

20

(
d ln p

d ln T

)1/2

×

[
1 +

1

5

d ln p

d ln T
−

1

25

(
d ln p

d ln T

)2
] (87)

to leading order in ε = ωvisc/ωcond ∼ 0.1. For a fiducial cluster tem-

perature profile of dln T/dln p = 1/3, the Braginskii term amounts

to a correction �16 per cent. Braginskii viscosity does not signifi-

cantly affect the fastest growing overstable mode.

5 D ISCUSSION

The low degree of collisionality found in astrophysical plasmas

such as the ICM causes heat and momentum transport to become

anisotropic with respect to the magnetic field direction. This im-

plies anisotropic heat flux and pressure. The former has been pre-

viously found to play a destabilizing role in thermally stratified

atmospheres, causing instabilities such as the MTI (when the tem-

perature increases in the direction of gravity; Balbus 2000, 2001)

and the HBI (when the temperature decreases in the direction of

gravity; Quataert 2008), as well as g-mode overstabilities (Balbus &

Reynolds 2010). In this paper, we have concentrated on the conse-

quences anisotropic pressure has for the stability of the ICM.

We have argued that one cannot consider the limit of fast con-

duction along field lines while neglecting the Braginskii pressure

anisotropy. Although there is a timescale disparity between the two

effects – anisotropic heat conduction acts on a timescale a factor

of ∼10 shorter than does pressure anisotropy – both are generally

much faster than (or at least as fast as) the dynamical timescale.

Since the MTI and HBI occur with a growth rate comparable to the

dynamical frequency, pressure anisotropy affects their dynamics

significantly.

In the case of the HBI, its propensity (or, more accurately, its

need) to generate fluctuations along the background magnetic field

suffers from the requirement for particles in a weakly collisional

plasma to conserve their first and second adiabatic invariants. The

HBI changes the field strength to linear order, which induces a

pressure anisotropy, which manifests itself as Braginskii viscosity

and kills off the motions that generated the change in field strength in

the first place. The only motions to entirely escape this constraining

effect of pressure anisotropy – those that are Alfvénically polarized

– are also those that are stable to the HBI. The fastest growing HBI

modes no longer occur at large parallel wavenumbers, but rather

at wavenumbers satisfying the timescale ordering ωcond � ωdyn �

ωvisc, or

3 k||(λmfpH )1/2 � 1 � k||(λmfpH )1/2.

Perturbations whose wavelengths along the background magnetic

field are smaller than the thermal-pressure scaleheight by at least

a factor of ∼2π(λmfp/H )1/2, while potentially unstable to the

HBI, are nevertheless strongly damped. Small-wavelength perturba-

tions whose wavevectors have a component perpendicular to both

gravity and the background magnetic field behave like modified

Alfvén waves that are only slowly growing or decaying (depend-

ing on their exact wavevector orientation; see equation 54). Unless

bzβ � H/λmfp, Braginskii viscosity – not magnetic tension – sets

the maximum unstable parallel wavenumber.

The situation with the MTI is more complicated. The standard

MTI has a slight preference for wavevectors with projections in
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the x–z plane that are aligned with the background magnetic field

(see the top row of Fig. 6). This obviates heat exchange with any

background heat flux, a stabilizing effect when the temperature in-

creases in the direction of gravity. Pressure anisotropy reinforces

this preference, since perturbations whose projected wavevectors

are not perfectly aligned with the background magnetic field are

subject to strong viscous damping (see bottom row of Fig. 6).

We have also found that many modes that were considered MTI

stable [e.g. k2
y = k2

⊥ ≥ k2b2
x /b2

z ] or slowly growing become un-

stable in the presence of Braginskii viscosity and grow at the

maximum possible rate for a given background magnetic field ori-

entation (see Fig. 7). This is because, when k · (b̂ × g) �= 0, Bra-

ginskii viscosity couples the Alfvén- and slow-mode branches of

the dispersion relation, so that slow-mode perturbations excite a

buoyantly unstable Alfvénic response. By damping perturbations

along magnetic field lines, pressure anisotropy frees these modes

from the unfavourable consequences of having local field-line

convergence/divergence.

We anticipate that many of the results found by numerical sim-

ulations of the MTI and HBI will change both quantitatively and

qualitatively when the equations including both anisotropic heat

and momentum transfer are implemented. This will likely have im-

portant consequences for our understanding of the thermodynamic

stability of the ICM.

Depending on the degree of collisionality in the cool cores of

galaxy clusters, the field-line insulation found in many simulations

to be a consequence of the non-linear evolution of the HBI (e.g.

Bogdanović et al. 2009; Parrish et al. 2009) might be attenuated.

This is because the large wavenumbers required to keep the HBI

in action as the magnetic field becomes more and more horizontal

are strongly suppressed by the pressure anisotropy they generate.

Moreover, the wavenumbers at which the HBI survives largely un-

suppressed have parallel components too small to rigorously be

considered local, especially as the HBI reorients the mean field to

be horizontal (see equation 50). For a fiducial cool-core tempera-

ture profile dln T/dln p = −1, the parallel wavelength of maximum

growth is equal to the thermal pressure scaleheight when bz ≈
110λmfp/H. It is therefore tempting to speculate that, in the absence

of strong turbulent stirring by an external agent, there exists a link

between the degree of collisionality in cool cores and the mean

direction of the magnetic field.

In the outer regions of non-isothermal clusters the non-linear evo-

lution of the MTI may be more vigorous than previously thought,

since many modes classified as stable or slow growing are actually

maximally unstable. Moreover, the fact that Braginskii viscosity

couples damped ky �= 0 slow modes with MTI-unstable Alfvén

modes, a feature not present in the standard MTI, may profoundly

affect the non-linear evolution of the magnetic field. On the other

hand, the non-linear excitation of the MTI out of its linearly sta-

ble end state (bx = 0), which is triggered by buoyantly neutral

horizontal motions (see McCourt et al. 2011), is unlikely to be af-

fected by Braginskii viscosity. These motions occur perpendicular

to the magnetic field (i.e. k⊥ = 0) and are therefore undamped by

Braginskii viscosity. In either case, the spectrum of unstable modes

will certainly be different, not only due to the presence of a parallel

viscous cut-off but also because pressure anisotropy significantly

modifies the dependence of growth rate on wavenumber.

The heat-flux–driven buoyancy overstability elucidated ana-

lytically by Balbus & Reynolds (2010) and numerically by T.

Bogdanović (private communication) is not significantly affected

by pressure anisotropy. This is because the overstability occurs at

sufficiently small wavenumbers such that conduction (and therefore

viscosity) is not overwhelming (see equations 79 and 87). Braginskii

viscosity only shifts the stability boundary slightly (equation 82).

The non-linear evolution of the MTI and HBI in the presence of

anisotropic viscosity is, at least in principle, amenable to numeri-

cal simulation. The Athena code affords one promising venue, as

it is already set up for the inclusion of both anisotropic conduc-

tion and anisotropic viscosity (J. Stone, private communication). In

practise, however, the implementation of pressure anisotropy into a

numerical code is rather nuanced. If the pressure anisotropy exceeds

∼1/β, very fast microscale instabilities (e.g. firehose, mirror) can

be triggered, which will grow rapidly at the grid scale and wreak

havoc upon a simulation if left unchecked. Exactly how such insta-

bilities non-linearly saturate remains very much an open question

(e.g. see Sharma et al. 2006; Schekochihin et al. 2008; Rosin et al.

2011) and, in lieu of performing a full kinetic calculation, important

choices will need to be made by the simulator regarding anisotropy

limiters. Despite these rather foreboding complications, properly

simulating the ICM with equations that include both anisotropic

heat and momentum transfer would be a major step forward in our

understanding of the dynamical stability of the ICM.
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