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Why MHD turbulence?

Magnetohydrodynamic field equations

Momentum equation

Induction equation

Simplest macroscopic description of a conducting flow
● fluid description (not kinetic)
● one fluid – quasi neutral
● non relativistic

+ boundary conditions!!!

Incompressible flow



  

Why MHD turbulence?

● Fundamental questions: universality, scaling laws, isotropy, ...
● Applications :  Heliosphere, Solar wind, Dynamos, Interstellar medium, 

Fusion experiments, ...

Eagle Nebular (M16)

C-Mod tokamak (MIT)

Caution: MHD turbulence is a very complicated state
● non-linear
● high Re → many degrees of freedom
● Proving uniqueness and existence of solution to 

Navier-Stokes equations → 1 million Dollar

Orion nebular



  

Why numerical modeling?
● Access to detailed data
● Focus on idealized situation
● Understanding nature by 

simplified models
● Supercomputer provide remote laboratory
● might be much cheaper

than experiments
● free (peer-reviewed) access to European resources

Navier-Stokes

MHD



  

How to model numerically

● Numerical derivatives
● Fast Fourier Transforms
● Resolution issues: inertial and dissipation range
● Floating point precision
● Parallelization
● What can be done with a supercomputer?



  

Introduction
Here only uniform grids:Discretization:

Time integration:
● Runge-Kutta
● Adams-Bashforth
● Leap-Frog
● ...

Solve accurately the MHD equations!

Temporal/spatial averages → statistical data:

Tracer (fluid element) trajectories

solution of the MHD equations



  

Numerical derivatives
How to approximate a derivative:

Finite differences:

advantages: explicit (high speed)
flexibility: (boundary conditions)

  drawbacks: order p → stencil has p+m(-1) points
high order → high communication

Compact schemes:

advantages: balance of left and right hand side terms → smaller stencil
drawback: implicit → more complicated to solve : m=1 → tridiagonal matrix

Spectral scheme:  

advantages: exponential accuracy: for a periodic 

drawbacks: convolutions (N² operations) for non-linearities → speudo-spectral with FFTs
problems for discontinues functions
computation of modes       = global operation



  

Fast Fourier Transforms

Quadratic term

→ N² operations → numerically expensive

Speudo-spectral: Derivatives in Fourier-Space, Products in real space
Transformations with Fast Fourier Transformations (FFT)

Idea: Discrete Fourier Transform = sum of 2 transforms of half length



  

Fast Fourier Transforms (2)
Iterate this decomposition             times in even and odd transforms …

Second level:

Number of operations of a FFT:

Why?
●             levels
● N operations per level s:                                  (period halving)

             for the computation of      functions



  

Resolution issues: inertial range

Small differences in the scaling behavior of two 
different types of structure functions

large Re → inertial range broadens

Which resolution of the turbulent flow?    A) inertial range statistics

Forcing at large scales fixes    . Variation of     determines  

Hyper viscosity: 

Respect 

Grauer, Homann et al. (2012) NJP



  

Resolution issues: dissipation range

Schumacher (2007) EPL

Which resolution of the turbulent flow?    B) dissipation range statistics



  

Floating point precision
Which floating point precision is needed?

Navier-Stokes simulation with 256³ grid-points

single-precision 

artificial noise on n bits

(23-9 = 14 bits)

14 bits in fraction are sufficient for 256³ simulation

Homann, Dreher et al. (2007) Comp. Phys. Comm



  

Floating point precision (2)

What maximal resolution can be run in single precision?

● 9 bits more → 512 times larger number
● Assume Kolmogorov spectrum

 

8192³ simulations are possible in single precision



  

Parallelization

At the end … huge number of standard 
computing cores connected with a very fast 
network with an essentially distributed memory

www.top500.org



  

Parallelization (2)
Message Passing Interface (MPI): Data transfer between cores with different ram

Library with functions:

+ the same in non-blocking + global communications such as 

Free parallel FFT libraries such as FFTW and P3DFFT

int MPI_Send(void *buf, int count, MPI_Datatype datatype, int dest, int tag, MPI_Comm comm)
int MPI_Recv(void *buf, int count, MPI_Datatype datatype, int source, int tag, MPI_Comm comm, MPI_Status *status)

int MPI_Alltoall(void *sendbuf, int sendcount, MPI_Datatype sendtype, void *recvbuf, int recvcount, MPI_Datatype recvtype, 
                 MPI_Comm comm)

1d decomposition

2d decomposition

MPI + OpenMP/Threads (on shear memory)



  

What is possible

TURING (IDRIS, 31st of TOP500): 

BlueGene/Q: 0.84 Pflop, 65 Tbyte RAM, 400 kW energy consumption

Simulation:

4096³ grid-points (                       )

Approx. 8TByte RAM

10 LET = 40 Days = 60 Million CPU h

PRACE (Partnership for advanced 
computing in Europe)

Electricity: 400000 kWh = 45 k euros (if 1kWh = 0.11 cents as in France, else ...)

BlueGene/Q is the most efficient Supercomputer: 2GFlop/W (Green500)

TURING (IDRIS) 65536 cores



  

Discontinuities

Wikipedia

Incompressible Navier-Stokes:         → smooth solution

Highly compressible Flows → shocks = discontinuities → Gibbs oscillations

Finite volume scheme 

Central Weighted Essentially
Non-Oscillatory scheme

Beetz, Schwarz et al. (2008) Phys. Lett. A

New trends: Graphic cards (CUDA, OpenCL)
● 2688 simple cores arranged in multiprocessors
● small cache per multiprocessor
● big (6TByte) global memory

very fast multiprocessors slow memory bandwidth



  

APPLICATIONS

● Universality
● Planet formation
● Turbulent dynamo
● Transport of tracers and Impurities



  

Universality

Lee, Brachet et al. (2012) PRE

Problem: Are scaling laws universal ?

                           Speudo-spectral simulations of decaying MHD turbulence

                                                      Different mean magnetic fields
Different initial conditions

Energy spectra: 

Müller, Biskamp et al. (2003) Phy. Rev. E



  

Planet formation
Problem: How to grow m-size boulders to km-size planetisimals? 

● DNS of MHD shearing box
● Heavy particles
● 2-way coupling
● High order finite differences 

(pencil code, http://www.nordita.org/pencil-code/))

● Particles concentrate in high-pressure regions
● Acceleration of gravitational collapse
● Accelerated boulder growth

Johansen, Oishi et al. (2007) Nature
Johansen, Klahr et al. (2011) A&A

http://www.nordita.org/pencil-code/


  

Turbulent dynamo

● DNS of MHD flow in periodic box 
with Taylor Green forcing

● First, onset increases with Re
● Later, onset saturates

Monchaux et al., Phys. Fluids 21, 
035108 (2009)

Problem: How does the dynamo onset scale with the Reynolds number?

Re increases

VKS experiment

Ponty, Minninni et al. (2005) Phys. Rev. Lett.
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Transport of tracers
Problem: Statistical properties of fluid element trajectories 

Navier-Stokes MHD

Intermittency

Dispersion of tracers
● MHD velocity increments are less

intermittent than Navier-Stokes ones
● Accelerated (Richardson) MHD dispersion

is delayed due to alignment to mean
magnetic field

● B-transverse dispersion is reduced

Busse, Müller et al. (2007) Phys. Plasmas



  

Transport of impurities
Problem: Where do inertial particles go in MHD turbulence?

Navier-Stokes

MHD

Navier-Stokes

MHD

particle response time        radius

length-scale                         

Neutral Particles



  

Transport of charged impurities
Clustering of charged particles

Effect of Lorentz-force
with respect to inertial drag

Lorentz-numberVariance of coarse-grained
density PDF

Vortex-sheet selection

: attractive sheet
: repulsive sheet
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