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FlareLab: Soltwisch next week

Numerical Methods: racoon

Turbulence: LaTu, cudaHYPE




Motivation

p fluid description
MHD, Hall-MHD, 5- or 10 moment MHD

) kinetic description
PIC,Vlasov

» Coupling fluid and kinetic simulations
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Hyperbolic equations:
» weak solutions
» Riemann problem, Riemann solver
» CWENO
»div B = 0: divergence cleaning, FCT
»5- and 10-moment equations

PIC,Vlasov:
» PFC
» Boris push + back-substitution
» Darwin approximation

» Explicit Maxwell solver
» CUDA

Coupling:
» kinetic -> fluid
» fluid -> kinetic
» Examples



compressible MHD

in conservation form:
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5 moments

a75,03 = =V Us
1
— _Vv.[p1? _ = =12
ohus = -V (,08 us ® u5> 3V<258 Py us)
_ 1 —2 2 ds
OEs = BV (ps (5p5Es us)us) + o u; - E
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8t)03 = —V . (US)
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Faraday’s and Ampere’s law:

8tB = —VxE

ds
a E — 2 V B - S .
t C ( X 1o ES m. u )

see also Rossmanith, Johnson; Shumlak, Hakim, ...
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Model problem: Burgers equation
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need the concept
of weak solutions
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Velocity v of shock can be determined analytically
Rankine-Hugoniot condition:

(V/ — Vr)\7 — f(Vl) = f(v,)



Rankine-Hugoniot condition for Burgers shock

1
Orv + O v =0 = \7:§(v,—vr)
Now consider
Orv + Oy v =0 - v?
3v—v?
3 4 3 ~ / r
8t§v +Z(3’Xv =0 u=v = V_Zv,:‘—v3

3
atu _l_ 8X1U4/3 — O



Rankine-Hugoniot conditions for Burgers
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Dissipation due to lack of smoothness

consider smooth solution:

1

8tv—|—§5’Xv2:O |- v
1., 1_ . 1 5 -
—0,ve 4+ =0,v> =0 | ., E=—= | v°dx , periodic BC
2 3 2
1
O:E + / §8Xv3dx = 0;E =0 energy conservation

everything is fine !!!



consider shock at xg

Xp—€ 1 L 1
O.E + / —a v3dx - / §8Xv3dx —0
0 X

0T€
1
O:E + = 3X0—€)——V3(X0—|—€):O
3 3
0:E < 0 dissipation anomaly

incompressible Navier-Stokes:

Onsager (1949): Lipschitz condition

. 1 .
v(r +1) —v(r)] <const/” , n> 3 o energy conservation

see review by Eyink and Sreenivasan (2006)



Entropy solution:
» weak solutions are not unique
» uniqueness enforced by entropy condition

A

this is a weak solution to Burgers

>

rarefaction wave:
unique weak solution to Burgers

>



compressible MHD

Riemann solvers
examples: Godunov, PPM, HLL(*), wave-propagation

*very good resolution of shocks
*very bad in smooth regions

ENO-schemes
~shock resolution not as good as from Riemann solvers,

*much better resolution of waves in smooth regions
*very easy!!!

We use now for more than 10 years CWENO-type schemes.

How do they work?



Nessyahu and Tadmor (1990)
Kurganov and Levy (2000)

e no (aproximate) Riemann solver necessary

e dimension by dimension approach makes sence

e high order

e monotone, WENO, TVD depends on the reconstruction

e easy for complex problems



starting point

Lax-Friedrich

u; = _(ui—l—l +ui ) — %(f(uiﬂ) — flui 1)
. (Az)?
— d tion =
issipation AL
useless, since
i) high dissipation need high order

ii) dissipation depends on timestep need semi-discrete scheme



First, consider a 1D conservation law:

Ou(x,t) + Op f(u(x,t)) =0

cell averages

piecewise polynomial reconstruction from the cell averages

n N~ n
u(x,t") ~ u(x,t") E Pi(Z) X[z, 1 2511 0]

third order scheme: non-oscillatory parabolic reconstruction



approximated function u(x,t") discontinous at the cell boundaries 1 /5.

. . . fn,,_|_ n,—
n7+ _ n,— _
Uir1/2 = Pit1(2j41/2,t"), Uir1/2 = Pj(@j41/2,1"),

upper bound for the propagation speed of the discontinuities

n of
ajyq/9 = max )abs (8—u(u)) :

n,— 9
wE Uyl 20U 1 /0

—> non-smooth region limited to

mn — mn mn J— n
Tiy1/20 = Tj+1/2 = Qjy1jaBt Tiiyo e = Tjpr/2 5y AL

integrate smooth and non-smooth regions independently in time:

new cell averages @ t! and @™t} at time t"*! on a non-uniformly spaced, twofold oversampled grid.

J j+1/2

ﬂ?“ follows from the u_);?’“ by polynomial reconstruction



racoon: CWENO for compressible Euler and MHD
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racoon: CWENO for compressible Euler and MHD




racoon: CWENO for compressible Euler and MHD




racoon: CWENO for compressible Euler and MHD
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racoon: CWENO for compressible Euler and MHD
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Which steps are actually performed?
Assume, we have the second order polynomial reconstruction:

1
Pj(z,t") = Aj + Bj(x — z;) + §Cj($ —x;)?

Aj, Bj and C; are determined using the given cell averages {u’' }. Details later.

—-n—+1

Integrating over the non-smooth and smooth regions provides us with the non-uniform cell averages w'. it1/2

and w?“ at time t" !, respectively:

—n A+ A, Az—al At
T = T 2 . ZL /2 (B; — Bji1)
Az? gy AtAz (al, ), At)?
i ( 16 /8 + 1/2 (Cj + Cjta)
1 tn—i—l
_ TR / {f(ﬂ(aﬁyﬂ/g,rm)) — f(a(a:;.lﬂ/wﬁ))} dr
- At, .
wj +1 AJ + T(aj—l/Q — aj—|—1/2>Bj
AQ;Q AtAx n . AtQ . . : )
+{ o4 19 (af_1/2 +aji1/2) + 6 ((a’j—l/?)2 — 512051172 T (aj+1/2)2)} ¢

- e 1 {/t”“[f(a(xyﬂm,r))f(a(:z;yl/mﬁ))}m}

_1y2 T ag+1/2) n




Project the non-uniform, twofold oversampled cell averages {w”Jr1 ’“7?:11/2} back onto the original uniform
grid {u”“}
Constant reconstruction in smooth region is sufficient

~n—+1 L ~n+1

w (ZL’) _ Z j—|—1/2 3+1/2,z’w?+1/2,r]<$) ™

z Ny
Tl 1/2,rxj—|—1/2,l]
G (1) = Aiiisyt Bisrya(t — 3inse) + 1(’3 (3 — 211 9)°
j+1/2 j+1/2 J+1/2 J+1/2 j+1/2 j+1/2)
QD?+1($) — U_J;H—l,

—n—+1

;~ can then be expressed as follows:

Tj_1/2,r T/, Tjt1/2
[T e [T g [ w?:11/2<x>dx]
xT x" n

j—1/2 j—1/2,r Tit1/2,1

The new cell averages u

1
gt —

J Ax

~

— Aa?_1/2121j—1/2 + {1 o )‘( - 1/2 + ag—|—1/2)} oy + >\a’j—|—1/2A]‘|‘1/2

AAE £ i )
+5 (@ 12)* B2 — (j+1/2>2Bj+1/2)
A(At)Q n ~
% ((“j—1/2)309 1/2 + (a y+1/2)30j+1/2>v

where A = At/Aux.



Now consider the limit of At — 0 to derive the semi-discrete scheme:

d att —ap
E“f(t) - Almo At
Result
du; 1 + — T -
dt h - 2Ax [f(uj+1/2(t)) + f(”j+1/2(t)) fu —1/2(t)) T f(uf—




In each cell we need to reconstruct a polynomial approximation Prxact to the real solution from the known
cell averages.
We use a second order ansatz for the polynomial

1
PEXACT(:Cay) — ’LL,Z + u?j,x(aj B xj) + 5”%,%:1:(37 o xj)2 +

mn 1 mn
ugs (Y —yji) + §UZJyy(y —y;)°

The five coefficients

T n n n n

Wij s Wiy Wijae s Wijy s Wijyy

are determined by requiring the polynomial to conserve the cell averages
Upyy, for (m,n) € {(z,7),(i+1,7), (¢ —1,7), (¢, + 1), (6,5 — 1)}

The coefficients are given by

1 1
mn . — 1 — 71 — 71 — M —71 — 71 — 71
Uiy iy = o (Wi — 20 + U ) — o (W00 — 2055 + 55 ),
—n —-n =T >N
no o Yip1 T Ui n WUij+1 = W51
WUijo = I o Wijy = AN
—n —n —Mn — T —n =T
n o Uiy1,5 — 2ui,j + U, 1,5 n Ui j41 — 2u737j + Ui j—1
Wijax = A2 v Wigyy = Ay?



PrxacT is a a good approximation to the real function u(z,y;t")
BUT it does not provide non-oscillatory behavior.
Solution: Weighted ENO

Discuss now construction of the interpolating polynomial for the x-direction.

In each cell reconstruct quadratic polynomial as a convex combination of three polynomials

Pj(x) = wrPr(z) + wrPr(x) + we Po(x),

with positive weights w; > 0 and ) . w; = 1, where i € {L, R, C'}.

The polynomials P (x), Pr(x) correspond to left and right one-sided linear reconstructions, uniquely deter-
mined by requiring them to conserve the one-sided cell averages:

(i+1/2) Az (i+3/2) Az
Uij = / Pr(z)dxr and u; j41 :/ Pr(x)dx
(i—1/2)Ax (i+1/2) Az

(i+1/2)Az (i—1/2)Az
az’j = / PL (CE) dxr and ﬂz’,j—l = / PL (SC) dx
(i—1/2)Ax (i—3/2) Az



The polynomial Po(x) is determined by

Pexact(,y =y;) = cLPrL(z) + crPr(z) + (1 — ¢ — cr)Po(x)

Every symmetric selection of the coefficients ¢;, = cr will provide third-order accuracy.

Choosing ¢y, = ¢, = 1/4 we obtain the polynomial Po(x) as

I 1 _
Po(z) = uz’j_ﬁ( i1 — 2+ U ,j)_ﬁ( fivn — 22U U )

1+1,7 1—1,9 z—l—l 7,,] 71—
(x — ;) + 5

n
2 Ax? “(o - :Uj)Q

The weights w; are used to automatically adapt the reconstruction to the smoothness of the solution.
In smooth regions, they select the third-order reconstruction to provide maximum precision, whereas in
the presence of discontinuities they switch to a one-sided reconstruction to guarantee the essentially non-
oscillatory behavior.



The weights are taken as

, 1,m € {c,R.L}

&)
, Where «; =

Qa;
Z o, N (6 + [Sz)p

CrL=Cr=1/4, Co=1/2

w; —

Smoothness indicator

ISZ (’LL _uj 1)7 ISl (_]—|—1_u_])

13 —n —n
15023( Gy —2ui +ug )2_|__(uj+1—u._1)2

done

You won't believe it, but all this is really simple
compared to Riemann solvers !!!



div B = 0 Problem

0B+ V- -(uB" —Bu') =0

V:-B=0attmet=0 = V- -B=0attimest >0
But: numerical errors =— V -B # 0

near shocks: V- B = O((AX)_l)



Purposes to control div B:
improve robustness and avoid unphysical effects (parallel Lorentz force)

Techniques:
»8-wave formulation (Powell et al 1999)
easy but
div B not exactly zero, non-conservative, doesn’t work to good for turbulence
» Constraint Transport (Evans, Hawley 1988, Dai,Woodward 1998, Balsara, Spicer 1999)
div B = 0 up to machine precision but
staggered formulation difficult for AMR
needs entropy fix
no local timestepping possible
positivity of pressure is an issue
»Vector Potential (similar to CT, Londrillo and Del Zanna)
» Projection Method (Brackbill and Barnes)
div B = 0, correct weak solution but
very expensive, positivity of pressure is an issue
»divergence cleaning (Dedner et al 2002)
easy, conservative but
div B not exactly zero, doesn’t work to good for turbulence
pressure may become negative if energy is conserved



racoon: divergence cleaning

Divergence cleaning:

OB+V-(uB!' —Bu')+Vy = 0
D)+V-B = 0

where D is a linear differential operator.

We obtain combine this
ooV-B+Ay = 0 0, DV -B - AV -B
0, DV -B+DAy = 0 DY) — Ay
ADW)+AV-B = 0

—> V - B and ) satisfy the same equation



The two important equations are:

D) — Ay = 0
Dy)+V-B = 0
Case 1: D(vy) = 0 = Projection method

Case 2: (parabolic) D(v¢)) = %1 =

2
Cp

I
-

atw—ch’QD
¢+C§V~B = 0

Case 3: (hyperbolic) D(v)) = %0, =

— 3
ChL

Gttw — C}QLAw
(975?# -+ C%v - B

|
o o

Case 4: (mixed hyperbolic + parabolic) D(¢) = %0, + 1) =

— 3
ChL

3 5 works very good for
O + 0—25't¢ —cpAYy = 0 localized structures as

p in FlareLab, but not in

2
¢ MHD turbul
)+ S+ GV-B = 0 urbulence
p



Charge and current deposition

OB/0t=—c(VXE) = 0V-B/0t=0 Yee grid

oV E

OE /0t = ¢(V X B) — 4nJ = VAV xBY— 47V - J
ot
7
P__v.J
ot

continuity equation is
again an initial condition



AV xB+EVe =L
€o
0B
— 4+ VXFE=0,
0
D@ +V-E="L,
€0
V-B=0,
22 1 (dp
0 — —CVCI)——(——I-V]
€0 ot
® O
el oY . 2v2q . X
N — 5 XCVCI) o
1 09 PR 5 o
lot — 7 o WITVes

projection method

-+ V- j) parabolic



Maxwell Solver: FDTD and Yee mesh (1966)
inspired by lectures by A. Spitkovsky

OE /0t =¢(V x B) —4dnd , V-E=4wp, V- -B=0

_ d \Y
OB /0t = —¢c(V X E) , Eymv=q(E+;xB)
e e iaaaia =
v T A FDTD: second order in space and
FAa RS s L e f |
— E"2 = ErT12 4 At[e(V x B") — dnJ"]
i Bt = B" — cAtV x E"T/?
TE_,M_ . / \x
r— ] 2
'L._',.J- ------ —— - e o Xy
Ko TE / i Yee mesh: div B



Yee mesh motivated by integral form:

8t/B-dS:—]{ E. dl

> oY

at/E-dS:—c2/j-ds+c27{ B-dl
> > oY

2D by projection

Ax



Coupling FDTD- and CWENO Method

Fluid: strongly stable TVD Runge Kutta (Shu-Osher 1988)

At

UIZUnJr?f(’Unatn)
At
V=" + Ff(G’U’ — 50", " + At)
2At
vn—l—l — v// + Tf(%’l]” L %Unjtn _I_ %At)
subcycling and interpolation
pgaugagg pévuwgagsz ﬂg,ui,gg
BE  B%: B8 _ Bt | BS . BS . BE BE |BS BE BB BE |BS  BS BE  BE
:|:|m/\mml:.|:|:|::|:|:|:\t
|‘|Fl/'\|/\|/'\l/ll"|‘|||‘||‘|ll‘|/
1 3 5 | 7 9 | 11 13 15
E 4 E 4 E 4 E 4 E 4 E 4 E 4 E 4
EY B E% Bi El B4 E% B% E? B E% BA E3 BA E% BA
B B3 B! B3 B’ B3 B’ B3



2D Simulations: GEM Setup
sheet width: 2\ = 1.0
107 1—
- ion skin depth: 1.0
ion gyro radius: r; = 0.91
Parameters:
m; I . [miy _ 4 Azes=0.
m— 95 L=, fm= A=05 261 = 039
w() =0.1 Ly = 8m Ly = 4w electron skin depth: 0.20
1 Aaﬁlgg =0.19
1()_1 -— AJ}256 = 0.098
—+— electron gyro radius: r. = 0.082
Name Expression Electrons  Ions
thermal velocity Uth,s = /210,54 / ;’Z 2.0 0.91
. T AZE512 = 0.049
plasma frequency Wp,s = Cy /%, /10,5 100 20
ro frequenc O, = 2L By 25 1
&Y 4 Y S - —+— ion Debye length: Ap; = 0.032
Larmor radius Ts = \/210,54/ 72 BLO 0.082 0.91
-+ Ax = 0.024
Debye length Ap,s = Ly/2oe 0.014  0.032 10
. . . . s 1
skin depth/inertial length 6, = | /7 T 0.2 1
—+— electron Debye length: Ap . = 0.014
T A:IJ2048 = 0.012
1072 +



Reconnected flux
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electron density

current density j;

current density J_z




Ok, now we have a fluid code !

Let’s do Vlasov



Vlasov simulations

collisionless Plasma: Vlasov equation

dk
/ V-V % k( 4+ Vv X ) \ %

+ Maxwell, Kk = e, |

Important: positive conservative scheme, semi-Lagrangian,
Boris, backsubstitution method

(Filbet, Sonnendriicker, Bertrand 2001)



Darwin-Approximation

CFL-condition too restrictive
—> Darwin approximation

electric field split into longitudinal and transversal part

E—E, +E mtV -E+=0und VXE, =0

Maxwell equations

V X E :_8_8 V-E =
ot €0

OE
VxB:uo(so = :j) V-B=0




Darwin-Approximation

CFL-condition too restrictive
—> Darwin approximation

electric field split into longitudinal and transversal part

E—E, +E mtV -E+=0und VXE, =0

Maxwell equations

OB
VxEp= - v-Eng—pO

OE
VXB:,uO(so o :j> V-B=0




Darwin-Approximation

CFL-condition too restrictive
—> Darwin approximation

electric field split into longitudinal and transversal part

E—E, +E mtV -E+=0und VXE, =0

Maxwell equations with Darwin approximation

oB 0
Er =2 E =L
V X T It V L o
0
VXB:M(@;@:j) V-B=0

no timestep restriction by the speed of light, but 8 elliptic equations



Semi-Lagrangean scheme

Consider Of+0;(v(t,z)f) =0

The characteristics of this PDE are given by: d—X (s) = w(s,X(9))
ds |
X(t) = =

Denote the solutionas X (s, ¢, x)

Since ¥ — (r.h.s. of the PDE), we have

ds
To X (s,t,x2)
/ F(t,x)da = / F(s,2)dz

X(Sftawl)

With this we can update the cell-average of f in the ith cell:

T, 1 X", 1)
[ e = | 2, x)da

i—% X(tn,tn—Fl’xi_%)
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The integral of f over the hatched area is conserved.

always stay between the two characteristics.
1



Let f’zn denote the cell-average in the ith cell at time t™.

= Ry~ g
Xt tn e, 1)
- / Fe"o)da — | 2 F(t", )da
X(@tntntle, 1) x

Strategy:

@ Follow the Characteristics ending at the cell borders backwards in time and find their
footpoint

@ Reconstruct the integral of f from the footpoint to the cell border
- rm+1 _ 7
@ Update with fz — le + (I)z'—% — (I)i—l—%

This will lead to a conservative scheme.



Developed by Filbet, Sonnendriicker, Bertrand (JCP 2001)
PFC = Positive Flux-Conservative

Let’'s consider the simple second-order scheme for positive velocities: Approximate the primit

function of f in the interval [xi_%,wH%] (again, f; denotes the cell average):

F(z) = /; f(z)da

SN 1 fi+1 — fi
F(z) =w;—1 + (x xi_%)fz + 2(37 CEZ_%)(QZ‘ - ajH_%) A7

Now we can reconstruct f itself:

AP e —
f)= @) = it (@ - TS




However this scheme can cause negative reconstructed f To avoid this, one can introduce a
slope-limiter € to ensure that the reconstruction lies between 0 and f:

e — { min(1;2fi/(fiv1 — fi))_ ) if fir1 > fi
‘ min(1; —2(foo — fi)/((fixr1 — fi)) if fix1 < fi,
to obtain B B
Jit1 — [
Ax

fn(@) = fi + €i(z — x;)

Let's denote the distance from the footpoint of the characteristic to the cell-boundary by «.

Integrating f; then gives the flux through the boundary at T, 1
2
acz._'_l
P, 1 :/ 2 fr(z)dx
2
Titd —a
_ €; Q _ _

o (Fit S (1= ) (Fir - )
o(fi+ 5 (1= 5o) (e = 1)

Some remarks:
@ This scheme can be extended to higher orders. We use the third order one.
@ A similar derivation produces the scheme for negative velocities.

@ The length of the characteristics can be arbitrarily large with only a minor change in the
derivation.

@ The accuracy in time depends only on how good the characteristics can be calculated.



The Vlasov equation

ds

ms

atfs+V’vxfs‘|‘ (E‘|‘VXB)vvf3:O

We want to solve this PDE using a one-dimensional semi-Lagrangian scheme.

Why? Becase one-dimensional schemes can have fancy limiters, conservation-properties and
efficient implementations that are difficult to generalise to higher dimensions.

Remember: The Vlasov equation is a conservative, hyperbolic PDE in 6 dimension (plus time)

One way to do this is splitting.



Splitting

Consider 0: f = Af + Bf, where A and B are linear operators (with no time dependance).

The formal solution to this is

f(t) = exp ((A+ B)t) fo

If A and B commute, we can also write:

f(t) = exp(Bt) exp(At) fo

This means we can just solve 0; f = Af, use the result as an initial value for
O+ f = Bf and still get the correct solution!



Godunov splitting

What happens when A and B do not commute?
Let's look at the Zassenhaus formula (A variation on Baker-Campbell-Hausdorff):

t2

exp ((A + B)t) = exp (Bt) exp (At) exp ([A, B] 5) exp (O(t?))

So now we have:

f(t) = exp(Bt) exp(At) fo + O(t%)

We still get an approximate solution accurate to first order in time.
This is called Godunov splitting or Lie-Trotter splitting



Strang splitting

Can we do better?

A scheme accurate to second order in time is the Strang-Splitting:

f(t) = exp(Bt/2) exp(At) exp(Bt/2) fo + O(tg)
By manipulating the Baker-Campbell-Hausdorff formula, splitting schemes of arbitrary order can
be constructed.

However, the Sheng-Suzuki theorem states that all splitting schemes better than second order will
have at least one negative exponent (i.e. negative time-steps).



Strang splitting and the Vlasov equation

We will now use Strang splitting on the Vlasov equation:

atfs+v‘vxfs+qs (E+VXB)vaS:O
N—— ms
A \ = - _J

B

fs(t"T1) = exp(Bt/2) exp(At) exp(Bt/2) fs(t") + O(t°)

This means we update the velocity-part of fs over one half time-step,
then update the position-part over one full time-step,
then update the velocity-part again over one half time-step.

This is equivalent to the Leapfrog or Stromer-Verlet schemes in PIC simulations!



The position update

We want to solve
8tfs ‘|‘V'vxfs =0

Let's rewrite this equation to

atfs + axvaﬁfs + ay'nys + 8z'szS =0
Since v is just a variable and does not depend on x, we can write this in a conservative form.
Now we have three linear operators that all commute!

We can just solve each step seperately and the solution is still exact. By using a conservative
numerical scheme, the conservation property of the Vlasov equation is kept.



The velocity update

The velocity part is not that easy.

Ot fs + :?JS (E—I—VXB)-VVfS -
8tfs + :; 8033 (Ezc + Usz — 'Usz)fs
+ 1 afuy (Ey + v, By — UmBz)fs
ms
+ L9, (B, +vsBy —vyBa)fs =0
ms

We can still rewrite this in a conservative way, but the three operators do not commute because
of the velocity in the v X B term.



The velocity update

Can we use Strang splitting?

If we denote the individual operators by V., V,, and V. we will have

F(m ) = exp(Vat/4) exp(Vyt/2) exp(Vat/4)
x exp(Vyt)

x exp(Vet/4) exp(Vyt/2) exp(Vut/4) (™) + O(t2)

This means 7 steps for the velocity update and we have a numerically preferred direction.



Backsubstitution

What we really want is: Equations of motion:
@ Just one step per operator J
@ No splitting error in time = ¢(E + v x B)
Sy = v
dt

looks implicit

leap-frog /

n+1/2 _ n—1/2 1
VvV At\f _ % (En 4 _(Vn—|—1/2 _|_V’n—1/2) % Bn)

2



Solution: Boris (1970) explicit

n AtE"
vilZ =y - qBE" At voo= vz A 2m
%Ln A2t vV = v +v xt"
vtz — g q o¢n
m 2 vi = v 4V x
vi — v~ q , . 1+ tn-tn
A7 o (VT +v7) viHL/2 gt gAtE
2m
AtB"
with t" = d

2m



Proof:

We know: A
t
vi —v :q—v++v_)><B
2m
We want to proof:
vi—v =V xs
/ _ _ qgAt 2t
v =v +v Xt t:mB s:1+t2
thus:
vi —vT =lv xsH{(vT xt)xs
A
V. XSs| = v_qu t_ 2
2m 1 + t2
At 2 2
— vt xB? T v
v 2m 1—|—t2+(v v )1—|—t2
At 1 1
— |[—(vt —v" ) xBY T v
S St prrcl Ll Gl D




(v- xt)xs

(v- xs) xt

2
= 1= - B] x B - B
<2m) Ty TV ) XBIxB A R o)X
1 gAt\* 1
+ _y—  — + _ oy + _y—
— v —v = (Vi —v )1+t2—|—<§> 1—|—t28><[(v — v~ ) x B]
A
(v+—v_)><B:qQ—t(v++v_)><B]><B::C><B
m
P2 _ qAt - 2
B x (CxB)=CB —BB/C_—z (vt +v~) x B]B
m
2
2o+ -y _ [ 9gAt o 4 gt
— t°(v v)—<—2m>B[(v —|—v)><B]—2m



PIC Vlasov

xnt1/2 _ n—1/2

|) - _ ’f\'n—i—l(Xn—i—l/Z, Vn) _ AX(At)'f‘n(Xn—l/Z, Vn)

) =S s JT=D VAR (X" v

n+1/2 n—1/2 n n— n Tn{on n
o — Xov ‘;Xa >_Xn—|—O(At2) f*(Xn Vn): (f (X 1/2,V)+f (X +1/2,V)>
' 2
= f"(x", n") + O(Atz)
n+1/2  pn—1/2 .
) e =V x B "
Bn—|—1_Bn n_|_1/2
V) ~; — — —VXE
V) Boris Boris
VI =T g [ e nirgey , VIRV )2 Fntlo o n+1/2  n+l F(xt1/2 n
AT = BT+ 5 x BT F (x V) = A (At)f(x V")
n+1 n
B* — B + B _ Bn+1/2 + O(At2)

2



So let’s revisit what the semi-Lagrangian scheme does (for simplicity in 2D).
A full two-dimensional scheme would transport the value of f along the black characteristic.

would like to have: ~ fY°Y(D_ D, ) = fOld(Sx, Sy)

(1 _ (7) ()
S e B ). 4(G.S,")

$0 = (8,M,G,) H G=(G,G,) G=(G,.G,)

(1)

r,DEI} — (G”D?m)

Splitting:  fiter(q. G, = fold(s a,) oV (G, Gy) = (G, 52

fold finter

is lossed, only have

assuming correct interpolation  fer (G Sty = fold(s@ SL2))

= VCG) = PSP SP)



Backsubstitution for the velocity update

The characteristics for the velocity update can be calculated by the Boris scheme. Define

At 2k
k:—qu S —
2 Mg 1+ k2

Now the backward in time Boris scheme is given by:

V. =V ' —V XS
At
vi=v - —% g
2 Mms
This formula has to be brought into this form:
vy = vy (vp T v, o)
n _ n/rn+l o n+1l n
Vs, —fuy(vaC , Uy , UL
U? — U?(”Q“a”?“a”?“)



Backsubstitution for the velocity update

n __
Uy = Uy (U 7,0y, Uy

n _ n/..n+1 n+1 n
v, = v, (v} , Uy UL )

n _ n/..n+1 n+1 n—+1
UV, = U, (vx 7vy y Uz )

The last equation (3) is given simply by the z-component of Boris’ scheme.

To find (2) we solve (3) for v2"" and substitute this into the y-component of Boris’ scheme.
Equation (1) can be found by using the z-component of the forward in time Boris scheme and
solving for v’'.



Example: magnetic reconnection with DSDV |

Electron out of plane current

Electron distribution function




New Code: DSDV Il (Martin Rieke)

» full Maxwell Solver
p parallel CUDA



Hardware and CUDA performance

The DaVinci-cluster at the Ruhr-Universitat
Bochum consists of |7 nodes with a total of

» 16320 cores and 272 GB RAM on GPUs
(68~NVidia Tesla S1070 cards with
240 cores and 4 GB RAM each)
» 136 respectively 272 (with HT) cores and
408 GB on CPUs (34 Xeon E5530 Quad Core CPUs

(2.4 GHz) with 8 cores respectively 16 cores
(with HT) and 12~GB RAM each)

system resolution duration of run
CPUs (Schmitz, Grauer) 256 x 128 x 30° ~ 150 h
GPUs (this work) 256 x 128 x 32° ~ &8 h

Comparison of the time necessary to simulate one quarter
of the GEM setup until t = 409;1.



Ok, now we have aVlasov code !

Let’s do the coupling



Multifluid and Vlasov blocks communicate via exchange of ghostcells.

»In a first step, the phase-space density is extrapolated into the ghostcells.
This is of coarse not correct but respects phase space structure.

» Next, it is modified to match the moments given by the fluid in the
respective cell by rescaling, translating, and squeezing.

This is implemented as advection along suitably chosen characteristics.

original

modified ----------

~~~~~
~~~~~~~~

Phase-space density

Velocity



» The multifluid ghostcells are filled with the
moments calculated from the phase-space
density of the Vlasov simulation.

Because the RK scheme is a multi-stage
method, these moments are interpolated
linearly in time.

Position
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» Both codes calculate the current density in their respective regions.
These are collected and used to integrate Maxwell's equations globally.

» Each code can be executed on its own, or coupled to the other via MPI.
This concept is known as Multiple Program Multiple Data (MPMD).
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Results/Examples

The GEM reconnection challenge (2001), where there is a

clearly localized area of interest at the current sheet, was
simulated as a test case.
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B, together with magnetic field lines at time of peak reconnection rate. Reconnected magnetic flux over time.



Where is fluid and where is the kinetic region ?




Future dreams:
» adaptive fluid-kinetic coupling

indicator: difference between 5- and 10-moment model

» multiscale-multiphysics
MHD -> Hall-MHD (Ohms law) -> 5 moment 2 fluid -> kinetic

Thank You



