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Turbulence in Laboratory 
& Astrophysical Plasmas 

www.ipp.mpg.de/~fsj Many thanks to several              
co-workers and collaborators 
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Kinetic turbulence in astrophysics 
Key question:  How is the turbulent energy transformed into heat 

  (and observable radiation) at small scales? 

MHD is not able to address this question, a kinetic approach is required 

Applies also to solar corona, interstellar medium, galaxy clusters 

Black hole 
accretion disks 
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The tail of the MHD cascade is kinetic: 
The solar wind dissipation range 

Sahraoui et al., PRL 2009 Howes et al., PRL 2011 

Cluster spacecraft measurements Gyrokinetic simulations below ρi 

See talks by A. Schekochihin and F. Sahraoui 
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Kinetic turbulence in the laboratory 

Many other toroidal and linear devices exist! 
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Promising advances in kinetic simulation 

macrophysics 
(collisional) 

 
 
 

microphysics 
(collisionless) 

computational effort 

3D magneto- 
hydrodynamics 

5D gyrokinetics 
6D kinetics 

inextricably 
linked 

current workhorse of 
plasma astrophysics 

promising initial 
results, calling 
for more work 

long considered 
too costly, but 
now becoming 

more accessible 

Thanks to the continuous advance in supercomputing power, 
„serious“ kinetic turbulence simulations have become feasible 



GENE code: Parallel implementation 
•  code automatically adapts to chosen hardware & grid size (à la FFTW) 
•  efficient usage of petascale platforms 

Strong scaling on BG/P 

Close collaborations 
with experts in 
applied math and 
computer science 
 
More info: 
http://gene.rzg.mpg.de 

Linear scaling from 
65536 to 262144 cores 

6 



Gyrokinetic theory 
in a nutshell 
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Vlasov-Maxwell equations 

Removing the fast gyromotion 
leads to a dramatic speed-up 

Charged rings as quasiparticles; 
gyrocenter coordinates; keep kinetic effects 

Dilute and/or hot plasmas are almost collisionless. 
  

Thus, if kinetic effects (finite Larmor radius, Landau damping, 
magnetic trapping etc.) play a role, MHD is not applicable, 

and one has to use a kinetic description! 

What is gyrokinetic theory? 

Details may be found in: Brizard & Hahm, Rev. Mod. Phys. 79, 421 (2007) 
8 



The gyrokinetic ordering 
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A Lagrangian approach 
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Deriving the driftkinetic Lagrangian 
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Driftkinetic equations 
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Introducing fluctuations 

Eliminate explicit gyrophase dependence via near-identity (Lie) transforms 
to gyrocenter coordinates; the resulting Lagrangian 1-form reads: 
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Euler-Lagrange equations 
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Gyroaveraged potentials 
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Appropriate field equations 

Nonlinear partial integro-differential equations in 5D... 

Reformulate Maxwell’s equations in gyrocenter coordinates: 
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Sheldon also works on gyrokinetics… 



Gradient-driven linear 
microinstabilities 

18 



trapped electron modes 

ETG modes 

ITG modes 
Not shown here: 
 - drift waves 
 - ballooning modes 

                 

Some important microinstabilities 
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Perpendicular dynamics:   de-/stabilization in out-/inboard regions 

stable 

unstable Rayleigh-Taylor instability 
Analogy in a plasma: 

Parallel dynamics:   localization in outboard regions 

Gradient-driven microinstabilities 
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Nonlinear saturation 
via zonal flows 

F. Jenko, Physics Letters A 351, 417 (2006) 
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Self-organization: Zonal flow generation 



Charney-Hasegawa-Mima equation 

Standard CHME 
(ETG) 

Modified CHME 
(ITG) 

Hasegawa & Mima, PRL 1977 

In a certain limiting case, gyrokinetics leads to the CHM equation which is 
closely related to the 2D Navier-Stokes equation; also used in geophysics. 
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4-mode analysis 
ITG-type CHME in Fourier space 

Reduction to just 4 modes (and their CC’s) 

streamer 

zonal flow 
si

de
ba

nd
s 
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In the context of fusion energy, 
gaining a better understanding 
of plasma turbulence is crucial 

Resulting amplitude equations 
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In the context of fusion energy, 
gaining a better understanding 
of plasma turbulence is crucial 

Zonal flow growth rate 
If the streamer amplitude exceeds a certain threshold, 

the zonal flow becomes unstable. 
 

Its growth rate is given by: 

ITG case 

ETG case 

Strintzi & Jenko, PoP 2007 
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Secondary instabilities & ZF generation 

Strintzi & Jenko, PoP 2007 
Xanthopoulos et al., PRL 2007 

•  Large-amplitude streamers are Kelvin-Helmholtz unstable 
 [Cowley at al. 1991; Dorland & Jenko PRL 2000] 

•  This secondary instability contains a zonal-flow component 
•  Near-equivalence to 4-mode and wave-kinetic approaches 

Simple 
tokamak 

W7-X 
stellarator 
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Kinetic turbulence 
in laboratory and 

astrophysical systems 

28 



Turbulence in fluids and plasmas – 
Three basic scenarios 

29 



Saturation via damped eigenmodes 

30 



Excitation of damped eigenmodes 
Using GENE as a linear eigenvalue solver to analyze 
nonlinear ITG runs via projection methods, one finds… 

unstable 
eigenmode 

least damped eigenmode 

ky=0.3 
drive range 

strongly damped 
eigenmodes 

31 
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Eigenvalue spectra for (slab) ITG modes 

resolvent operator in Eq. (8) and that we call the discrete
Case-Van Kampen spectrum. To this set belongs also the
isolated mode on the right which is very close to one of the
Landau solutions. The latter is due to the fact that for
j<ðxÞj # j=ðxÞj, the plasma distribution function equals
nearly the principle value integral for the corresponding
complex frequency. We shall refer to this mode as an ion
acoustic mode. This association is also mathematically
motivated. It is well known that ion sound waves due to den-
sity gradients have frequencies that are proportional to
ky=ðkjjLdÞ. Using the drift-kinetic Landau dispersion relation,
one can derive a differential equation that governs the move-
ment of the Landau solutions in the complex frequency plane
with respect to any of the parameters. For 1=LT ¼ 0 it is
immediately seen that the frequency of solutions with negli-
gible damping/growth rate also scales as ky with the propor-
tionality constant of 1=ðkjjLdÞ.

In Fig. 1, one can also follow the movement of the
eigenvalues and the Landau solutions in the complex plane
resulting from varying the gradient lengths. Correspond-
ingly, not only the position but also the number of existing
discrete eigenvalues change. For one set of parameters given
by the condition k2y=k

2
jj ¼ 4ð1þ sÞL2TLd=ðs2ðLd & 2LTÞÞ, one

of the discrete eigenvalues on the real axis coincides with
one of the Landau solutions that by further increment of the
temperature gradient becomes the instability. For ky ¼ 10kjj
and Ld ¼ 10 this is realized for LT ¼ 2:5 and shown in Fig.
1(b). This condition also means that for given gradient
lengths, there are always ky and kjj values such that the ratio
ky=kjj fulfills the upper condition, and there is an undamped
Landau solution with the same frequency as one of the dis-
crete Case-Van Kampen eigenvalues. In conclusion, despite

the singular nature of the collisionless Case-Van Kampen
modes with real frequency, the discrete Case-Van Kampen
spectrum shows an interesting connection to that part of the
Landau solutions that has a clear physical interpretation,
namely, the instability and the drift wave.

It is noteworthy that the discrete Case-Van Kampen
eigenvalues have the same dispersion relation (Eq. (9)) as
the nonlinear undamped Bernstein-Greene-Kruskal modes
when the amplitude of the latter tends to zero.28

C. Comparison between different discretization
schemes for the collisional case

Up to now, we discussed only collisionless systems.
One could argue that such a model is a good approximation
of hot fusion plasmas since the collision frequency in such
plasmas is small. However, it has been shown numerically5

and later proved analytically6 that for any non-zero collision
frequency, collisions are important even for a correct qualita-
tive description of the system (at least, if collisions are
modeled via the Lenard-Bernstein collision operator first
introduced in Ref. 4). In that case, the Case-Van Kampen
spectrum becomes fully discrete, and it is the same as the
corresponding Landau solutions.

Ng et al.5 use a Hermite representation in order to com-
pute the Case-Van Kampen spectrum. Our first goal is to
investigate if the same result can be obtained by using finite
differences on an equidistant grid in velocity space which is
the most common one used in numerical studies, e.g., in
GENE. Later, we will also determine which part of the
Lenard-Bernstein collision operator is responsible for the
qualitative change of the Case-Van Kampen spectrum. In

FIG. 1. Evolution of the discrete colli-
sionless Case-Van Kampen eigenmodes
(green crosses) and the collisionless
Landau solutions (red circles) with
respect to the temperature and density
gradient lengths. For large gradients the
ion acoustic mode emerges which is
almost marginally stable and practically
coincides with one of the discrete Case-
Van Kampen eigenmodes. The unstable
discrete Case-Van Kampen modes
match the unstable Landau solutions
and the blue asterisks represent the con-
tinuum part of the Van Kampen spec-
trum. ky ¼ 0:3, kjj ¼ 0:03.

022108-5 Bratanov et al. Phys. Plasmas 20, 022108 (2013)
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Case-Van Kampen 
vs 

Landau 



Energetics 

Turbulent free energy consists of two parts: 

Drive and damping terms: 

33 



Energetics in wavenumber space 

Damped eigenmodes are responsible for 
significant dissipation in the drive range (!) 

34 Hatch, Terry, Jenko, Merz & Nevins, PRL 2011 



Resulting spectrum decays exponentially 
@lo k, asymptotes to power law @hi k 

Hatch et al., PRL 2011 
Terry et al., PoP 2012 35 

nonlinear energy transfer rate 



Bañón Navarro et al., PRL 2011 

Shell-to-shell transfer of free energy 

ITG turbulence (adiabatic electrons); 
logarithmically spaced shells 
 
Entropy contribution dominates; 
exhibits very local, forward cascade 

36 



Large Eddy Simulation 
techniques in 

kinetic turbulence 

37 



M
orel et al., P

oP 2011  
Gyrokinetic LES models 

Substantial savings in computational cost: Here, a factor of 20 

Bañón Navarro et al., PRL 2011 
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II. LES FORMALISM IN GYROKINETICS

In the following, the nonlinear gyrokinetic equations
are solved by means of the GENE code9. Although a
more comprehensive code version including nonlocal ef-
fects is at hand10, for simplicity we restrict ourselves
here to the local code version. Only electrostatic fluc-
tuations are considered, with a fixed background mag-
netic field B0 and adiabatic electrons. Field aligned
coordinates are used11, with the assumption of circu-
lar concentric flux surfaces12. The GENE code uses a
delta-f splitting of the unknown distribution function:
Fi = F0i + fki with the normalized equilibrium distri-

bution function F0i = e−v2
�−µB0 , where µ = miv2⊥/(2B0)

is the ion magnetic moment (mass mi), v⊥ and v� are
respectively the velocity coordinates perpendicular and
parallel to the magnetic field. Unknowns are Fourier
transformed along coordinates perpendicular to the mag-
netic field (x, y) → (kx, ky). The collisionless gyrokinetic
Vlasov equation for ions guiding center distribution func-
tion fki(kx, ky, z, v�, µ, t) then reads:

∂tfki = L[fki] +N [φk, fki]−D[fki], (1)

where L represents linear terms, N the quadratic nonlin-
earity, and D the numerical dissipation terms.

The linear terms can be written as L = LB0 +LG+L�,
where LG[fki] is the drive due to logarithmic density
and temperature gradients (ωni and ωTi), LB0 [fki] cor-
responds to both the curvature and the gradient of the
magnetic field B0 (referred to as “curvature” in the fol-
lowing), and L�[fki] is the term describing the parallel
dynamics:

LG[fki] = −
�
ωni +

�
v2� + µB0 −

3

2

�
ωTi

�
F0iikyJ0kφk ,

(2)

LB0 [fki] = −
Ti0(2v2� + µB0)

ZiTe0B0
[Kxikx +Kyiky]hki , (3)

L�[fki] = −vTi

2

�
∂z lnF0 ∂v�hki − ∂v� lnF0 ∂zhki

�
. (4)

Here, hki = fki + ZiF0iJ0kφkTe0/Ti0 is the nonadiabatic
part of the distribution function, with the ions charge
number Zi and the ion thermal velocity vTi. Ti0 and
Te0 are, respectively, the ion and electron equilibrium
temperature, J0k is the zeroth order Bessel function cor-
responding to Fourier transformed gyroaverage operator,
and φk is the electrostatic potential. The two terms Kx

and Ky are due to magnetic field curvature and gradient
introduced by the magnetic geometry12.

N is the nonlinear term describing the perpendicular
advection of the distribution function by the E×B drift
velocity:

N [φk, fki] = −
�

k�
x,y

(k�xky − kxk
�
y)J0k�φk�f(k−k�)i , (5)

which has the fundamental role of coupling different per-
pendicular kx and ky modes.
Numerical dissipation terms in GENE have the general

form:

D[fki] = axk
n
xfki + ayk

n
y fki + az∂

4
zfki + av�∂

4
v�
fki , (6)

where the coefficients ax and ay are usually set to zero,
while az = 0.1 and av� = 1 have been shown to be well
adapted in a wide range of cases13.
The electrostatic potential φk is given by the quasi

neutrality equation:

φk−�φk�FS
+
ZiTe0

Ti0
[1− Γ0 (bi)]φk = πB0

�
dv�dµJ0kfk ,

(7)
where �φk�FS

=
��

Jdzφk

�
/
��

Jdz
�
, stands for the flux

surface average of the electrostatic potential, Γ0(bi) is
the modified Bessel function applied to the argument
bi = v2Tik

2
⊥/Ω

2
ci. Electrons are assumed adiabatic: ne =

qene0 (φk − �φk�FS
) /Te0. Since a single gyrokinetic ion

species is considered, the species indices are omitted in
the following for the ions distribution function: fk = fki.

A. Filtered gyrokinetics

In a gyrokinetic LES, the most suitable coordinate
subspace for coarsening the grid is the perpendicular
wavenumber plane (kx, ky) since it generally requires
fairly high resolution. Obviously, the objective of the
LES technique is to reduce the number of grid points in
(kx, ky) space. The coarsening procedure can be imple-
mented by applying a Fourier low-pass filter, with the
characteristic length ∆. The employed cut-off filtering
has the effect of setting to zero the smallest scales charac-
terized by all modes larger than 1/∆, as shown in Fig. 1.
If one denotes the action of the filter on the unknowns
by · · ·, the filtered gyrokinetic equation reads:

∂tfk = L[fk] +N [φk, fk] + T∆,∆DNS −D[fk] , (8)

where a new term appears from the filtering of the non-
linear term:

T∆,∆DNS = N [φk, fk]−N [φk, fk] . (9)

At this point, it is important to note that Eq. (9) is the
only term which contains the influence of the scales ∆DNS

which we want to filter out from (φk, fk). We will refer
to it as sub-grid term in the following. The GyroLES
then consists of finding a good model replacing this term
which only depends on the resolved unknowns (φk, fk),
on the characteristic length of the filter ∆, and on some
free parameters {cn}.
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Apply LES filter: 

Sub-grid term: 

4

one can expect that a large majority of the free energy

injection will not be affected by the filtering: G ≈ G. It

follows that the DNS dissipation can be approximated by

D ≈ D − T∆,∆DNS .

The existence of inverse and non-local cascading pro-

cesses resulting from interaction between bulk turbulence

and the zonal flows is correctly described by the model,

assuming that the bulk turbulence corresponds to the re-

solved free energy injection G. In particular, the Dimits

nonlinear upshift
21

has been shown to be correctly de-

scribed by GyroLES type models.
6
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FIG. 2. Contribution of the sub-grid term to the free energy
balance as a function of time, for different test-filter widths
∆.

The time evolution of the sub-grid contribution to the

filtered free energy balance (parameters associated to Cy-

clone Base Case (CBC) detailed in Sec. IV), is shown in

Fig. 2 for different values of the filter width ∆. The sub-

grid contribution is the same order as the resolved dissi-

pations T∆,∆DNS ≈ −D ≈ −G/2 in the quasi-stationnary

regime of interest here. The sub-grid contribution is al-

ways negative, implying that the sub-grid scales act as

a free energy sink, like it is supposed to.
6
More pre-

cisely, one observes that the amplitude of the dissipation

ensured by the sub-grid scales increases with the filter

width. This means that a model M should behave like

M(c,∆, fk) = ∆
α
M �

(c, fk) ≈ T∆,∆DNS .

B. A model for sub-grid scales

A simple dissipative model for GyroLES which has al-

ready been used previously
6
is given by

M(c⊥, fki) = c⊥k
4
⊥hki . (18)

The optimal value of c⊥ for the CBC parameters can be

found, e.g., through trial and error. However, this model

is not taking into account the filter width dependency ∆

observed in the previous section. Moreover, the use of

k⊥ implies that the relative dissipation in kx and ky is

fixed. A more flexible model which takes into account the

anisotropy (cx and cy) and the filter width dependency

(∆x,y) is given by

M =

�
∆

α
xcxk

n
x +∆

α
y cyk

n
y

�
hki . (19)

In fluid turbulence, it is common to assume that the

kinetic energy flux from scale to scale is a constant in

the inertial range. Based on the recent finding that ITG

turbulence also exhibits a local and direct cascade of free

energy
2
, we assume, in close analogy, that the free energy

flux εE is constant from scale to scale in the (kx, ky)
plane perpendicular to the magnetic field. Anisotropy is

taken into account by letting the free energy flux taking

different values along kx and ky, namely εE,x and εE,y.
The free energy has the dimension of an energy density,

so that the free energy flux εE is an energy density per

time,

[εE ] = �−1τ−3 ,

where τ and � represent characteristic time and length

scales. It is reasonable to assume that the model depends

only on the free energy fluxes εE,x, εE,y and the filter

widths ∆x,∆y,

M =

�
εβE,x∆

α
xk

n
x + εβE,y∆

α
y k

n
y

�
hki .

Moreover, from dimensional analysis we know that

[M ] = τ−1
[hk], so that β = 1/3 and α = n + 1/3. The

last relation allows to fix the unknown filter width expo-

nent α accordingly to the model parameter n. The model

thus becomes

M =

�
cx∆

n+1/3
x knx + cy∆

n+1/3
y kny

�
hki . (20)

Since the derivative order n is positive, the filter width

exponent α = n + 1/3 is also positive, in line with the

numerical results in the previous section. Moreover, the

model coefficients are dimensionally related to the con-

stant free energy fluxes across scales via [cx] = [cy] =

[εE,x]1/3 , [cy] = [εE,y]1/3. It is interesting to note here

that the model coefficients are constants, just like the

free energy fluxes.

C. Dynamic procedure for gyrokinetics

The dynamic procedure is based on the introduction

of an additional filter denoted by �· · · and referred to as

the test-filter. It is characterized by a filter width �∆ that

corresponds to a “very coarse” grid: �∆ > ∆ > ∆
DNS

.

≈ 
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The gyrokinetic equation associated to the test-filter grid
can be obtained by test-filtering the gyrokinetic equation
expressed in the DNS domain:

∂t �fk = L[ �fk] +N [�φk, �fk]−D[ �fk] + T�∆,∆DNS . (21)

This equation is equivalent to the LES filtered Eq. (8)
with the LES width (∆) replaced by the test-filter one
(�∆).

Alternatively, the equation in the test-filter domain can
be obtained by test-filtering (�∆) the gyrokinetic equation
expressed in the LES domain, Eq. (8),

∂t �fk = L[ �fk] + �N [φk, fk]−D[ �fk] + �T∆,∆DNS , (22)

where we have used the very important property �· · · = �· · ·
of Fourier cutoff filters. Comparing Eqs. (21) and (22),
one obtains the Germano identity,

T�∆,∆DNS = �T∆,∆DNS + �N [φk, fk]−N [�φk, �fk] ,

= �T∆,∆DNS + T�∆,∆ . (23)

During an LES, the sub-grid term T�∆,∆ can be com-

puted exactly, since it involves test filtering (�∆) of the
LES-resolved quantities (∆). On the other hand, the two
other terms involve the non-resolved DNS scales (∆DNS)
and therefore have to be approximated by the model:

T�∆,∆DNS ≈ M�∆ ; T∆,∆DNS ≈ M∆ . (24)

The dynamic procedure consists of introducing the
model approximations, Eq. (24), into the Germano iden-
tity, Eq. (23), to obtain

M�∆ ≈ �M∆ + T�∆,∆ . (25)

Since the model is an approximation of the sub-grid
term, Eq. (23) can only be approximated during an LES.
Now, one can define the squared distance d2 which is to
minimize via

d2 =

��
T�∆,∆ + �M∆ −M�∆

�2
�

Λ

, (26)

where �· · · �Λ stand for integration over the entire phase
space.

As was shown in Sec. III B, the model coefficients cx
and cy can be assumed to be constant in the gyrokinetic
“inertial range.” So provided that the range between
test-filter and LES scales belongs to this “inertial range,”
the coefficients do not depend on the filter widths (�∆, ∆).

Using Eq. (20), the squared distance can be expressed
in terms of the model amplitudes cx and cy according to

d2 =

��
T�∆,∆ + cxmx + cymy

�2
�

Λ

, (27)

where the notations mx,y =
�
∆

α
x,y − �∆α

x,y

�
knx,y�hk have

been introduced.
An optimization of this difference with respect to the

unknown parameters (∂d2/∂cx = 0 and ∂d2/∂cy = 0)
leads to the expressions

cx =

�
mxT�∆,∆

�

Λ

�
m2

y

�
Λ
−
�
myT�∆,∆

�

Λ
�mymx�Λ

�mxmy�2Λ − �m2
x�Λ

�
m2

y

�
Λ

(28)

cy =

�
myT�∆,∆

�

Λ

�
m2

x

�
Λ
−
�
mxT�∆,∆

�

Λ
�mymx�Λ

�mxmy�2Λ − �m2
x�Λ

�
m2

y

�
Λ

.(29)

Thus, these two free parameters of the model can
be computed dynamically during a numerical simulation
from Eqs. (28) and (29). The dissipative effect of the
model on free energy is guaranteed by setting to zero
any negative coefficient value.

IV. NUMERICAL RESULTS

In the following, we will present numerical results ob-
tained by means of the dynamic procedure with the
GENE code. The set of parameters corresponds to the
Cyclone Base Case commonly used for studying Ion Tem-
perature Gradient (ITG) driven turbulence21. Consid-
ering a minor radius r0/R0 = 0.18, the density and
temperature gradients are, respectively, ωni = 2.22 and
ωTi = 6.96, where R0 is the major radius and with the
definitions: ωni = −R0 dr lnni0, ωTi = −R0 dr lnTi0.
The magnetic configuration is characterized by the safety
factor q = 1.4 and the magnetic shear ŝ = 0.796, with
ions and electrons such that Te0/Ti0 = 1 and Zi = 1.

A. Nonlinear Gyrokinetic Large Eddy Simulation: Cyclone
Base Case

For the reference DNS, a perpendicular grid of Nx ×
Ny = 128×64 is used. This grid has been used both with
and without a LES model, and the results obtained have
not been affected, indicating that the simulation is well
resolved. On the other hand, a minimal perpendicular
grid for GyroLES should be Nx×Ny = 48× 32, allowing
the dynamic procedure to work. Indeed, the use of the
latter involves the introduction (in the LES domain ∆)
of a test filter corresponding to a coarser grid, �∆ > ∆.
However, it is necessary for the dynamic procedure that
the domain of the LES grid which is neglected by the test
filter belongs to the gyrokinetic ”inertial” range, so that
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The gyrokinetic equation associated to the test-filter grid
can be obtained by test-filtering the gyrokinetic equation
expressed in the DNS domain:

∂t �fk = L[ �fk] +N [�φk, �fk]−D[ �fk] + T�∆,∆DNS . (21)

This equation is equivalent to the LES filtered Eq. (8)
with the LES width (∆) replaced by the test-filter one
(�∆).

Alternatively, the equation in the test-filter domain can
be obtained by test-filtering (�∆) the gyrokinetic equation
expressed in the LES domain, Eq. (8),

∂t �fk = L[ �fk] + �N [φk, fk]−D[ �fk] + �T∆,∆DNS , (22)

where we have used the very important property �· · · = �· · ·
of Fourier cutoff filters. Comparing Eqs. (21) and (22),
one obtains the Germano identity,

T�∆,∆DNS = �T∆,∆DNS + �N [φk, fk]−N [�φk, �fk] ,

= �T∆,∆DNS + T�∆,∆ . (23)

During an LES, the sub-grid term T�∆,∆ can be com-

puted exactly, since it involves test filtering (�∆) of the
LES-resolved quantities (∆). On the other hand, the two
other terms involve the non-resolved DNS scales (∆DNS)
and therefore have to be approximated by the model:

T�∆,∆DNS ≈ M�∆ ; T∆,∆DNS ≈ M∆ . (24)

The dynamic procedure consists of introducing the
model approximations, Eq. (24), into the Germano iden-
tity, Eq. (23), to obtain

M�∆ ≈ �M∆ + T�∆,∆ . (25)

Since the model is an approximation of the sub-grid
term, Eq. (23) can only be approximated during an LES.
Now, one can define the squared distance d2 which is to
minimize via

d2 =

��
T�∆,∆ + �M∆ −M�∆

�2
�

Λ

, (26)

where �· · · �Λ stand for integration over the entire phase
space.

As was shown in Sec. III B, the model coefficients cx
and cy can be assumed to be constant in the gyrokinetic
“inertial range.” So provided that the range between
test-filter and LES scales belongs to this “inertial range,”
the coefficients do not depend on the filter widths (�∆, ∆).

Using Eq. (20), the squared distance can be expressed
in terms of the model amplitudes cx and cy according to

d2 =

��
T�∆,∆ + cxmx + cymy

�2
�

Λ

, (27)

where the notations mx,y =
�
∆

α
x,y − �∆α

x,y

�
knx,y�hk have

been introduced.
An optimization of this difference with respect to the

unknown parameters (∂d2/∂cx = 0 and ∂d2/∂cy = 0)
leads to the expressions

cx =

�
mxT�∆,∆

�

Λ

�
m2

y

�
Λ
−
�
myT�∆,∆

�

Λ
�mymx�Λ

�mxmy�2Λ − �m2
x�Λ

�
m2

y

�
Λ

(28)

cy =

�
myT�∆,∆

�

Λ

�
m2

x

�
Λ
−
�
mxT�∆,∆

�

Λ
�mymx�Λ

�mxmy�2Λ − �m2
x�Λ

�
m2

y

�
Λ

.(29)

Thus, these two free parameters of the model can
be computed dynamically during a numerical simulation
from Eqs. (28) and (29). The dissipative effect of the
model on free energy is guaranteed by setting to zero
any negative coefficient value.

IV. NUMERICAL RESULTS

In the following, we will present numerical results ob-
tained by means of the dynamic procedure with the
GENE code. The set of parameters corresponds to the
Cyclone Base Case commonly used for studying Ion Tem-
perature Gradient (ITG) driven turbulence21. Consid-
ering a minor radius r0/R0 = 0.18, the density and
temperature gradients are, respectively, ωni = 2.22 and
ωTi = 6.96, where R0 is the major radius and with the
definitions: ωni = −R0 dr lnni0, ωTi = −R0 dr lnTi0.
The magnetic configuration is characterized by the safety
factor q = 1.4 and the magnetic shear ŝ = 0.796, with
ions and electrons such that Te0/Ti0 = 1 and Zi = 1.

A. Nonlinear Gyrokinetic Large Eddy Simulation: Cyclone
Base Case

For the reference DNS, a perpendicular grid of Nx ×
Ny = 128×64 is used. This grid has been used both with
and without a LES model, and the results obtained have
not been affected, indicating that the simulation is well
resolved. On the other hand, a minimal perpendicular
grid for GyroLES should be Nx×Ny = 48× 32, allowing
the dynamic procedure to work. Indeed, the use of the
latter involves the introduction (in the LES domain ∆)
of a test filter corresponding to a coarser grid, �∆ > ∆.
However, it is necessary for the dynamic procedure that
the domain of the LES grid which is neglected by the test
filter belongs to the gyrokinetic ”inertial” range, so that

Test filter in DNS domain: 

Test filter in LES domain: 
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The gyrokinetic equation associated to the test-filter grid
can be obtained by test-filtering the gyrokinetic equation
expressed in the DNS domain:

∂t �fk = L[ �fk] +N [�φk, �fk]−D[ �fk] + T�∆,∆DNS . (21)

This equation is equivalent to the LES filtered Eq. (8)
with the LES width (∆) replaced by the test-filter one
(�∆).

Alternatively, the equation in the test-filter domain can
be obtained by test-filtering (�∆) the gyrokinetic equation
expressed in the LES domain, Eq. (8),

∂t �fk = L[ �fk] + �N [φk, fk]−D[ �fk] + �T∆,∆DNS , (22)

where we have used the very important property �· · · = �· · ·
of Fourier cutoff filters. Comparing Eqs. (21) and (22),
one obtains the Germano identity,

T�∆,∆DNS = �T∆,∆DNS + �N [φk, fk]−N [�φk, �fk] ,

= �T∆,∆DNS + T�∆,∆ . (23)

During an LES, the sub-grid term T�∆,∆ can be com-

puted exactly, since it involves test filtering (�∆) of the
LES-resolved quantities (∆). On the other hand, the two
other terms involve the non-resolved DNS scales (∆DNS)
and therefore have to be approximated by the model:

T�∆,∆DNS ≈ M�∆ ; T∆,∆DNS ≈ M∆ . (24)

The dynamic procedure consists of introducing the
model approximations, Eq. (24), into the Germano iden-
tity, Eq. (23), to obtain

M�∆ ≈ �M∆ + T�∆,∆ . (25)

Since the model is an approximation of the sub-grid
term, Eq. (23) can only be approximated during an LES.
Now, one can define the squared distance d2 which is to
minimize via

d2 =

��
T�∆,∆ + �M∆ −M�∆

�2
�

Λ

, (26)

where �· · · �Λ stand for integration over the entire phase
space.

As was shown in Sec. III B, the model coefficients cx
and cy can be assumed to be constant in the gyrokinetic
“inertial range.” So provided that the range between
test-filter and LES scales belongs to this “inertial range,”
the coefficients do not depend on the filter widths (�∆, ∆).

Using Eq. (20), the squared distance can be expressed
in terms of the model amplitudes cx and cy according to

d2 =

��
T�∆,∆ + cxmx + cymy

�2
�

Λ

, (27)

where the notations mx,y =
�
∆

α
x,y − �∆α

x,y

�
knx,y�hk have

been introduced.
An optimization of this difference with respect to the

unknown parameters (∂d2/∂cx = 0 and ∂d2/∂cy = 0)
leads to the expressions

cx =

�
mxT�∆,∆
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Λ
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−
�
myT�∆,∆

�

Λ
�mymx�Λ

�mxmy�2Λ − �m2
x�Λ

�
m2

y

�
Λ

(28)

cy =

�
myT�∆,∆

�

Λ

�
m2

x

�
Λ
−
�
mxT�∆,∆

�

Λ
�mymx�Λ

�mxmy�2Λ − �m2
x�Λ

�
m2

y

�
Λ
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Thus, these two free parameters of the model can
be computed dynamically during a numerical simulation
from Eqs. (28) and (29). The dissipative effect of the
model on free energy is guaranteed by setting to zero
any negative coefficient value.

IV. NUMERICAL RESULTS

In the following, we will present numerical results ob-
tained by means of the dynamic procedure with the
GENE code. The set of parameters corresponds to the
Cyclone Base Case commonly used for studying Ion Tem-
perature Gradient (ITG) driven turbulence21. Consid-
ering a minor radius r0/R0 = 0.18, the density and
temperature gradients are, respectively, ωni = 2.22 and
ωTi = 6.96, where R0 is the major radius and with the
definitions: ωni = −R0 dr lnni0, ωTi = −R0 dr lnTi0.
The magnetic configuration is characterized by the safety
factor q = 1.4 and the magnetic shear ŝ = 0.796, with
ions and electrons such that Te0/Ti0 = 1 and Zi = 1.

A. Nonlinear Gyrokinetic Large Eddy Simulation: Cyclone
Base Case

For the reference DNS, a perpendicular grid of Nx ×
Ny = 128×64 is used. This grid has been used both with
and without a LES model, and the results obtained have
not been affected, indicating that the simulation is well
resolved. On the other hand, a minimal perpendicular
grid for GyroLES should be Nx×Ny = 48× 32, allowing
the dynamic procedure to work. Indeed, the use of the
latter involves the introduction (in the LES domain ∆)
of a test filter corresponding to a coarser grid, �∆ > ∆.
However, it is necessary for the dynamic procedure that
the domain of the LES grid which is neglected by the test
filter belongs to the gyrokinetic ”inertial” range, so that
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The gyrokinetic equation associated to the test-filter grid
can be obtained by test-filtering the gyrokinetic equation
expressed in the DNS domain:

∂t �fk = L[ �fk] +N [�φk, �fk]−D[ �fk] + T�∆,∆DNS . (21)

This equation is equivalent to the LES filtered Eq. (8)
with the LES width (∆) replaced by the test-filter one
(�∆).

Alternatively, the equation in the test-filter domain can
be obtained by test-filtering (�∆) the gyrokinetic equation
expressed in the LES domain, Eq. (8),

∂t �fk = L[ �fk] + �N [φk, fk]−D[ �fk] + �T∆,∆DNS , (22)

where we have used the very important property �· · · = �· · ·
of Fourier cutoff filters. Comparing Eqs. (21) and (22),
one obtains the Germano identity,

T�∆,∆DNS = �T∆,∆DNS + �N [φk, fk]−N [�φk, �fk] ,

= �T∆,∆DNS + T�∆,∆ . (23)

During an LES, the sub-grid term T�∆,∆ can be com-

puted exactly, since it involves test filtering (�∆) of the
LES-resolved quantities (∆). On the other hand, the two
other terms involve the non-resolved DNS scales (∆DNS)
and therefore have to be approximated by the model:

T�∆,∆DNS ≈ M�∆ ; T∆,∆DNS ≈ M∆ . (24)

The dynamic procedure consists of introducing the
model approximations, Eq. (24), into the Germano iden-
tity, Eq. (23), to obtain

M�∆ ≈ �M∆ + T�∆,∆ . (25)

Since the model is an approximation of the sub-grid
term, Eq. (23) can only be approximated during an LES.
Now, one can define the squared distance d2 which is to
minimize via

d2 =
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T�∆,∆ + �M∆ −M�∆

�2
�

Λ

, (26)

where �· · · �Λ stand for integration over the entire phase
space.

As was shown in Sec. III B, the model coefficients cx
and cy can be assumed to be constant in the gyrokinetic
“inertial range.” So provided that the range between
test-filter and LES scales belongs to this “inertial range,”
the coefficients do not depend on the filter widths (�∆, ∆).

Using Eq. (20), the squared distance can be expressed
in terms of the model amplitudes cx and cy according to

d2 =
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T�∆,∆ + cxmx + cymy
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, (27)

where the notations mx,y =
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been introduced.
An optimization of this difference with respect to the

unknown parameters (∂d2/∂cx = 0 and ∂d2/∂cy = 0)
leads to the expressions
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Thus, these two free parameters of the model can
be computed dynamically during a numerical simulation
from Eqs. (28) and (29). The dissipative effect of the
model on free energy is guaranteed by setting to zero
any negative coefficient value.

IV. NUMERICAL RESULTS

In the following, we will present numerical results ob-
tained by means of the dynamic procedure with the
GENE code. The set of parameters corresponds to the
Cyclone Base Case commonly used for studying Ion Tem-
perature Gradient (ITG) driven turbulence21. Consid-
ering a minor radius r0/R0 = 0.18, the density and
temperature gradients are, respectively, ωni = 2.22 and
ωTi = 6.96, where R0 is the major radius and with the
definitions: ωni = −R0 dr lnni0, ωTi = −R0 dr lnTi0.
The magnetic configuration is characterized by the safety
factor q = 1.4 and the magnetic shear ŝ = 0.796, with
ions and electrons such that Te0/Ti0 = 1 and Zi = 1.

A. Nonlinear Gyrokinetic Large Eddy Simulation: Cyclone
Base Case

For the reference DNS, a perpendicular grid of Nx ×
Ny = 128×64 is used. This grid has been used both with
and without a LES model, and the results obtained have
not been affected, indicating that the simulation is well
resolved. On the other hand, a minimal perpendicular
grid for GyroLES should be Nx×Ny = 48× 32, allowing
the dynamic procedure to work. Indeed, the use of the
latter involves the introduction (in the LES domain ∆)
of a test filter corresponding to a coarser grid, �∆ > ∆.
However, it is necessary for the dynamic procedure that
the domain of the LES grid which is neglected by the test
filter belongs to the gyrokinetic ”inertial” range, so that
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The gyrokinetic equation associated to the test-filter grid
can be obtained by test-filtering the gyrokinetic equation
expressed in the DNS domain:

∂t �fk = L[ �fk] +N [�φk, �fk]−D[ �fk] + T�∆,∆DNS . (21)

This equation is equivalent to the LES filtered Eq. (8)
with the LES width (∆) replaced by the test-filter one
(�∆).

Alternatively, the equation in the test-filter domain can
be obtained by test-filtering (�∆) the gyrokinetic equation
expressed in the LES domain, Eq. (8),

∂t �fk = L[ �fk] + �N [φk, fk]−D[ �fk] + �T∆,∆DNS , (22)

where we have used the very important property �· · · = �· · ·
of Fourier cutoff filters. Comparing Eqs. (21) and (22),
one obtains the Germano identity,

T�∆,∆DNS = �T∆,∆DNS + �N [φk, fk]−N [�φk, �fk] ,

= �T∆,∆DNS + T�∆,∆ . (23)

During an LES, the sub-grid term T�∆,∆ can be com-

puted exactly, since it involves test filtering (�∆) of the
LES-resolved quantities (∆). On the other hand, the two
other terms involve the non-resolved DNS scales (∆DNS)
and therefore have to be approximated by the model:

T�∆,∆DNS ≈ M�∆ ; T∆,∆DNS ≈ M∆ . (24)

The dynamic procedure consists of introducing the
model approximations, Eq. (24), into the Germano iden-
tity, Eq. (23), to obtain

M�∆ ≈ �M∆ + T�∆,∆ . (25)

Since the model is an approximation of the sub-grid
term, Eq. (23) can only be approximated during an LES.
Now, one can define the squared distance d2 which is to
minimize via

d2 =
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T�∆,∆ + �M∆ −M�∆
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, (26)

where �· · · �Λ stand for integration over the entire phase
space.

As was shown in Sec. III B, the model coefficients cx
and cy can be assumed to be constant in the gyrokinetic
“inertial range.” So provided that the range between
test-filter and LES scales belongs to this “inertial range,”
the coefficients do not depend on the filter widths (�∆, ∆).

Using Eq. (20), the squared distance can be expressed
in terms of the model amplitudes cx and cy according to

d2 =
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where the notations mx,y =
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∆

α
x,y − �∆α

x,y

�
knx,y�hk have

been introduced.
An optimization of this difference with respect to the

unknown parameters (∂d2/∂cx = 0 and ∂d2/∂cy = 0)
leads to the expressions
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Thus, these two free parameters of the model can
be computed dynamically during a numerical simulation
from Eqs. (28) and (29). The dissipative effect of the
model on free energy is guaranteed by setting to zero
any negative coefficient value.

IV. NUMERICAL RESULTS

In the following, we will present numerical results ob-
tained by means of the dynamic procedure with the
GENE code. The set of parameters corresponds to the
Cyclone Base Case commonly used for studying Ion Tem-
perature Gradient (ITG) driven turbulence21. Consid-
ering a minor radius r0/R0 = 0.18, the density and
temperature gradients are, respectively, ωni = 2.22 and
ωTi = 6.96, where R0 is the major radius and with the
definitions: ωni = −R0 dr lnni0, ωTi = −R0 dr lnTi0.
The magnetic configuration is characterized by the safety
factor q = 1.4 and the magnetic shear ŝ = 0.796, with
ions and electrons such that Te0/Ti0 = 1 and Zi = 1.

A. Nonlinear Gyrokinetic Large Eddy Simulation: Cyclone
Base Case

For the reference DNS, a perpendicular grid of Nx ×
Ny = 128×64 is used. This grid has been used both with
and without a LES model, and the results obtained have
not been affected, indicating that the simulation is well
resolved. On the other hand, a minimal perpendicular
grid for GyroLES should be Nx×Ny = 48× 32, allowing
the dynamic procedure to work. Indeed, the use of the
latter involves the introduction (in the LES domain ∆)
of a test filter corresponding to a coarser grid, �∆ > ∆.
However, it is necessary for the dynamic procedure that
the domain of the LES grid which is neglected by the test
filter belongs to the gyrokinetic ”inertial” range, so that

5

The gyrokinetic equation associated to the test-filter grid
can be obtained by test-filtering the gyrokinetic equation
expressed in the DNS domain:

∂t �fk = L[ �fk] +N [�φk, �fk]−D[ �fk] + T�∆,∆DNS . (21)

This equation is equivalent to the LES filtered Eq. (8)
with the LES width (∆) replaced by the test-filter one
(�∆).

Alternatively, the equation in the test-filter domain can
be obtained by test-filtering (�∆) the gyrokinetic equation
expressed in the LES domain, Eq. (8),

∂t �fk = L[ �fk] + �N [φk, fk]−D[ �fk] + �T∆,∆DNS , (22)

where we have used the very important property �· · · = �· · ·
of Fourier cutoff filters. Comparing Eqs. (21) and (22),
one obtains the Germano identity,

T�∆,∆DNS = �T∆,∆DNS + �N [φk, fk]−N [�φk, �fk] ,

= �T∆,∆DNS + T�∆,∆ . (23)

During an LES, the sub-grid term T�∆,∆ can be com-

puted exactly, since it involves test filtering (�∆) of the
LES-resolved quantities (∆). On the other hand, the two
other terms involve the non-resolved DNS scales (∆DNS)
and therefore have to be approximated by the model:

T�∆,∆DNS ≈ M�∆ ; T∆,∆DNS ≈ M∆ . (24)

The dynamic procedure consists of introducing the
model approximations, Eq. (24), into the Germano iden-
tity, Eq. (23), to obtain

M�∆ ≈ �M∆ + T�∆,∆ . (25)

Since the model is an approximation of the sub-grid
term, Eq. (23) can only be approximated during an LES.
Now, one can define the squared distance d2 which is to
minimize via

d2 =
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T�∆,∆ + �M∆ −M�∆

�2
�

Λ

, (26)

where �· · · �Λ stand for integration over the entire phase
space.

As was shown in Sec. III B, the model coefficients cx
and cy can be assumed to be constant in the gyrokinetic
“inertial range.” So provided that the range between
test-filter and LES scales belongs to this “inertial range,”
the coefficients do not depend on the filter widths (�∆, ∆).

Using Eq. (20), the squared distance can be expressed
in terms of the model amplitudes cx and cy according to

d2 =
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T�∆,∆ + cxmx + cymy
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where the notations mx,y =
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knx,y�hk have

been introduced.
An optimization of this difference with respect to the

unknown parameters (∂d2/∂cx = 0 and ∂d2/∂cy = 0)
leads to the expressions
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Thus, these two free parameters of the model can
be computed dynamically during a numerical simulation
from Eqs. (28) and (29). The dissipative effect of the
model on free energy is guaranteed by setting to zero
any negative coefficient value.

IV. NUMERICAL RESULTS

In the following, we will present numerical results ob-
tained by means of the dynamic procedure with the
GENE code. The set of parameters corresponds to the
Cyclone Base Case commonly used for studying Ion Tem-
perature Gradient (ITG) driven turbulence21. Consid-
ering a minor radius r0/R0 = 0.18, the density and
temperature gradients are, respectively, ωni = 2.22 and
ωTi = 6.96, where R0 is the major radius and with the
definitions: ωni = −R0 dr lnni0, ωTi = −R0 dr lnTi0.
The magnetic configuration is characterized by the safety
factor q = 1.4 and the magnetic shear ŝ = 0.796, with
ions and electrons such that Te0/Ti0 = 1 and Zi = 1.

A. Nonlinear Gyrokinetic Large Eddy Simulation: Cyclone
Base Case

For the reference DNS, a perpendicular grid of Nx ×
Ny = 128×64 is used. This grid has been used both with
and without a LES model, and the results obtained have
not been affected, indicating that the simulation is well
resolved. On the other hand, a minimal perpendicular
grid for GyroLES should be Nx×Ny = 48× 32, allowing
the dynamic procedure to work. Indeed, the use of the
latter involves the introduction (in the LES domain ∆)
of a test filter corresponding to a coarser grid, �∆ > ∆.
However, it is necessary for the dynamic procedure that
the domain of the LES grid which is neglected by the test
filter belongs to the gyrokinetic ”inertial” range, so that
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The gyrokinetic equation associated to the test-filter grid
can be obtained by test-filtering the gyrokinetic equation
expressed in the DNS domain:

∂t �fk = L[ �fk] +N [�φk, �fk]−D[ �fk] + T�∆,∆DNS . (21)

This equation is equivalent to the LES filtered Eq. (8)
with the LES width (∆) replaced by the test-filter one
(�∆).

Alternatively, the equation in the test-filter domain can
be obtained by test-filtering (�∆) the gyrokinetic equation
expressed in the LES domain, Eq. (8),

∂t �fk = L[ �fk] + �N [φk, fk]−D[ �fk] + �T∆,∆DNS , (22)

where we have used the very important property �· · · = �· · ·
of Fourier cutoff filters. Comparing Eqs. (21) and (22),
one obtains the Germano identity,

T�∆,∆DNS = �T∆,∆DNS + �N [φk, fk]−N [�φk, �fk] ,

= �T∆,∆DNS + T�∆,∆ . (23)

During an LES, the sub-grid term T�∆,∆ can be com-

puted exactly, since it involves test filtering (�∆) of the
LES-resolved quantities (∆). On the other hand, the two
other terms involve the non-resolved DNS scales (∆DNS)
and therefore have to be approximated by the model:

T�∆,∆DNS ≈ M�∆ ; T∆,∆DNS ≈ M∆ . (24)

The dynamic procedure consists of introducing the
model approximations, Eq. (24), into the Germano iden-
tity, Eq. (23), to obtain

M�∆ ≈ �M∆ + T�∆,∆ . (25)

Since the model is an approximation of the sub-grid
term, Eq. (23) can only be approximated during an LES.
Now, one can define the squared distance d2 which is to
minimize via

d2 =

��
T�∆,∆ + �M∆ −M�∆
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, (26)

where �· · · �Λ stand for integration over the entire phase
space.

As was shown in Sec. III B, the model coefficients cx
and cy can be assumed to be constant in the gyrokinetic
“inertial range.” So provided that the range between
test-filter and LES scales belongs to this “inertial range,”
the coefficients do not depend on the filter widths (�∆, ∆).

Using Eq. (20), the squared distance can be expressed
in terms of the model amplitudes cx and cy according to

d2 =
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where the notations mx,y =
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An optimization of this difference with respect to the

unknown parameters (∂d2/∂cx = 0 and ∂d2/∂cy = 0)
leads to the expressions
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Thus, these two free parameters of the model can
be computed dynamically during a numerical simulation
from Eqs. (28) and (29). The dissipative effect of the
model on free energy is guaranteed by setting to zero
any negative coefficient value.

IV. NUMERICAL RESULTS

In the following, we will present numerical results ob-
tained by means of the dynamic procedure with the
GENE code. The set of parameters corresponds to the
Cyclone Base Case commonly used for studying Ion Tem-
perature Gradient (ITG) driven turbulence21. Consid-
ering a minor radius r0/R0 = 0.18, the density and
temperature gradients are, respectively, ωni = 2.22 and
ωTi = 6.96, where R0 is the major radius and with the
definitions: ωni = −R0 dr lnni0, ωTi = −R0 dr lnTi0.
The magnetic configuration is characterized by the safety
factor q = 1.4 and the magnetic shear ŝ = 0.796, with
ions and electrons such that Te0/Ti0 = 1 and Zi = 1.

A. Nonlinear Gyrokinetic Large Eddy Simulation: Cyclone
Base Case

For the reference DNS, a perpendicular grid of Nx ×
Ny = 128×64 is used. This grid has been used both with
and without a LES model, and the results obtained have
not been affected, indicating that the simulation is well
resolved. On the other hand, a minimal perpendicular
grid for GyroLES should be Nx×Ny = 48× 32, allowing
the dynamic procedure to work. Indeed, the use of the
latter involves the introduction (in the LES domain ∆)
of a test filter corresponding to a coarser grid, �∆ > ∆.
However, it is necessary for the dynamic procedure that
the domain of the LES grid which is neglected by the test
filter belongs to the gyrokinetic ”inertial” range, so that
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The gyrokinetic equation associated to the test-filter grid
can be obtained by test-filtering the gyrokinetic equation
expressed in the DNS domain:

∂t �fk = L[ �fk] +N [�φk, �fk]−D[ �fk] + T�∆,∆DNS . (21)

This equation is equivalent to the LES filtered Eq. (8)
with the LES width (∆) replaced by the test-filter one
(�∆).

Alternatively, the equation in the test-filter domain can
be obtained by test-filtering (�∆) the gyrokinetic equation
expressed in the LES domain, Eq. (8),

∂t �fk = L[ �fk] + �N [φk, fk]−D[ �fk] + �T∆,∆DNS , (22)

where we have used the very important property �· · · = �· · ·
of Fourier cutoff filters. Comparing Eqs. (21) and (22),
one obtains the Germano identity,

T�∆,∆DNS = �T∆,∆DNS + �N [φk, fk]−N [�φk, �fk] ,

= �T∆,∆DNS + T�∆,∆ . (23)

During an LES, the sub-grid term T�∆,∆ can be com-

puted exactly, since it involves test filtering (�∆) of the
LES-resolved quantities (∆). On the other hand, the two
other terms involve the non-resolved DNS scales (∆DNS)
and therefore have to be approximated by the model:

T�∆,∆DNS ≈ M�∆ ; T∆,∆DNS ≈ M∆ . (24)

The dynamic procedure consists of introducing the
model approximations, Eq. (24), into the Germano iden-
tity, Eq. (23), to obtain

M�∆ ≈ �M∆ + T�∆,∆ . (25)

Since the model is an approximation of the sub-grid
term, Eq. (23) can only be approximated during an LES.
Now, one can define the squared distance d2 which is to
minimize via

d2 =
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T�∆,∆ + �M∆ −M�∆
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, (26)

where �· · · �Λ stand for integration over the entire phase
space.

As was shown in Sec. III B, the model coefficients cx
and cy can be assumed to be constant in the gyrokinetic
“inertial range.” So provided that the range between
test-filter and LES scales belongs to this “inertial range,”
the coefficients do not depend on the filter widths (�∆, ∆).

Using Eq. (20), the squared distance can be expressed
in terms of the model amplitudes cx and cy according to
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where the notations mx,y =
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An optimization of this difference with respect to the
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Thus, these two free parameters of the model can
be computed dynamically during a numerical simulation
from Eqs. (28) and (29). The dissipative effect of the
model on free energy is guaranteed by setting to zero
any negative coefficient value.

IV. NUMERICAL RESULTS

In the following, we will present numerical results ob-
tained by means of the dynamic procedure with the
GENE code. The set of parameters corresponds to the
Cyclone Base Case commonly used for studying Ion Tem-
perature Gradient (ITG) driven turbulence21. Consid-
ering a minor radius r0/R0 = 0.18, the density and
temperature gradients are, respectively, ωni = 2.22 and
ωTi = 6.96, where R0 is the major radius and with the
definitions: ωni = −R0 dr lnni0, ωTi = −R0 dr lnTi0.
The magnetic configuration is characterized by the safety
factor q = 1.4 and the magnetic shear ŝ = 0.796, with
ions and electrons such that Te0/Ti0 = 1 and Zi = 1.

A. Nonlinear Gyrokinetic Large Eddy Simulation: Cyclone
Base Case

For the reference DNS, a perpendicular grid of Nx ×
Ny = 128×64 is used. This grid has been used both with
and without a LES model, and the results obtained have
not been affected, indicating that the simulation is well
resolved. On the other hand, a minimal perpendicular
grid for GyroLES should be Nx×Ny = 48× 32, allowing
the dynamic procedure to work. Indeed, the use of the
latter involves the introduction (in the LES domain ∆)
of a test filter corresponding to a coarser grid, �∆ > ∆.
However, it is necessary for the dynamic procedure that
the domain of the LES grid which is neglected by the test
filter belongs to the gyrokinetic ”inertial” range, so that

Approximate sub-grid terms and minimize error: 

...this procedure yields 
explicit expressions for 
the model parameter(s) 
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FIG. 1. Schematic view of a Large Eddy Simulation: The
smallest scales (grey area between dashed-dotted and dotted
lines) are retained only in a DNS, while they are modeled in
a LES model; LES only retain the area inside the dashed-
dotted line; alternatively or additionally, a test filter can be
used (hatched area, solid line).

B. Free energy and sub-grid term

As has been shown both theoretically14–17 and

numerically18–20, the free energy is a relevant quantity

for studying gyrokinetic turbulence. The free energy is

defined as:

E =
n0iT0i

V T0e

�

kx

�

ky

�
πdzdv�dµ

h−kifki
2F0i

, (10)

with the volume V =
�

kx

�
ky

�
dz/B0.

The dynamics of the quantity E can be derived from

Eq. (1) by the action of the “free energy operator” Ξ on

the distribution function fki: E =
1
2Ξ[fki] with

Ξ[ξk] =
n0iT0i

V T0e

�

kx

�

ky

�
πdzdv�dµ

h−ki

F0i
ξk . (11)

One thus obtains:

∂tE = G −D , (12)

with the definitions

G = Ξ [LG[fki]] , D = Ξ [D[fki]] . (13)

This balance is of particular relevance for the design

of a good model. As pointed out in Ref.15, Eq. (12)

involves only quantities which are quadratic in the dis-

tribution function, like the kinetic energy in fluid turbu-

lence. Moreover, like the latter quantity, the free energy

is injected at large scales by the background gradients

and dissipated at various smaller scales by the dissipation

terms D. It is important to note in this context that the

parallel advection term (L�), the magnetic term (LB0),

and the nonlinear term (N) have a null contribution to

the total free energy balance.

III. DEVELOPING A GYROKINETIC LES MODEL

As is well known, a naive truncation of small scales

can lead to a pile-up of free energy at the smallest

scales which are retained in the filtered simulation.6 A

good LES model is thus required to dissipate the correct

amount of free energy. In the following, the role of sub-

grid terms in the free energy balance will be studied in

detail. A model will then be developed which agrees as

much as possible with the desired sub-grid properties.

A. Sub-grid term and dissipation of free energy

The nonlinear term has the fundamental role of trans-

ferring free energy across perpendicular scales, as well

as across parallel space scales and perpendicular velocity

scales, that are of lower interest in the present work with

respect to the aim of filtering out perpendicular scales.

These transfers have a globally null contribution to the

free energy:

Ξ [N [φk, fk]] = 0 , (14)

simply reflecting the fact that the nonlinearity has a Pois-

son bracket structure and, consequently, it vanishes upon

integration. For the same reason, if a filter is introduced,

the following property holds:

Ξ
�
N [φk, fk]

�
= 0 , (15)

where Ξ is the filtered free energy operator defined in

the filtered space. On the contrary, the filtered free en-

ergy operator has a non vanishing contribution when it

is applied to the sub-grid term:

T∆,∆DNS = Ξ[T∆,∆DNS ] = Ξ
�
N [φk, fk]−N [φk, fk]

�

= Ξ
�
N [φk, fk]

�
. (16)

The filtered free energy balance can then be expressed

as

∂tE = G + T∆,∆DNS −D , (17)

where filtered quantities are obtained from the action of

the filtered free energy operator Ξ on the filtered gyroki-

netic equation (8).

Recalling that the free energy is assumed to be injected

at large scales, then transferred to smaller scales and dis-

sipated there, one can expect that the sub-grid contribu-

tion to free energy balance (16) will be negative. Indeed,
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FIG. 4. Free energy spectra (Ekx at top, Eky at bottom) for
the fourth-order model (M4) at reduced resolution, compared
with a highly resolved DNS and the case without a model
(M0).

bustness of the LES approach is tested for two values of

the temperature gradient which differ from the nominal

value; these correspond to a weakly driven turbulence

case (ωTi = 6.0) and to a strongly driven turbulence case

(ωTi = 8.0).
The case of weakly driven ITG turbulence is shown in

Fig. 5. The M4 model yields a very reasonable agreement

with the DNS regarding both the free energy spectrum

Eky and the free energy injection spectrum Gky . The

total values EM4 = 0.99 EDNS and QM4 = 0.75QDNS are

also in good agreement. Without a model, one obtains

EM0 = 1.79 EDNS and QM0 = 1.04QDNS. The latter result

is accidental, however, and results from a compensation

between an underestimation at large scales and an over-

estimation at small ones.

Fig. 6 displays the results for the case of strongly driven

ITG turbulence. The LES is found to systematically

overestimate the DNS free energy spectrum Eky , while

the prediction of the free energy injection spectrum Gky

is in reasonable agreement. One finds EM4 = 1.67 EDNS
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FIG. 5. Wavenumber spectra Eky (at top) and Gky (at bot-
tom): Comparison between DNS and LES for the case of
weakly driven ITG turbulence at ωTi = 6.0.

and QM4 = 1.14QDNS, whereas the values exhibit a

substantial disagreement without a model, according to

EM0 = 3.00 EDNS and QM0 = 1.42QDNS.

In summary, the LES model leads to a far better agree-

ment with the reference DNS than the runs without a

model. As far as the overall heat flux levels (which are of

prime importance) are concerned, the relative error with

respect to the reference DNS is acceptable, amounting to

less than 30% in all three cases considered. The model

amplitudes cx and cy computed dynamically are found

to be quite robust when varying the temperature gra-

dient. The mean values are cx = 0.0155, cy = 0.0179
in the weakly driven case, cx = 0.0140, cy = 0.0212 for

the CBC, and cx = 0.0140, cy = 0.0219 for the strongly

driven case.

C. Robustness while varying the magnetic shear

Next, we would like to investigate the robustness

of the LES approach with respect to variations of

Free energy spectra 
(w/ and w/o model) 

Morel et al., 
PoP 2011  

LES techniques are likely to reduce the simulation effort 
substantially without introducing many free parameters. 

This offers interesting perspectives… 40 



Final remarks: 
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A modified version of the Kuramoto-Sivashinsky equation

A simple one dimensional model for turbulent behaviour is the Kuramoto-Sivashinsky equa-

tion [1, 2]

∂u(x, t)

∂t
= −u(x, t)

∂u(x, t)

∂x
− µ

∂2u(x, t)

∂x2
− ν

∂4u(x, t)

∂x4
, (1)

where µ, ν ∈ R+. (All our numerical analysis is done after setting µ = 1 = ν.) It is a

fourth order nonlinear partial differential equation and very similar to the Burgers equation.

Eq. (1), in general, describes extended physical systems driven far from equilibrium by in-

ternal instabilities. The linear terms on the right hand-side provide an energy source and

sink, respectively. Similarly as in Navier-Stokes turbulence we have energy injection on large

scales and energy dissipation on small scales. The nonlinear term is responsible for the cou-

pling between different scales and transfers the energy from small to large scales where it

is dissipated. However, in contrast to Navier-Stokes turbulence the turbulent field u(x, t) is

compressible. In physical terms this means that the solutions of Eq. (1) develop shock waves.

We are going to examine Eq. (1) on the finite domain x ∈ [0, L] and consider only functions

that belong to C4
([0, L])∩L2

([0, L]) with respect to x and to C1
(R) with respect to time and

fulfil the periodic boundary conditions u(x = 0, t) = u(x = L, t) for all t ∈ R+. Since u2 has

the physical interpretation of the energy density of the system, the condition that u(x, t) is

square integrable over the domain x ∈ [0, L] ensures that the system has a finite energy. The

periodic boundary conditions suggest representation in terms of Fourier series defined as

u(x, t) =
�

n∈Z
�u(kn, t)eiknx ⇔ �u(kn, t) =

1

L

L�

0

u(x, t)e−iknxdx , (2)

where the wave numbers kn = n2π/L are discrete and n ∈ Z. From the condition that u(x, t)
is real follows that �u(kn, t) = �u(−kn, t) where the overbear denotes complex conjugation.

Expressing Eq. (1) in terms of Fourier coefficients gives

∂�u(kn, t)
∂t

= −1

2
ikn

�

m∈Z
�u(kn − km, t)�u(km, t) + (µk2n − νk4n)�u(kn, t) . (3)

The convolution sum on the right hand-side arises from the nonlinearity and describes the

coupling between different modes. Without it every mode would develop in time as e(µk
2
n−νk4n)t

and the modes with n <
�
µ/νL/(2π) would grow infinitely. Modes with a value of n higher

than this are damped and the damping rate goes as νk4n for k → ±∞. The nonlinear term

does not produce or dissipate energy, i.e., summed over n it gives zero, but only redistributes

it among the modes. We modify the linear term by introducing the factor a + bk4n in the

denominator, i.e., µk2n − νk4n → (µk2n − νk4n)/(a+ bk4n) where a, b ∈ R+. The new linear term

provides a constant damping rate of 1/b in the limit of high wave number. The parameter a
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1

controls the energy injection range and we will set a = 1 for the reminder of this work. Note

that the real representation of the modified linear term is well defined for all functions in the

domain C4([0, L]) ∩ L2([0, L]). Multiplying Eq. (3) by �u(kn, t) and adding to it its complex

conjugate equation gives us the energy budget equation for the modified version of Eq. (3)

which in Fourier space reads

∂E(kn, t)

∂t
=

�

m∈Z
kn�

�
�u(kn, t)�u(kn − km, t)�u(km, t)

�

� �� �
=:T (kn,km,t)

+2
µk2n − νk4n
1 + bk4n

E(kn, t) , (4)

where E(kn, t) := |�u(kn, t)|2 is the energy of the kn-mode. T (kn, km, t) we refer to as the

nonlinear energy transfer function. Note that, in contrast to incompressible fluid turbulence,

it is not antisymmetric with respect to an interchange of kn and km. On the above equation

one sees explicitly the three-wave interaction that transfers energy between different modes

and the selection rule that two modes, say kn and km, couple via a mode with the wave

number kn − km.

The numerical solution of Eq. (3) that we used is based on the Exponential Time Differencing
fourth-order Runge-Kutta (ETDRK4) scheme proposed in [3] and improved in [4]. The code

used can be found in [4] which we rewrote in Fortran and dealiased. The numerical simulations

showed that the energy dissipation at small scales balances the energy injection at small wave

numbers and after some transient time the total energy of the system fluctuates around a

time-independent value. Therefore, the tedious ensemble average can be substituted with a

time average defined as

�f(t)�τ := lim
τ→∞

T0+τ�

T0

f(t)dt . (5)

Applying this time average on Eq. (4) one arrives at

kn
�

m∈Z
�
�
��u(kn, t)�u(kn − km, t)�u(km, t)�τ

�
+ 2

µk2n − νk4n
1 + bk4n

E(kn) = 0 (6)

which determines the time averaged energy spectrum E(kn). We search for an approximation

of this equation for large wave numbers and a convenient way to accomplish this is to express

the first term as a function of the energy spectrum. For this we take a closer look at the

numerical solution for �T (kn, km, t)�τ displayed in Fig. 1a. |�u(kn, t)| decreases rapidly with kn,
therefore, we have normalized T over the energy spectrum which makes it possible that details

are visible also for high wave numbers. The energy transfer in that limit is realized primarily

between two high wave numbers and mediated via one small wave number that is in the order

of 1. This is a completely different picture compared to ordinary fluid dynamics where the

triplets consists of two nearly equal wave numbers and one that is twice as large. Looking

at the form of T (kn, km, t) in Eq. (4), it is clear that such a combination for fixed kn can be

realized in two different ways: km ≈ kn and kn−km small or km small and kn−km ≈ kn. A slice

of �T (kn, km, t)�τ for a given kn is displayed in Fig. 1b. The two structures are mirror images

of each other, so we focus our study on the part where km ≈ kn. Defining for convenience

kq = km − kn, the nonlinearity becomes kn
�

q∈Z�
�
��u(kn, t)�u(kq, t)�u(kn + kq, t)�τ

�
. A plot

of the summand (red) normalized properly is shown in Fig. 2. Note that for high kn the

form of this triple correlation is practically independent of kn as one can show numerically.
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Kuramoto-Sivashinsky equation (linked to complex Ginzburg-Landau equation) 

Modification: Constant damping rate at high wavenumbers 
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(a) (b)

Figure 2: (a) Triple correlation (red) as a function of kq at a given high kn normalized over
the energy of the (kn + kmin

q )-mode compared to the model f(kq)/E(kn − kmin
q ); (b) fit of a

power law (blue) to the high-k end of the energy spectrum (red).

functions and kmin
q ≈ 1/

√
2, we can write

�

q∈Z
f(kq) ≈

1

∆k

+∞�

−∞

f(q)dq =
1

∆k

√
πa1a2

√
a3

�
E(kn − 1/

√
2)− E(kn + 1/

√
2)
�

. (8)

For high kn one can write E(kn−1/
√
2)−E(kn+1/

√
2) ≈ −

√
2dE/dk where we have assumed

that we have a continuum of wave numbers. The latter is approximately true for ∆k � 1
and will allow us to construct a differential equation for E(k) which is easier to work with
than a difference equation. The nonlinearity equals 2

�
q∈Z f(kq) where the factor 2 takes into

account that we modelled only one of the two identical structures in Fig. 1b. Substituting
this approximation into Eq. (6) we arrive at

−2
a1a2
∆k

√
2πa3k

dE

dk
+ 2

µk2 − νk4

1 + bk4
E(k) = 0 . (9)

The solution of the above differential equation is readily as obtained as

E(k) = �E0 exp

�
λµ√
b
arctan(

√
bk2)− λν

2b
ln(1 + bk4)

�
(10)

where we have substituted λ = ∆k/(2a1a2
√
2πa3). In the limit of large wave numbers the

second term in the exponent dominates and leads to

E(k) = E0k
−2λν/b , (11)

where E0 is a constant of integration. This is a power law with respect to k where the power
depends on the damping parameter b. With the values of the free parameters given above
one obtains for b = 0.036 an exponent of ≈ −22.02. By numerically computing the energy
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The exact solution of this equation reads... 

High-k limit: 

Spectral exponent is proportional to high-k damping rate! 
Bratanov et al., to be submitted 
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