Study of Magnetic Reconnection in Laboratory Experiments

Hantao Ji

Center for Magnetic Self-Organization Department of Astrophysical Sciences and Plasma Physics Laboratory Princeton University

The Future of Plasma Astrophysics Les Houches, France February 25-March 8, 2013

Magnetic Reconnection As A Plasma Physics Problem

- Strongly nonlinear, therefore interesting

 Singularity
- Ubiquitous, therefore fundamental
 - Fusion, space, solar, and astrophysical plasmas
- All aspects of plasma physics (multi-scale and multi-physics)
 - MHD, kinetic, anything within, and anything between
- Difficult, but rapid progress in recent years
 - Modern technologies and powerful simulations

Magnetic Reconnection Occurs in Nearly All Natural and Fusion Plasmas

Laboratory fusion plasmas

Solar plasma

Magnetospheric plasma

More distant astrophysical plasm³as

"Sawtooth Oscillation" in Tokamaks

Ohmic Transformer Vertical field coils Toroidal field coils Plasma magnetic field line Vacuum chamber

Tokamak Sawtooth Oscillations (TFTR)

2-D T_e profiles by ECE (electron cyclotron emission) measurements, **representing magnetic fluxes**

H. Park et al. (2006)

∆*T/T =*>

R

Carrington flare (1859, Sep 1, am 11:18)

- Observed by Richard Carrington and Richard Hodgson (England)
 - White flare for 5 minutes
 - Very bright aurora appeared next day at many places on Earth, e.g. Cuba, the Bahamas, Jamaica, El Salvador, and Hawaii.
- Largest magnetic storm (>1000 nT) in recent 200 yrs.

Telegraph systems all over Europe and North America failed, in some cases even shocking telegraph operators. Telegraph pylons threw sparks and telegraph paper spontaneously caught Fire (Loomis 1861)

http://en.wikipedia.org/wiki/Solar_storm_of_1859

Solar Flares

Based on K. Shibata (2007)

Million Degrees Coronal Plasmas

10

Aurora From Space (POLAR)

Solar Wind Interacts With Earth's Magnetosphere

Y-Ray Flares from Crab Nebula (Fermi)

Roles of Laboratory Experiments in Understanding Astrophysical Plasmas

- Motivated by space and astrophysical observations
- Verify/confront existing theory; discover new physics → essential for application to astrophysics
- Benchmark/challenge simulation → unique opportunity to validate codes
- Compare with observations → support space missions

Collaboration Research for Plasma Astrophysics

Two Types of Experiments

- All-in-one: many competing processes coexist; difficult to differentiate
 - *e.g.* tokamaks
- Problem-specific: one process dominates
 e.g. MRX for magnetic reconnection

Controllability is the key: specify conditions, when, and where to observe how; diagnostics is the other key

Early Linear Experiments

70' Syrovatskii & Frank: ρ_i << L but S=1-10: diffusive MHD

80' Stenzel & Gekelman: S=1-10 but $\rho_i >> L$: EMHD

Classical 2D Reconnection Model: Sweet-Parker Model vs Petschek Model

...but still much longer than the observations of a few minutes

...but not a steady state solution with uniform resistivity

What do we see in the lab?

Magnetic Reconnection Experiment (MRX) (since 1995, mrx.pppl.gov)

The Basic Experimental Idea

"Pull" reconnection

Control + Diagnostics

Realization of Stable Current Sheet and Quasi-steady Reconnection

Detailed diagnostics: quantitative studies possible

Sweet-Parker Model Works in *Collisional MHD***!**

Collisionless: Apparent Resistivity Explained by Two-fluid Effects (separate ion and electron motions)

Generalized Ohm's law:

23

• Black lines \rightarrow magnetic flux.

- Black lines \rightarrow magnetic flux.
- Blue lines \rightarrow ion flow streamlines.

- Black lines \rightarrow magnetic flux.
- Blue lines \rightarrow ion flow streamlines.
- Red arrows \rightarrow electron flow velocity.

Different motions of ions and electrons

- Black lines \rightarrow magnetic flux.
- Blue lines \rightarrow ion flow streamlines.
- Red arrows \rightarrow electron flow velocity.
- Brown arrows \rightarrow In-plane current.

Different motions of ions and electrons

- Black lines \rightarrow magnetic flux.
- Blue lines \rightarrow ion flow streamlines.
- Red arrows \rightarrow electron flow velocity.
- Brown arrows \rightarrow In-plane current.

Different motions of ions and electrons

What do we see in the lab?

Quadrupole Out-of-Plane Field Detected: Ion Scale Physics Confirmed!

Ren et al, PRL (2005) Yamada et al. PoP (2006)

Brown et al. PoP (2006)

Consistent with Space Data

Mozer et al. (2002)

Next Frontier: Electron Diffusion Regions

- Magnetic field *reconnects* in electron layer to change its topology while electrons are energized.
- In 2D collisionless reconnection, electron non-gyrotropic pressure dominates the dissipation.

Vasyliuna ('75), Sonnerup ('88), Dungey ('88), Lyons & Pridmore-Brown ('90) Cai & Lee ('97), Hesse et al. ('99), Pritchett ('01), Kuznetsova et al. ('01)

• Limited observations in space

Scudder et al. ('02), Mozer ('05), Wygant et al. ('05), Phan et al. ('07), Chen et al. ('08) Scudder et al. ('12)

Magnetospheric Multi-Scale (MMS) mission

First Detection of Electron Diffusion Region in Laboratory

2D PIC Simulation in MRX Setup

Dorfman, et al. PoP ('08)

All Ion-Scale Features Are Reproduced By 2D PIC Simulations...

Ji et al. GRL (2008) Dorfman et al. PoP (2008)

... But NOT on Electron Scales: $\delta_{exp} = 8 c/\omega_{pe}$ versus $\delta_{sim} = 1.5 - 2 c/\omega_{pe}$

How can 3-D dynamics affect the reconnection process?

Waves and Turbulence

• 3-D variation allows for a large class of waves: Can these waves generate anomalous resistivity that speeds up reconnection?

(Ji, et. al., PRL, 2004)

Flux Rope Structures

 Islands in 2.5-D are analogous to flux ropes in 3-D

(Daughton, et. al., Nature Physics, 2011)

3D Simulations Show Existence of EM Waves Under Similar Conditions

V. Roytershteyn et al. PoP (2013)

Wave Dispersion Agrees with MRX, Consistent with Intermediate Wavelength EM LHDW

- Also consistent with space observations
- Layer width discrepancy still persists!

V. Roytershteyn et al. PoP (2013)

39

Impulsive Reconnection due to 3D Flux Rope Ejection Out of Current Sheet

S. Dorfman et al. GRL (2013)

In-plane

Out-of-the-plane

Flux Rope Dynamics

J. Yoo (2012)

3D Flux Ropes Confirmed!

J. Jara-Almonte (2012)

133734 : 326.0 134049 : 326.0 4cm -0.010 0.01 -0.02 0.08 -0.02 0.07 0.00 0.08 0.00

Very 3D

~ 2D ⁴³

Flux Rope Dynamics May Explain the Observed Thicker Layers

Shots 110873-111251

Flux Ropes in Space Plasmas

Øieroset et al. (2011)

SDO obervation Cheng et al. (2011)

3-Nov-2010 12:06:09 131

Is the reconnection rate the only question?

- How is reconnection rate determined? (*The rate problem*)
- How does reconnection take place in 3D? (*The 3D problem*)

Local 3D: Micro-Turbulence in Current Sheet Characterized

30

500

Carter et al. PRL (2002) Ji et al. PRL (2004) Fox et al. PRL (2008) Dorfman et al. (2011) Inomoto et al. (2012) Roytershteyn et al. (2012) r=40 cm, $t=260-2/0\mu$ s

How about flux ropes?

- How is reconnection rate determined? (*The rate problem*)
- How does reconnection take place in 3D? (*The 3D problem*)
- How does reconnection start? (*The onset problem*)

Global 3D: Cause of the Reconnection Onset in Periodic Systems

Katz et al. (2010)

Versatile Toroidal Facility (MIT)

Global 3D: Cause of the Reconnection Onset in Periodic Systems

Madison Symmetric Torus (Wisconsin)

Prager et al. (2005)

- How is reconnection rate determined? (*The rate problem*)
- How does reconnection take place in 3D? (*The 3D problem*)
- How does reconnection start? (*The onset problem*)
- How does partial ionization affect reconnection? (*The partial ionization problem*)

The Partial Ionization Problem: Reconnection is faster or slower?

Solar chromosphere is a dynamic place for magnetic reconnection

Shibata et al., Science (2007)

MRX

Lawrence et al. PRL (2013)

- How is reconnection rate determined? (*The rate problem*)
- How does reconnection take place in 3D? (*The 3D problem*)
- How does reconnection start? (*The onset problem*)
- How does partial ionization affect reconnection? (*The partial ionization problem*)
- How do boundary conditions affect reconnection process? (*The boundary condition problem*)

The Boundary Problem: Line-tied or Freeend for Flux Rope Dynamics

Revisiting EMHD Physics in Current Sheet

80' Stenzel & Gekelman: S=1-10 but $\rho_i >> L$: EMHD

2013 O. Grulke et al. at VINETA

- How is reconnection rate determined? (*The rate problem*)
- How does reconnection take place in 3D? (*The 3D problem*)
- How does reconnection start? (*The onset problem*)
- How does partial ionization affect reconnection? (*The partial ionization problem*)
- How do boundary conditions affect reconnection process? (*The boundary condition problem*)
- How are particles energized? (*The energy problem*)

The Energy Problem: Electron Energization

Egedal et al. (2005)

• Potential well around X-line, based on results from VTF experiment, can explain measured electron distribution function in space

"The Number Problem" From Solar Flare

A significant fraction of energetic electrons (even ions) accelerated at reconnection side [e.g. *Krucker et al.* (2010), *Shih et al.* (2009)].

Two Competing Ideas for Electron Energization

- Electron energization by a single X-line reconnection through a modified CGL model [Egedal et al. (2012)]
- Electron energization by multiple island interactions [e.g. Drake et al. (2006), Oka et al. (2010)].

Proposed Large Reconnection Experiment

The Energy Problem: Ion Energization

1990's Y. Ono, M. Yamada +62

The Energy Problem: Ion Energization

Fiksel et al. PRL (2009) Brown et al. (2009) Magee et al. (2011) Yoo et al. (2013)

Many competing ideas: waves, pick-up process, stochastic process...

- How is reconnection rate determined? (*The rate problem*)
- How does reconnection take place in 3D? (*The 3D problem*)
- How does reconnection start? (*The onset problem*)
- How does partial ionization affect reconnection? (*The partial ionization problem*)
- How do boundary conditions affect reconnection process? (*The boundary condition problem*)
- How are particles energized? (*The energy problem*)
- How does reconnection take place in flow-driven, radiative, relativistic or strongly magnetized plasmas? (*The flow-driven problem*)

Magnetic Reconnection is Considered to be also Important in Flow-Dominated Regimes

- Sunspots are magnetic, drifting towards equator, and then disappear. What happens to these sunspots?
- Reconnection dominates
 dissipation in low-beta regions
 of accretion disks

A New Venue Is Emerging to Study Reconnection under Flow-Driven Conditions

Nilson et al. (2006)

• Bi-directional plasma jets observed

Zhong et al. (2010)

- Ion diffusion region with the width of $\sim d_{66}$
- Electron diffusion region with the width of $\sim 10d_e$

- How is reconnection rate determined? (*The rate problem*)
- How does reconnection take place in 3D? (*The 3D problem*)
- How does reconnection start? (*The onset problem*)
- How does partial ionization affect reconnection? (*The partial ionization problem*)
- How do boundary conditions affect reconnection process? (*The boundary condition problem*)
- How are particles energized? (*The energy problem*)
- How does reconnection take place in flow-driven, radiative, relativistic or strongly magnetized plasmas? (*The flow-driven problem*)
- How to apply local reconnection physics to a large system? (*The multi-sœale problem*)

Characteristics of Space/Astrophysical Plasmas Where Reconnection May Occur

- Lundquist # (S) is large
- Large scale separation between global MHD and ion kinetic scales

$$\lambda = \frac{L}{\rho_s} \text{ large}$$

• How to couple the global MHD scales to kinetic scales?

	location	plasma	S	λ	multiple
					X-line regime
-	Space	Magnetopause	6×10^{13}	9×10^2	Collisionless
		Magnetotail	4×10^{15}	1.3×10^3	Collisionless
		Solar Wind	3×10^{12}	2×10^5	Collisionless
	Solar	Corona	1×10^{13}	4×10^7	Hybrid
		Chromosphere	1×10^8	3×10^8	Collisional
		Tachocline	1×10^9	5×10^{10}	Collisional
-	Galaxy	Protostellar Disks	8×10^3	1×10^9	Collisional
		X-ray Binary Disks	3×10^7	9×10^8	Collisional
		X-B Disk Coronae	1×10^{16}	9×10^7	Collisionless
		Crab Nebula Flares	5×10^{20}	2×10^{11}	Hybrid
		Gamma Ray Bursts	6×10^{17}	2×10^{16}	Collisional
		Magnetar Flares	6×10^{16}	5×10^{17}	Collisional
		Sgr A* Flares	2×10^{24}	$5 imes 10^8$	Collisionless
		Molecular Clouds	1×10^{11}	7×10^{12}	Collisional
		Interstellar Media	2×10^{20}	1×10^{14}	Hybrid
-	Extra-	AGN Disks	2×10^{13}	1×10^{14}	Collisional
	galactic	AGN Disk Coronae	10^{23}	3×10^{11}	Collisionless
		Radio Lobes	2×10^{25}	8×10^{12}	Hybrid
		Extragalactic Jets	6×10^{29}	1×10^{14}	Collisionless
		Galaxy Clusters	2×10^{25}	6×10^{11}	Collisionless
-	Fusion	MST	3×10^6	6.2×10^1	Collisionless
		TFTR	1×10^8	$2.3 imes 10^2$	Colligionless
)		ITER	6×10^8	5×10^2	Collisionless

Ji & Daughton (2011)

Plasmoid Dynamics May Solve Scale Separation Problem

Loureiro et al. (2007); Cassak et al. (2009); Uzdensky et al. (2010)

Larger is better, but how large is large enough?

A Hierarchy Model of Islands

 $S_1 = (L_1/\delta_1)^2$ Hierarchy of islands: $2L_1$ $N_1, N_2, N_3, \dots, N_i$ Ist Level δ_1 $S_1, S_2, S_3, \dots, S_i$ N_1 – islands $\delta_1, \delta_2, \delta_3, \dots, \delta_i$ Assume $S_2 = (L_2/\delta_2)^2$ $N_j = \left(\frac{S_j}{S}\right)^{\alpha}$ $2\overline{L_2} = 2L_1/N_1$ 2nd Level $\delta_2 \delta_2$ \bigcirc N_2 – islands then 3rd Level $\delta_{j} = \frac{\delta_{j-1}}{\sqrt{N_{j-1}}} = \dots = \frac{\delta_{1}}{\sqrt{N_{j-1}N_{j-2}\dots N_{1}}} = \rho_{s}$ $\Rightarrow S = \frac{\sqrt{S_c}}{2}\lambda$ 71

A Reconnection "Phase Diagram" Ji & Daughton (2011)

All Phases Are Fast – But Different Physics Which Should Lead to Different Heating/Acceleration?

LRX Is to Access New Regimes

Parameters	MRX	LRX
Device diameter	1.5 m	3 m
Device length	2 m	3.2 m
Flux core diameter	0.75 m	1.5 m
Stored energy	25 kJ	4 MJ
Ohmic drive	No	0.3 V-s
S (anti-parallel)	600-1,400	5,000-16,000
$\lambda = (Z/\delta_i)$	35-10	100-30
S (guide field)	2900	100,000
$\lambda = (Z/\varrho_S)$	180	1,000

SDO, FERMI, MMS, SPP...

Many existing LRX, ..., VENITA, laser, ITER,

MHD, Hall MHD, PIC, ...

