Numerical modeling of MHD turbulence

Holger Homann

Laboratoire Lagrange UMR 7293 Observatoire de la Côte d'Azur Nice, France

Outline

- Why MHD turbulence?
- Why numerical modeling?
- How to model numerically?
- Applications

Why MHD turbulence?

Simplest macroscopic description of a conducting flow

- fluid description (not kinetic)
- one fluid quasi neutral
- non relativistic

Magnetohydrodynamic field equations

$$\begin{array}{l} \frac{\partial \boldsymbol{v}}{\partial t} + \boldsymbol{v} \cdot \nabla \boldsymbol{v} = -\nabla P + \boldsymbol{j} \times \boldsymbol{B} + \nu \Delta \boldsymbol{v} + \boldsymbol{F_v} & \text{Momentum equation} \\ \frac{\partial \boldsymbol{B}}{\partial t} + \boldsymbol{v} \cdot \nabla \boldsymbol{B} = \boldsymbol{B} \cdot \nabla \boldsymbol{v} + \eta \Delta \boldsymbol{B} + \boldsymbol{F_B} & \text{Induction equation} \\ \nabla \cdot \boldsymbol{B} = \nabla \cdot \boldsymbol{v} = 0 & \text{Incompressible flow} \\ \boldsymbol{F_v} \text{ and } \boldsymbol{F_B} : \text{ forcing terms} \end{array}$$

+ boundary conditions!!!

Why MHD turbulence?

- Fundamental questions: universality, scaling laws, isotropy, ...
- **Applications :** Heliosphere, Solar wind, Dynamos, Interstellar medium, Fusion experiments, ...

Caution: MHD turbulence is a very complicated state

- non-linear
- high Re \rightarrow many degrees of freedom $\sim Re^{9/4}$
- Proving uniqueness and existence of solution to Navier-Stokes equations \rightarrow 1 million Dollar

Why numerical modeling?

- Access to detailed data
- Focus on idealized situation
- Understanding nature by simplified models
- Supercomputer provide remote laboratory
- might be much cheaper than experiments
- free (peer-reviewed) access to European resources

How to model numerically

- Numerical derivatives
- Fast Fourier Transforms
- Resolution issues: inertial and dissipation range
- Floating point precision
- Parallelization
- What can be done with a supercomputer?

Introduction

Discretization:
$$v(x,t) \rightarrow v_{ijk}^n \equiv v(x_i, x_j, x_k, t_n)$$

Time integration: $v_{ijk}^{n+1} = F(v_{ijk}^n)$

- Runge-Kutta
- Adams-Bashforth
- Leap-Frog

Solve accurately the MHD equations!

Tracer (fluid element) trajectories

$$\frac{d\boldsymbol{X}(\boldsymbol{x},t)}{dt} = \boldsymbol{v}(\boldsymbol{X}(\boldsymbol{x},t))$$

solution of the MHD equations

Numerical derivatives

Compact schemes:
$$\sum_{j=-m}^{m} h_j f'_j = \sum_{j=-n}^{n} g_j f_j$$

advantages: balance of left and right hand side terms \rightarrow smaller stencil drawback: implicit \rightarrow more complicated to solve : m=1 \rightarrow tridiagonal matrix

Spectral scheme: $f_K(x) = \sum_{k=-K}^{K} \widehat{f_k} e^{ikx}$ $f' = \widehat{i k f_K}$

advantages: exponential accuracy: for a periodic $f(x) \in C^m$

$$\|f - f_K\|_{L^p_{(0,2\pi)}} \le CK^{-m} \|f^{(m)}\|_{L^p_{(0,2\pi)}}$$

drawbacks: convolutions (N² operations) for non-linearities \rightarrow speudo-spectral with FFTs problems for discontinues functions computation of modes $\widehat{f_K}$ = global operation

Fast Fourier Transforms

Quadratic term
$$f(x) = a(x) \cdot b(x) \widehat{=} (v \cdot \nabla v)$$

 $(\widehat{f(x)})_k = \int a(x)b(x)e^{ikx}dx$
 $= \int \hat{a}(k-k_1)\hat{b}(k_1)dk_1$

 \rightarrow N² operations \rightarrow numerically expensive

Speudo-spectral: Derivatives in Fourier-Space, Products in real space Transformations with Fast Fourier Transformations (FFT)

Idea: Discrete Fourier Transform = sum of 2 transforms of half length

$$\hat{f}_{k} = \sum_{j=0}^{N/2-1} e^{2\pi i k(2j)/N} f_{2j} + \sum_{j=0}^{N/2-1} e^{2\pi i k(2j+1)/N} f_{2j+1}$$
$$= \sum_{j=0}^{N/2-1} e^{2\pi i k j/(N/2)} f_{2j} + W^{k} \sum_{j=0}^{N/2-1} e^{2\pi i k j/(N/2)} f_{2j+1} = \hat{f}_{k}^{even} + W^{k} \hat{f}_{k}^{odd}$$

Fast Fourier Transforms (2)

Iterate this decomposition $\log_2 N$ times in even and odd transforms ...

Second level: $\hat{f}_k = \hat{f}_k^{ee} + W^k \hat{f}_k^{eo} + W^k \hat{f}_k^{oe} + (W^k)^2 \hat{f}_k^{oo}$

Number of operations of a FFT: $N \log_2 N$

Why?

- $\log_2 N$ levels
- N operations per level s: $0 \le k \le N/2^s 1$ (period halving) for the computation of 2^s functions

Resolution issues: inertial range

Which resolution of the turbulent flow? A) inertial range statistics

Forcing at large scales fixes *L*. Variation of ν determines $Re = \frac{L u_{rms}}{\nu}$

Respect $k_{max}\eta \ge 1.5$

Small differences in the scaling behavior of two different types of structure functions

Resolution issues: dissipation range

Which resolution of the turbulent flow?

$$k_{max}\eta = 10 - 34$$

Schumacher (2007) EPL

B) dissipation range statistics

Floating point precision

Which floating point precision is needed?

Navier-Stokes simulation with 256³ grid-points

Floating point precision (2)

What maximal resolution can be run in single precision?

- 9 bits more \rightarrow 512 times larger number
- Assume Kolmogorov spectrum $E_k \sim k^{-5/3}$

8192³ simulations are possible in single precision

Parallelization

Performance Development

At the end ... huge number of standard computing cores connected with a very fast network with an essentially distributed memory

Parallelization (2)

Message Passing Interface (MPI): Data transfer between cores with different ram

Library with functions:

int MPI_Send(void *buf, int count, MPI_Datatype datatype, int dest, int tag, MPI_Comm comm)
int MPI Recv(void *buf, int count, MPI Datatype datatype, int source, int tag, MPI Comm comm, MPI Status *status)

+ the same in non-blocking + global communications such as

256

512

1024

2048

4096

number of cores

8192 16384 32768

Free parallel FFT libraries such as FFTW and P3DFFT

MPI + OpenMP/Threads (on shear memory)

What is possible

TURING (IDRIS, 31st of TOP500):

BlueGene/Q: 0.84 Pflop, 65 Tbyte RAM, 400 kW energy consumption

Simulation:

4096³ grid-points ($Re \simeq 40000$)

Approx. 8TByte RAM

10 LET = 40 Days = 60 Million CPU h

PRACE (Partnership for advanced computing in Europe)

Electricity: 400000 kWh = 45 k euros (if 1kWh = 0.11 cents as in France, else ...)

BlueGene/Q is the most efficient Supercomputer: 2GFlop/W (Green500)

Discontinuities

Incompressible Navier-Stokes: $\Delta \boldsymbol{v} \rightarrow$ smooth solution

Highly compressible Flows \rightarrow shocks = discontinuities \rightarrow

Finite volume scheme

Central Weighted Essentially Non-Oscillatory scheme

Beetz, Schwarz et al. (2008) Phys. Lett. A

Gibbs oscillations

Functional approximation of square wave using 5 harmonics

square wave using 25 harmonics

New trends: Graphic cards (CUDA, OpenCL)

- 2688 simple cores arranged in multiprocessors
- small cache per multiprocessor
- big (6TByte) global memory

very fast multiprocessors slow memory bandwidth

APPLICATIONS

- Universality
- Planet formation
- Turbulent dynamo
- Transport of tracers and Impurities

Universality

Problem: Are scaling laws universal ?

Speudo-spectral simulations of decaying MHD turbulence

Different initial conditions

Different mean magnetic fields

$$egin{aligned} S_p(l) &= \langle (\delta z_l)^p
angle \sim l^{\zeta_p} \ oldsymbol{z}^\pm &= oldsymbol{v} \pm oldsymbol{B} \end{aligned}$$

Lee, Brachet et al. (2012) PRE

Müller, Biskamp et al. (2003) Phy. Rev. E

Energy spectra:

Planet formation

Problem: How to grow m-size boulders to km-size planetisimals?

- DNS of MHD shearing box
- Heavy particles
- 2-way coupling
- High order finite differences (pencil code, http://www.nordita.org/pencil-code/))

- Particles concentrate in high-pressure regions
- Acceleration of gravitational collapse
- Accelerated boulder growth

Johansen, Oishi et al. (2007) Nature Johansen, Klahr et al. (2011) A&A

Turbulent dynamo

Problem: How does the dynamo onset scale with the Reynolds number?

Ponty, Minninni et al. (2005) Phys. Rev. Lett.

Monchaux et al., Phys. Fluids 21, 035108 (2009)

Turbulent dynamo

Problem: How does the dynamo onset scale with the Reynolds number?

Ponty, Minninni et al. (2005) Phys. Rev. Lett.

Monchaux et al., Phys. Fluids 21, 035108 (2009)

Transport of tracers

Problem: Statistical properties of fluid element trajectories

$$S_p(\tau) = \langle (\delta_\tau u)^p \rangle$$

- MHD velocity increments are less intermittent than Navier-Stokes ones
- Accelerated (Richardson) MHD dispersion is delayed due to alignment to mean magnetic field
- B-transverse dispersion is reduced

Busse, Müller et al. (2007) Phys. Plasmas

Transport of impurities

Problem: Where do inertial particles go in MHD turbulence?

St

Transport of charged impurities

Clustering of **charged** particles b > 0

Lorentz-number

$$Lo = \tau B_{rms}/\ell$$

Effect of Lorentz-force with respect to inertial drag

