
Coupled fluid and kinetic plasma
codes on GPUs

Martin Rieke, Thomas Trost, Rainer Grauer

Institute for Theoretical Physics I, Ruhr-University Bochum

Les Houches 2013

Motivation

‣ fluid description
MHD, Hall-MHD, 5- or 10 moment MHD

‣ kinetic description
PIC, Vlasov

‣ Coupling fluid and kinetic simulations

fluid kinetic

Hyperbolic equations:
‣weak solutions
‣Riemann problem, Riemann solver
‣CWENO
‣div B = 0: divergence cleaning, FCT
‣5- and 10-moment equations

PIC, Vlasov:
‣PFC
‣Boris push + back-substitution
‣Darwin approximation
‣Explicit Maxwell solver
‣CUDA

Coupling:
‣kinetic -> fluid
‣fluid -> kinetic
‣Examples

compressible MHD

in conservation form:

⇤⇥

⇤t
+⇤ · (⇥v) = 0

⇤⇥v
⇤t

+⇤ ·
�

v⇥v + I(p +
B2

2
)� BB

⇥
= 0

⇤e

⇤t
+⇤ ·

�
v(e + p +

B2

2
)� B(v · B)

⇥

⇤B

⇤t
+⇤ · (vB� Bv) = 0

p = (� � 1)

�
e � 1

2
⇥v2 � 1

2
B2

⇥

5 moments

@t⇢s = �r · us

@tus = �r ·
⇣
⇢�1

s us ⌦ us

⌘
� 1

3
r
⇣
2Es � ⇢�1

s u2

s

⌘
+

qs
ms

⇣
⇢sE+ us ⇥B

⌘

@tEs = �1

3
r ·
⇣
⇢�2

s

�
5⇢sEs � u2

s

�
us

⌘
+

qs
ms

us ·E

10 moments

@t⇢s = �r · (us)

@tus = �r · Es +
qs
ms

(⇢sE+ us ⇥B)

@tEs = �r ·
⇥
u _ (3⇢�1

s E� 2⇢�2

s (u⌦ u))
⇤
+

qs
ms

⇣
2us _E+ Es ⇥B+ (Es ⇥B)T

⌘
+ R

iso

with

R
iso

=
1

⌧s

✓
1

3
(trPs)1� P

◆
with ⌧s = ⌧

0

s
detP

⇢5s

Faraday’s and Ampère’s law:

@tB = �r⇥E

@tE = c2

r⇥B� µ

0

X

s

qs
ms

us

!
.

see also Rossmanith, Johnson; Shumlak, Hakim, ...

Now consider

�tv + �x
1

2
v 2 = 0 | · v 2

�t
1

3
v 3 +

1

4
�xv

4 = 0 |u = v 3 ⇤ ṽ =
3

4

v 4
l � v 4

r

v 3
l � v 3

r

�tu + �x
3

4
u4/3 = 0

Rankine-Hugoniot condition for Burgers shock

�tv + �x
1

2
v 2 = 0 ⇥ ṽ =

1

2
(vl � vr)

Dissipation due to lack of smoothness

consider smooth solution:

everything is fine !!!

@
t

v +

1

2

@
x

v

2
= 0 | · v

1

2

@
t

v

2
+

1

3

@
x

v

3
= 0 |

Z
, E =

1

2

Z
v

2
dx , periodic BC

@
t

E +

Z
1

3

@
x

v

3
dx = @

t

E = 0 energy conservation

dissipation anomaly

incompressible Navier-Stokes:

Onsager (1949): Lipschitz condition

see review by Eyink and Sreenivasan (2006)

|v(r + l)� v(r)| < const ln , n >
1

3
=⇥ energy conservation

consider shock at x0

@
t

E +

Z
x0�✏

0

1

3

@
x

v

3
dx +

Z
L

x0+✏

1

3

@
x

v

3
dx = 0

@
t

E +

1

3

v

3
(x0 � ✏)� 1

3

v

3
(x0 + ✏) = 0

@
t

E < 0

Entropy solution:
‣weak solutions are not unique
‣uniqueness enforced by entropy condition

this is a weak solution to Burgers

rarefaction wave:
unique weak solution to Burgers

1. Semi-discrete central schemes, CWENO

Nessyahu and Tadmor (1990)
Kurganov and Levy (2000) SIAM J. Sci. Comput. 22, 1461

surface plot (20482)

with grids (40962)

1. Semi-discrete central schemes, CWENO

Nessyahu and Tadmor (1990)
Kurganov and Levy (2000) SIAM J. Sci. Comput. 22, 1461

surface plot (20482)

with grids (40962)

2. Why central schemes?

• no (aproximate) Riemann solver necessary

• dimension by dimension approach makes sence

• high order

• monotone, WENO, TVD depends on the reconstruction

• easy for complex problems

Lax-Friedrich

un+1
i =

1
2
(un

i+1 + un
i�1)�

dt

2dx
(f(un

i+1)� f(un
i�1)

=⇥ dissipation =
(�x)2

2�t

useless, since

i) high dissipation need high order

ii) dissipation depends on timestep need semi-discrete scheme

2. Why central schemes?

• no (aproximate) Riemann solver necessary

• dimension by dimension approach makes sence

• high order

• monotone, WENO, TVD depends on the reconstruction

• easy for complex problems

Lax-Friedrich

un+1
i =

1
2
(un

i+1 + un
i�1)�

dt

2dx
(f(un

i+1)� f(un
i�1)

=⇥ dissipation =
(�x)2

2�t

useless, since

i) high dissipation need high order

ii) dissipation depends on timestep need semi-discrete scheme

2. Why central schemes?

• no (aproximate) Riemann solver necessary

• dimension by dimension approach makes sence

• high order

• monotone, WENO, TVD depends on the reconstruction

• easy for complex problems

Lax-Friedrich

un+1
i =

1
2
(un

i+1 + un
i�1)�

dt

2dx
(f(un

i+1)� f(un
i�1)

=⇥ dissipation =
(�x)2

2�t

useless, since

i) high dissipation need high order

ii) dissipation depends on timestep need semi-discrete scheme

starting point

2. Why central schemes?

• no (aproximate) Riemann solver necessary

• dimension by dimension approach makes sence

• high order

• monotone, WENO, TVD depends on the reconstruction

• easy for complex problems

Lax-Friedrich

un+1
i =

1
2
(un

i+1 + un
i�1)�

dt

2dx
(f(un

i+1)� f(un
i�1)

=⇥ dissipation =
(�x)2

2�t

useless, since

i) high dissipation need high order

ii) dissipation depends on timestep need semi-discrete scheme

3. Details

First, consider a 1D conservation law:

⇤tu(x, t) + ⇤xf(u(x, t)) = 0

3.1. Fully discrete third order scheme

cell averages

ūn
j ⇥

1
�x

⌅ xj+1/2

xj�1/2

u(x, tn)dx,

=⌅

ūn+1
j = ūn

j �
1

�x

⌅ tn+1

tn

�
f(u(xj+1/2, �))� f(u(xj�1/2, �))

⇥
d�

piecewise polynomial reconstruction from the cell averages

u(x, tn) ⇤ ũ(x, tn) =
⇤

j

Pj(x)⇥[xj�1/2,xj+1/2].

third order scheme: non-oscillatory parabolic reconstruction

3. Details

First, consider a 1D conservation law:

⇤tu(x, t) + ⇤xf(u(x, t)) = 0

3.1. Fully discrete third order scheme

cell averages

ūn
j ⇥

1
�x

⌅ xj+1/2

xj�1/2

u(x, tn)dx,

=⌅

ūn+1
j = ūn

j �
1

�x

⌅ tn+1

tn

�
f(u(xj+1/2, �))� f(u(xj�1/2, �))

⇥
d�

piecewise polynomial reconstruction from the cell averages

u(x, tn) ⇤ ũ(x, tn) =
⇤

j

Pj(x)⇥[xj�1/2,xj+1/2].

third order scheme: non-oscillatory parabolic reconstruction

3. Details

First, consider a 1D conservation law:

⇤tu(x, t) + ⇤xf(u(x, t)) = 0

3.1. Fully discrete third order scheme

cell averages

ūn
j ⇥

1
�x

⌅ xj+1/2

xj�1/2

u(x, tn)dx,

=⌅

ūn+1
j = ūn

j �
1

�x

⌅ tn+1

tn

�
f(u(xj+1/2, �))� f(u(xj�1/2, �))

⇥
d�

piecewise polynomial reconstruction from the cell averages

u(x, tn) ⇤ ũ(x, tn) =
⇤

j

Pj(x)⇥[xj�1/2,xj+1/2].

third order scheme: non-oscillatory parabolic reconstruction

3. Details

First, consider a 1D conservation law:

⇤tu(x, t) + ⇤xf(u(x, t)) = 0

3.1. Fully discrete third order scheme

cell averages

ūn
j ⇥

1
�x

⌅ xj+1/2

xj�1/2

u(x, tn)dx,

=⌅

ūn+1
j = ūn

j �
1

�x

⌅ tn+1

tn

�
f(u(xj+1/2, �))� f(u(xj�1/2, �))

⇥
d�

piecewise polynomial reconstruction from the cell averages

u(x, tn) ⇤ ũ(x, tn) =
⇤

j

Pj(x)⇥[xj�1/2,xj+1/2].

third order scheme: non-oscillatory parabolic reconstruction

approximated function ũ(x, tn) discontinous at the cell boundaries xj+1/2.

di�erent limits un,+
j+1/2, un,�

j+1/2

un,+
j+1/2 = Pj+1(xj+1/2, t

n), un,�
j+1/2 = Pj(xj+1/2, t

n),

upper bound for the propagation speed of the discontinuities

an
j+1/2 = max

u⇥(un,�
j+1/2,un,+

j+1/2)
abs

�
�f

�u
(u)

⇥
,

=⇤ non-smooth region limited to

xn
j+1/2,l ⇥ xj+1/2 � an

j+1/2�t, xn
j+1/2,r ⇥ xj+1/2 + an

j+1/2�t,

integrate smooth and non-smooth regions independently in time:
new cell averages w̄n+1

j and w̄n+1
j+1/2 at time tn+1 on a non-uniformly spaced, twofold oversampled grid.

ūn+1
j follows from the w̄n+1

j by polynomial reconstruction

racoon: CWENO for compressible Euler and MHD

j+−2
1xxx x xj2

1j−−j−1 j+1

u

u

j
j+1j−1 u

racoon: CWENO for compressible Euler and MHD

j+−2
1xxx x xj2

1j−−j−1 j+1

u

u

j
j+1j−1 u

racoon: CWENO for compressible Euler and MHD

x j j+−2
1x x j+1x j−1 x

2j−−
1

u j

u
j+1j−1 u

racoon: CWENO for compressible Euler and MHD

x j j+−2
1x x j+1x j−1 x

2j−−
1

u

u

j
j+1j−1 u

j−1

j−−
jw

j+−

wj+1
w w1

2
2
1

w

racoon: CWENO for compressible Euler and MHD

x j j+−2
1x x j+1x j−1 x

2j−−
1

u j

u j

u
j+1j−1 u

j−1

j−−
jw

j+−

wj+1
w w1

2
2
1

w

Which steps are actually performed?
Assume, we have the second order polynomial reconstruction:

Pj(x, tn) = Aj + Bj(x� xj) +
1
2
Cj(x� xj)2

Aj , Bj and Cj are determined using the given cell averages {un
j }. Details later.

Integrating over the non-smooth and smooth regions provides us with the non-uniform cell averages w̄n+1
j+1/2

and w̄n+1
j at time tn+1, respectively:

w̄n+1
j+1/2 =

Aj + Aj+1

2
+

�x� an
j+1/2�t

4
(Bj �Bj+1)

+

⇤
�x2

16
�

an
j+1/2�t�x

8
+

(an
j+1/2�t)2

12

⌅
(Cj + Cj+1)

� 1
2an

j+1/2�t

⇧⌥ tn+1

tn

�
f(ũ(xn

j+1/2,r, �))� f(ũ(xn
j+1/2,l, �))

d�

⌃

w̄n+1
j = Aj +

�t

2
(an

j�1/2 � an
j+1/2)Bj

+
��x2

24
� �t�x

12
(an

j�1/2 + an
j+1/2) +

�t2

6

�
(an

j�1/2)
2 � an

j�1/2a
n
j+1/2 + (an

j+1/2)
2
⇥

Cj

� 1
�x��t(an

j�1/2 + an
j+1/2)

⇧⌥ tn+1

tn

�
f(ũ(xn

j+1/2,l, �))� f(ũ(xn
j�1/2,r, �))

d�

⌃

Project the non-uniform, twofold oversampled cell averages {w̄n+1
j , w̄n+1

j+1/2} back onto the original uniform

grid {ūn+1
j }.

Constant reconstruction in smooth region is su�cient

w̃n+1(x) =
⇧

j

w̃n+1
j+1/2(x)⇥[xn

j+1/2,l
,xn

j+1/2,r
](x) +

⇧

j

w̃n+1
j (x)⇥[xn

j�1/2,r
xn

j+1/2,l
]

w̃n+1
j+1/2(x) = Ãj+1/2 + B̃j+1/2(x� xj+1/2) +

1
2
C̃j+1/2(x� xj+1/2)2,

w̃n+1
j (x) = w̄n+1

j ,

The new cell averages ūn+1
j can then be expressed as follows:

ūn+1
j =

1
�x

⇤⌃ xn
j�1/2,r

xj�1/2

w̃n+1
j�1/2(x)dx +

⌃ xn
j+1/2,l

xn
j�1/2,r

w̃n+1
j (x)dx +

⌃ xj+1/2

xn
j+1/2,l

w̃n+1
j+1/2(x)dx

⌅

= �an
j�1/2Ãj�1/2 +

⌥
1� �(an

j�1/2 + an
j+1/2)

�
w̄n+1

j + �an
j+1/2Ãj+1/2

+
��t

2

�
(an

j�1/2)
2B̃j�1/2 � (an

j+1/2)
2B̃j+1/2

⇥

+
�(�t)2

6

�
(an

j�1/2)
3C̃j�1/2 + (an

j+1/2)
3C̃j+1/2

⇥
,

where � = �t/�x.

Now consider the limit of �t �⇥ 0 to derive the semi-discrete scheme:

d

dt
ūj(t) = lim

�t�⇥0

ūn+1
j � ūn

j

�t
.

Result:

dūj

dt
= � 1

2�x

�
f (u+

j+1/2(t)) + f (u�j+1/2(t))� f (u+
j�1/2(t)) + f (u�j�1/2(t))

⇥

+
aj+1/2(t)

2�x

�
u+

j+1/2(t)� u�j+1/2(t)
⇥

+
aj�1/2(t)

2�x

�
u+

j�1/2(t)� u�j�1/2(t)
⇥

3.2. Transition to the third order semi-discrete scheme

Now consider the limit of �t �⇥ 0 to derive the semi-discrete scheme:

d

dt
ūj(t) = lim

�t�⇥0

ūn+1
j � ūn

j

�t
.

Result:

dūj

dt
= � 1

2�x

�
f(u+

j+1/2(t)) + f(u�j+1/2(t))� f(u+
j�1/2(t)) + f(u�j�1/2(t))

⇥

+
aj+1/2(t)

2�x

�
u+

j+1/2(t)� u�j+1/2(t)
⇥

+
aj�1/2(t)

2�x

�
u+

j�1/2(t)� u�j�1/2(t)
⇥

3.3. Weighted ENO reconstruction

In each cell we need to reconstruct a polynomial approximation PEXACT to the real solution from the known
cell averages.
We use a second order ansatz for the polynomial

PEXACT(x, y) = un
ij + un

ij,x(x� xj) +
1
2
un

ij,xx(x� xj)2 +

un
ij,y(y � yj) +

1
2
un

ij,yy(y � yj)2

3.2. Transition to the third order semi-discrete scheme

Now consider the limit of �t �⇥ 0 to derive the semi-discrete scheme:

d

dt
ūj(t) = lim

�t�⇥0

ūn+1
j � ūn

j

�t
.

Result:

dūj

dt
= � 1

2�x

�
f(u+

j+1/2(t)) + f(u�j+1/2(t))� f(u+
j�1/2(t)) + f(u�j�1/2(t))

⇥

+
aj+1/2(t)

2�x

�
u+

j+1/2(t)� u�j+1/2(t)
⇥

+
aj�1/2(t)

2�x

�
u+

j�1/2(t)� u�j�1/2(t)
⇥

3.3. Weighted ENO reconstruction

In each cell we need to reconstruct a polynomial approximation PEXACT to the real solution from the known
cell averages.
We use a second order ansatz for the polynomial

PEXACT(x, y) = un
ij + un

ij,x(x� xj) +
1
2
un

ij,xx(x� xj)2 +

un
ij,y(y � yj) +

1
2
un

ij,yy(y � yj)2

3.2. Transition to the third order semi-discrete scheme

Now consider the limit of �t �⇥ 0 to derive the semi-discrete scheme:

d

dt
ūj(t) = lim

�t�⇥0

ūn+1
j � ūn

j

�t
.

Result:

dūj

dt
= � 1

2�x

�
f(u+

j+1/2(t)) + f(u�j+1/2(t))� f(u+
j�1/2(t)) + f(u�j�1/2(t))

⇥

+
aj+1/2(t)

2�x

�
u+

j+1/2(t)� u�j+1/2(t)
⇥

+
aj�1/2(t)

2�x

�
u+

j�1/2(t)� u�j�1/2(t)
⇥

3.3. Weighted ENO reconstruction

In each cell we need to reconstruct a polynomial approximation PEXACT to the real solution from the known
cell averages.
We use a second order ansatz for the polynomial

PEXACT(x, y) = un
ij + un

ij,x(x� xj) +
1
2
un

ij,xx(x� xj)2 +

un
ij,y(y � yj) +

1
2
un

ij,yy(y � yj)2

The five coe�cients

un
ij , un

ij,x , un
ij,xx , un

ij,y , un
ij,yy

are determined by requiring the polynomial to conserve the cell averages

ūn
mn for (m,n) ⇥ {(i, j), (i + 1, j), (i� 1, j), (i, j + 1), (i, j � 1)}.

The coe�cients are given by

un
ij = ūn

ij �
1
24

(ūn
i+1,j � 2ūn

ij + ūn
i�1,j)�

1
24

(ūn
i,j+1 � 2ūn

ij + ūn
i,j�1),

un
ij,x =

ūn
i+1,j � ūn

i�1,j

2�x
, un

ij,y =
ūn

i,j+1 � ūn
i,j�1

2�x

un
ij,xx =

ūn
i+1,j � 2ūn

i,j + ūn
i�1,j

�x2
, un

ij,yy =
ūn

i,j+1 � 2ūn
i,j + ūn

i,j�1

�y2
.

PEXACT is a a good approximation to the real function u(x, y; tn)

BUT it does not provide non-oscillatory behavior.

Solution: Weighted ENO

Discuss now construction of the interpolating polynomial for the x-direction.
Dimension-by-dimension approach

The five coe�cients

un
ij , un

ij,x , un
ij,xx , un

ij,y , un
ij,yy

are determined by requiring the polynomial to conserve the cell averages

ūn
mn for (m,n) ⇥ {(i, j), (i + 1, j), (i� 1, j), (i, j + 1), (i, j � 1)}.

The coe�cients are given by

un
ij = ūn

ij �
1
24

(ūn
i+1,j � 2ūn

ij + ūn
i�1,j)�

1
24

(ūn
i,j+1 � 2ūn

ij + ūn
i,j�1),

un
ij,x =

ūn
i+1,j � ūn

i�1,j

2�x
, un

ij,y =
ūn

i,j+1 � ūn
i,j�1

2�x

un
ij,xx =

ūn
i+1,j � 2ūn

i,j + ūn
i�1,j

�x2
, un

ij,yy =
ūn

i,j+1 � 2ūn
i,j + ūn

i,j�1

�y2
.

PEXACT is a a good approximation to the real function u(x, y; tn)

BUT it does not provide non-oscillatory behavior.

Solution: Weighted ENO

Discuss now construction of the interpolating polynomial for the x-direction.
Dimension-by-dimension approach

The five coe�cients

un
ij , un

ij,x , un
ij,xx , un

ij,y , un
ij,yy

are determined by requiring the polynomial to conserve the cell averages

ūn
mn for (m,n) ⇥ {(i, j), (i + 1, j), (i� 1, j), (i, j + 1), (i, j � 1)}.

The coe�cients are given by

un
ij = ūn

ij �
1
24

(ūn
i+1,j � 2ūn

ij + ūn
i�1,j)�

1
24

(ūn
i,j+1 � 2ūn

ij + ūn
i,j�1),

un
ij,x =

ūn
i+1,j � ūn

i�1,j

2�x
, un

ij,y =
ūn

i,j+1 � ūn
i,j�1

2�x

un
ij,xx =

ūn
i+1,j � 2ūn

i,j + ūn
i�1,j

�x2
, un

ij,yy =
ūn

i,j+1 � 2ūn
i,j + ūn

i,j�1

�y2
.

PEXACT is a a good approximation to the real function u(x, y; tn)

BUT it does not provide non-oscillatory behavior.

Solution: Weighted ENO

Discuss now construction of the interpolating polynomial for the x-direction.
Dimension-by-dimension approach

In each cell reconstruct quadratic polynomial as a convex combination of three polynomials

Pj(x) = wLPL(x) + wRPR(x) + wCPC(x),

with positive weights wi > 0 and
�

i wi = 1, where i ⇥ {L,R, C}.

The polynomials PL(x), PR(x) correspond to left and right one-sided linear reconstructions, uniquely deter-
mined by requiring them to conserve the one-sided cell averages:

ūij =
⇥ (i+1/2)�x

(i�1/2)�x
PR(x) dx and ūi,j+1 =

⇥ (i+3/2)�x

(i+1/2)�x
PR(x) dx

ūij =
⇥ (i+1/2)�x

(i�1/2)�x
PL(x) dx and ūi,j�1 =

⇥ (i�1/2)�x

(i�3/2)�x
PL(x) dx

The polynomial PC(x) is determined by

PEXACT(x, y = yj) = cLPL(x) + cRPR(x) + (1� cL � cR)PC(x)

Every symmetric selection of the coe�cients cL = cR will provide third-order accuracy.

In each cell reconstruct quadratic polynomial as a convex combination of three polynomials

Pj(x) = wLPL(x) + wRPR(x) + wCPC(x),

with positive weights wi > 0 and
�

i wi = 1, where i ⇥ {L,R, C}.

The polynomials PL(x), PR(x) correspond to left and right one-sided linear reconstructions, uniquely deter-
mined by requiring them to conserve the one-sided cell averages:

ūij =
⇥ (i+1/2)�x

(i�1/2)�x
PR(x) dx and ūi,j+1 =

⇥ (i+3/2)�x

(i+1/2)�x
PR(x) dx

ūij =
⇥ (i+1/2)�x

(i�1/2)�x
PL(x) dx and ūi,j�1 =

⇥ (i�1/2)�x

(i�3/2)�x
PL(x) dx

The polynomial PC(x) is determined by

PEXACT(x, y = yj) = cLPL(x) + cRPR(x) + (1� cL � cR)PC(x)

Every symmetric selection of the coe�cients cL = cR will provide third-order accuracy.

In each cell reconstruct quadratic polynomial as a convex combination of three polynomials

Pj(x) = wLPL(x) + wRPR(x) + wCPC(x),

with positive weights wi > 0 and
�

i wi = 1, where i ⇥ {L,R, C}.

The polynomials PL(x), PR(x) correspond to left and right one-sided linear reconstructions, uniquely deter-
mined by requiring them to conserve the one-sided cell averages:

ūij =
⇥ (i+1/2)�x

(i�1/2)�x
PR(x) dx and ūi,j+1 =

⇥ (i+3/2)�x

(i+1/2)�x
PR(x) dx

ūij =
⇥ (i+1/2)�x

(i�1/2)�x
PL(x) dx and ūi,j�1 =

⇥ (i�1/2)�x

(i�3/2)�x
PL(x) dx

The polynomial PC(x) is determined by

PEXACT(x, y = yj) = cLPL(x) + cRPR(x) + (1� cL � cR)PC(x)

Every symmetric selection of the coe�cients cL = cR will provide third-order accuracy.

Choosing cL = cr = 1/4 we obtain the polynomial PC(x) as

PC(x) = ūn
ij �

1
12

(ūn
i+1,j � 2ūn

ij + ūn
i�1,j)�

1
12

(ūn
i,j+1 � 2ūn

ij + ūn
i,j�1)

+
ūn

i+1,j � ūn
i�1,j

2�x
(x� xj) +

1
2

ūn
i+1,j � 2ūn

i,j + ūn
i�1,j

�x2
(x� xj)2

The weights wi are used to automatically adapt the reconstruction to the smoothness of the solution.
In smooth regions, they select the third-order reconstruction to provide maximum precision, whereas in
the presence of discontinuities they switch to a one-sided reconstruction to guarantee the essentially non-
oscillatory behavior.
The weights are taken as

wi =
�i�

m

�m

, where �i =
ci

(⇥ + ISi)p
, i, m ⇥ {c,R.L}

CL = CR = 1/4 , CC = 1/2

Smoothness indicator

ISl = (ūn
j � ūn

j�1) , ISl = (ūn
j+1 � ūn

j)

ISC =
13
3

(ūn
j+1 � 2ūn

j + ūn
j�1)

2 +
1
4
(ūn

j+1 � ūn
j�1)

2

Choosing cL = cr = 1/4 we obtain the polynomial PC(x) as

PC(x) = ūn
ij �

1
12

(ūn
i+1,j � 2ūn

ij + ūn
i�1,j)�

1
12

(ūn
i,j+1 � 2ūn

ij + ūn
i,j�1)

+
ūn

i+1,j � ūn
i�1,j

2�x
(x� xj) +

1
2

ūn
i+1,j � 2ūn

i,j + ūn
i�1,j

�x2
(x� xj)2

The weights wi are used to automatically adapt the reconstruction to the smoothness of the solution.
In smooth regions, they select the third-order reconstruction to provide maximum precision, whereas in
the presence of discontinuities they switch to a one-sided reconstruction to guarantee the essentially non-
oscillatory behavior.
The weights are taken as

wi =
�i�

m

�m

, where �i =
ci

(⇥ + ISi)p
, i, m ⇥ {c,R.L}

CL = CR = 1/4 , CC = 1/2

Smoothness indicator

ISl = (ūn
j � ūn

j�1) , ISl = (ūn
j+1 � ūn

j)

ISC =
13
3

(ūn
j+1 � 2ūn

j + ūn
j�1)

2 +
1
4
(ūn

j+1 � ūn
j�1)

2

Choosing cL = cr = 1/4 we obtain the polynomial PC(x) as

PC(x) = ūn
ij �

1
12

(ūn
i+1,j � 2ūn

ij + ūn
i�1,j)�

1
12

(ūn
i,j+1 � 2ūn

ij + ūn
i,j�1)

+
ūn

i+1,j � ūn
i�1,j

2�x
(x� xj) +

1
2

ūn
i+1,j � 2ūn

i,j + ūn
i�1,j

�x2
(x� xj)2

The weights wi are used to automatically adapt the reconstruction to the smoothness of the solution.
In smooth regions, they select the third-order reconstruction to provide maximum precision, whereas in
the presence of discontinuities they switch to a one-sided reconstruction to guarantee the essentially non-
oscillatory behavior.
The weights are taken as

wi =
�i�

m

�m

, where �i =
ci

(⇥ + ISi)p
, i, m ⇥ {c,R.L}

CL = CR = 1/4 , CC = 1/2

Smoothness indicator

ISl = (ūn
j � ūn

j�1) , ISl = (ūn
j+1 � ūn

j)

ISC =
13
3

(ūn
j+1 � 2ūn

j + ūn
j�1)

2 +
1
4
(ūn

j+1 � ūn
j�1)

2

You won’t believe it, but all this is really simple
compared to Riemann solvers !!!

done

⇥tB +⇧ · (uBT � BuT) = 0

⇧ · B = 0 at time t = 0 =⇤ ⇧ · B = 0 at times t > 0

But: numerical errors =⇤ ⇧ · B ⌅= 0

near shocks: ⇧ · B = O((�x)�1)

div B = 0 Problem

racoon: divergence cleaning

FlareLab Overview

Experiment

Theory

Numerics

Schedule

4.5. Divergence cleaning

A. Dedner, F. Kemm, D. Kröner, C.-D. Munz, T. Schnitzer, and M. Wesenberg (2002) JCP

⇤tB +⌃ · (uBT �BuT) = 0

div ·B = 0 at time t = 0 =⇤ div ·B = 0 at times t > 0

But: numerical errors =⇤ div ·B ⌅= 0

Projection method: B = B� +⌃� =⇤ �� = �div ·B�

very accurate, but expensive (multigrid)

Divergence cleaning:

⇤tB +⌃ · (uBT �BuT) +⌃� = 0
D(�) +⌃ ·B = 0

where D is a linear di�erential operator.

We obtain combine this

⇤t⌃ ·B + �� = 0
⇤tD⌃ ·B + D�� = 0
⇤tD(�) + ⇤t⌃ ·B = 0
�D(�) + �⌃ ·B = 0

⇤tD⌃ ·B��⌃ ·B = 0
⇤tD(�)��� = 0

=⇤ ⌃ ·B and � satisfy the same equation

FlareLab Overview

Experiment

Theory

Numerics

Schedule

The two important equations are:

⇥tD(�)��� = 0
D(�) +⇧ ·B = 0

Case 1: D(�) = 0 =⇤ Projection method

Case 2: (parabolic) D(�) = 1
c2

p
� =⇤

⇥t� � c2
p�� = 0

� + c2
p⇧ ·B = 0

Case 3: (hyperbolic) D(�) = 1
c2

h
⇥t� =⇤

⇥tt� � c2
h�� = 0

⇥t� + c2
h⇧ ·B = 0

Case 4: (mixed hyperbolic + parabolic) D(�) = 1
c2

h
⇥t� + 1

c2
p
� =⇤

⇥tt� +
c2
h

c2
p

⇥t� � c2
h�� = 0

⇥t� +
c2
h

c2
p

� + c2
h⇧ ·B = 0

FlareLab Overview

Experiment

Theory

Numerics

Schedule

The two important equations are:

⇥tD(�)��� = 0
D(�) +⇧ ·B = 0

Case 1: D(�) = 0 =⇤ Projection method

Case 2: (parabolic) D(�) = 1
c2

p
� =⇤

⇥t� � c2
p�� = 0

� + c2
p⇧ ·B = 0

Case 3: (hyperbolic) D(�) = 1
c2

h
⇥t� =⇤

⇥tt� � c2
h�� = 0

⇥t� + c2
h⇧ ·B = 0

Case 4: (mixed hyperbolic + parabolic) D(�) = 1
c2

h
⇥t� + 1

c2
p
� =⇤

⇥tt� +
c2
h

c2
p

⇥t� � c2
h�� = 0

⇥t� +
c2
h

c2
p

� + c2
h⇧ ·B = 0

FlareLab Overview

Experiment

Theory

Numerics

Schedule

The two important equations are:

⇥tD(�)��� = 0
D(�) +⇧ ·B = 0

Case 1: D(�) = 0 =⇤ Projection method

Case 2: (parabolic) D(�) = 1
c2

p
� =⇤

⇥t� � c2
p�� = 0

� + c2
p⇧ ·B = 0

Case 3: (hyperbolic) D(�) = 1
c2

h
⇥t� =⇤

⇥tt� � c2
h�� = 0

⇥t� + c2
h⇧ ·B = 0

Case 4: (mixed hyperbolic + parabolic) D(�) = 1
c2

h
⇥t� + 1

c2
p
� =⇤

⇥tt� +
c2
h

c2
p

⇥t� � c2
h�� = 0

⇥t� +
c2
h

c2
p

� + c2
h⇧ ·B = 0

FlareLab Overview

Experiment

Theory

Numerics

Schedule

The two important equations are:

⇥tD(�)��� = 0
D(�) +⇧ ·B = 0

Case 1: D(�) = 0 =⇤ Projection method

Case 2: (parabolic) D(�) = 1
c2

p
� =⇤

⇥t� � c2
p�� = 0

� + c2
p⇧ ·B = 0

Case 3: (hyperbolic) D(�) = 1
c2

h
⇥t� =⇤

⇥tt� � c2
h�� = 0

⇥t� + c2
h⇧ ·B = 0

Case 4: (mixed hyperbolic + parabolic) D(�) = 1
c2

h
⇥t� + 1

c2
p
� =⇤

⇥tt� +
c2
h

c2
p

⇥t� � c2
h�� = 0

⇥t� +
c2
h

c2
p

� + c2
h⇧ ·B = 0

FlareLab Overview

Experiment

Theory

Numerics

Schedule

The two important equations are:

⇥tD(�)��� = 0
D(�) +⇧ ·B = 0

Case 1: D(�) = 0 =⇤ Projection method

Case 2: (parabolic) D(�) = 1
c2

p
� =⇤

⇥t� � c2
p�� = 0

� + c2
p⇧ ·B = 0

Case 3: (hyperbolic) D(�) = 1
c2

h
⇥t� =⇤

⇥tt� � c2
h�� = 0

⇥t� + c2
h⇧ ·B = 0

Case 4: (mixed hyperbolic + parabolic) D(�) = 1
c2

h
⇥t� + 1

c2
p
� =⇤

⇥tt� +
c2
h

c2
p

⇥t� � c2
h�� = 0

⇥t� +
c2
h

c2
p

� + c2
h⇧ ·B = 0

works very good for
localized structures as
in FlareLab, but not in
MHD turbulence

Charge and current deposition

⇥B/⇥t = �c(⇧⇤ E) =⌅ ⇥⇧ · B/⇥t = 0 Yee grid

Electromagnetic codes

Charge and current deposition

What to do about the Poisson equation?

Should we solve an elliptic equation in addition to hyperbolic

Ampere’s and Faraday’s laws?

Turns out we can avoid solving Poisson equation if charge is

conserved.

Take divergence of Ampere’s law:

!

"# $ E

"t
= c# $ (# % B) & 4'# $ J

!

"#

"t
= $% & J

If charge is conserved, Poisson equation is just an initial condition.

Like divB=0, if Poisson is true at t=0, it will remain satisfied.

Electromagnetic codes

Charge and current deposition

What to do about the Poisson equation?

Should we solve an elliptic equation in addition to hyperbolic

Ampere’s and Faraday’s laws?

Turns out we can avoid solving Poisson equation if charge is

conserved.

Take divergence of Ampere’s law:

!

"# $ E

"t
= c# $ (# % B) & 4'# $ J

!

"#

"t
= $% & J

If charge is conserved, Poisson equation is just an initial condition.

Like divB=0, if Poisson is true at t=0, it will remain satisfied.

Electromagnetic codes

Charge and current deposition

What to do about the Poisson equation?

Should we solve an elliptic equation in addition to hyperbolic

Ampere’s and Faraday’s laws?

Turns out we can avoid solving Poisson equation if charge is

conserved.

Take divergence of Ampere’s law:

!

"# $ E

"t
= c# $ (# % B) & 4'# $ J

!

"#

"t
= $% & J

If charge is conserved, Poisson equation is just an initial condition.

Like divB=0, if Poisson is true at t=0, it will remain satisfied.
continuity equation is

again an initial condition

=)

=) projection method

=) parabolic

=) hyperbolic

Maxwell Solver: FDTD and Yee mesh (1966)

inspired by lectures by A. Spitkovsky

Fields are decentered both in time and in space

Finite-difference Time-Domain Maxwell solver on Yee (1966)

mesh: robust and very simple. Second order in space and time.

Decentering conserves div B to machine precision

Electromagnetic codes

Yee mesh: div B

Electromagnetic codes

Load Particle Distribution

Monte-Carlo CollisionsMonte-Carlo CollisionsModel Surface EmissionModel Surface Emission

Solve Particle EQM

(),
p p p
!F x p

Extrapolate to Grid

() (), ,
p p i i

!"x p j

Solve Maxwell’s Equation

() (), ,
i i i i
! "j E B

Particle Interpolation

(),
i i p

!E B F

t!

!

d

dt
"mv = q(E +

v

c
#B)

Fields are decentered both in time and in space

Finite-difference Time-Domain Maxwell solver on Yee (1966)

mesh: robust and very simple. Second order in space and time.

Decentering conserves div B to machine precision

Electromagnetic codesFDTD: second order in space and

Fields are decentered both in time and in space

Finite-difference Time-Domain Maxwell solver on Yee (1966)

mesh: robust and very simple. Second order in space and time.

Decentering conserves div B to machine precision

Electromagnetic codes

4.1 Finite-Difference Time-Domain Method 4 NUMERICS

Using this discretization and the notation F (i ·�x, j ·�y, n ·�t) = F

n

(i, j) the nondimen-
sionalized Maxwell’s equations in the 2.5-dimensional form read:

B

n+ 1
2

x

�
i+ 1

2 , j
�
�B

n� 1
2

x

�
i+ 1

2 , j
�

�t

=
E

n

z

�
i+ 1

2 , j �
1
2

�
� E

n

z

�
i+ 1

2 , j +
1
2

�

�y

(4.2a)

B

n+ 1
2

y

�
i, j + 1

2

�
�B

n� 1
2

y

�
i, j + 1

2

�

�t

=
E

n

z

�
i+ 1

2 , j +
1
2

�
� E

n

z

�
i� 1

2 , j +
1
2

�

�x

(4.2b)

B

n+ 1
2

z

�
i, j

�
�B

n� 1
2

z

�
i, j

�

�t

=
E

n

x

�
i, j + 1

2

�
� E

n

x

�
i, j � 1

2

�

�y

�
E

n

y

�
i+ 1

2 , j
�
� E

n

y

�
i� 1

2 , j
�

�x

(4.2c)

E

n+1
x

�
i, j + 1

2

�
� E

n

x

�
i, j + 1

2

�

�t

= c

2

B

n+ 1
2

z

�
i, j + 1

�
�B

n+ 1
2

z

�
i, j

�

�y

� j

n+ 1
2

x

⇣
i, j +

1
2

⌘!
(4.2d)

E

n+1
y

�
i+ 1

2 , j
�
� E

n

y

�
i+ 1

2 , j
�

�t

= c

2

B

n+ 1
2

z

�
i, j

�
�B

n+ 1
2

z

�
i+ 1, j

�

�x

� j

n+ 1
2

y

⇣
i+

1
2
, j

⌘!
(4.2e)

E

n+1
z

�
i+ 1

2 , j +
1
2

�
� E

n

z

�
i+ 1

2 , j +
1
2

�

�t

= c

2

B

n+ 1
2

y

�
i+ 1, j + 1

2

�
�B

n+ 1
2

y

�
i, j + 1

2

�

�x

�
B

n+ 1
2

x

�
i+ 1

2 , j + 1
�
�B

n+ 1
2

x

�
i+ 1

2 , j
�

�y

� j

n+ 1
2

z

⇣
i+

1
2
, j +

1
2

⌘!

(4.2f)

where the discretization error, which is quadratic in the spatial and the temporal stepsize
as in equation (4.1), is not explicitly enlisted for clarity.
It must be pointed out, that the current densities j

⇠

with ⇠ 2 {x, y, z} have no subscripts
indicating the timestep at which their values hold. This is specific for the scheme in this
work, because the current densities, which are calculated during the integration of the fluid
variables, are regarded as constants while the electromagnetic fields are updated. Because
of the subcycling method described below it is in general not possible to give the currents’
time relative to the electromagnetic fields’ time explicitly.

By placing the fields according to Figure 4.1 and using the time-staggered leapfrog scheme
the equations above can easily be implemented numerically.

The second approach in deriving the FDTD algorithm is approximating Maxwell’s equation
in integral form. The latter can be obtained from (3.5) by integrating over a surface ⌃ bound
by @⌃ and making use of Stokes’ theorem. Faraday’s (3.5c) and Ampére’s (3.5d) law, which
are relevant for the time development of the electromagnetic fields, yield

@

t

Z
⌃
B · dS = �

I
@⌃

E · dl (4.3a)

@

t

Z
⌃
E · dS = �c

2

Z
⌃
j · dS+ c

2

I
@⌃

B · dl (4.3b)

Choosing rectangular ⌃’s for each component of the electromagnetic field as depicted in
Figure 4.2 and placing the fields correctly supports this form of Maxwell’s equations in a
very natural way and directly leads to a discrete version in the form of equations (4.2), just
as the finite-difference approach did. Each component of the field is surrounded by a little

32

Yee mesh motivated by integral form:

4.2 Central Weighted Essentially Non-Oscillatory Methods 4 NUMERICS

E

z

E

z

B

y

B

y

E

y

E

y

B

x

B

x

Figure 4.2: Yee Grid Interpreted for Integral Form of Maxwell’s Equations
The 3-dimensional Yee grid gently suits the integral formulation of Maxwell’s equations
(4.3). Figure 4.1 shows the grid projected to the x-y-plane.

In this section a method belonging to the category of central weighted essentially non-
oscillatory (CWENO) schemes [9],[10] is presented, i.e. a central Godunov-type scheme,
which is used to solve the equations of the fluid model in this work. Such schemes are
designed for solving hyperbolic differential equations which are capable of developing non-
smooth states from smooth initial conditions, especially for the demanding case of a coexis-
tence of non-smooth fields and smooth regions exhibiting rich structures in one simulation.
A good overview can be found in [13].

The method presented here is a finite volume method. Such methods are suitable for
conservation laws as (4.5) as they permit for schemes that fully guarantee the conservation
properties. Beginning with the one dimensional case, the solution at a given point x 2
{x

j� 1
2
, x

j+ 1
2
} = I

j

is approximated by taking the average over a finite cell I
j

around the
respective spot. Here only equidistant cells are considered. Assuming one knows the exact
solution u(x, t) of some quantity u you get the approximation

û(x, t) = ū

j

(t) :=

1

V (I

j

)

Z
I

j

u(x

0
, t) dx

0 for x 2 I

j

(4.6)

with V (I

j

) the volume of the j-th cell. Solving the equation means determining the temporal
change of the ū

j

. Combining a suitable special case of equations (4.5) and (4.6) you get

@

t

ū

j

=

1

V (I

j

)

Z
I

j

@

t

u(x, t) dx = � 1

V (I

j

)

Z
I

j

⇣
@

x

F

�
u(x, t)

�� b(u, x, t)

⌘
dx

= � 1

V (I

j

)

Z
@I

j

F

�
u(x, t)

�
dx+

1

V (I

j

)

Z
I

j

b(u, x, t) dx. (4.7)

Taking into account the definition of I
j

this leads to

@

t

ū

j

=

1

�x

⇣
F

�
u(x

j� 1
2
, t)

�� F

�
u(x

j+ 1
2
, t)

�⌘
+

¯

b

j

. (4.8)

Apart from the fact, that ū

j

is an averaged value there are no approximations (i.e. loss
of information) in equation (4.8) compared to equation (4.5). It can be seen, that the

34

4.2 Central Weighted Essentially Non-Oscillatory Methods 4 NUMERICS

y

x

E

x

, j

x

B

y

E

y

, j

y

B

x

�x

�y

B

z

E

z

, j

z

Figure 4.1: 2.5 Dimensional Yee Grid
Position of the electromagnetic and fluid fields within a single cell, according to [18]. The
components, that would lie outside the plane in the 3-dimensional case are simply projected
into the x-y-plane, which is equivalent under the assumption of perfect symmetry along the
z-axis.

loop on which the respective fields, that influence it, are placed.
This formulation is especially valuable in the context of boundary conditions, because these
can often be formulated well for the line integrals.

4.1.2 Timestep Restrictions

As shown in [16] the FDTD method requires a timestep that is limited by the CFL-condition

CFL = c

�t

�x

 1q
1 +

�
�x

�y

�2 . (4.4)

in the case of a 2-dimensional non-equally spaced grid. In the case �x = �y the right hand
side of (4.4) equals 1p

2
⇡ 0.71.

4.2 Central Weighted Essentially Non-Oscillatory Methods

The fluid equations are a system of non-linear hyperbolic partial differential equations of
the form

@

t

U(x, t) +r · F(U(x, t)) = b(U,x, t). (4.5)

In the case of b ⌘ 0 these equations describe conservation of the quantities U, otherwise
there are sources or sinks.

33

2D by projection

Coupling FDTD- and CWENO Method

t

E
1
4

B
1
4

E
3
4

B
3
4

E
5
4

B
5
4

E
7
4

B
7
4

E
9
4

B
9
4

E
11
4

B
11
4

E
13
4

B
13
4

E
15
4

B
15
4

B
1
8 B

3
8 B

5
8 B

7
8 B

9
8 B

11
8 B

13
8 B

15
8 B

17
8 B

19
8 B

21
8 B

23
8 B

25
8 B

27
8 B

29
8 B

31
8

E0

B0

⇢0s,u
0
s, E0

s

E2

B2

⇢2s,u
2
s, E2

s

E3

B3

⇢3s,u
3
s, E3

s

E1

B1

⇢1s,u
1
s, E1

s

E
1
2

B
1
2

E
5
2

B
5
2

E
7
2

B
7
2

E
3
2

B
3
2

4.3 Coupling of FDTD- and CWENO-Method 4 NUMERICS

is chosen.

This scheme can be implemented in an iterative way. This way you avoid carrying along
vast amounts of temporal data. In order to obtain v

n+1 only v

n has to be stored in memory:

v

0
= v

n

+

�t

6

f

�
v

n

, t

n

�
(4.31)

v

00
= v

0
+

�t

6

f

�
6v

0 � 5v

n

, t

n

+�t

�
(4.32)

v

n+1
= v

00
+

2�t

3

f

⇣
3
2v

00 � 1
2v

n

, t

n

+

1
2�t

⌘
(4.33)

4.3 Coupling of FDTD- and CWENO-Method

In the previous sections methods suited to the properties of Maxwell’s equation and the
5- and 10-moment model have been presented at which the source terms, that couple the
underlying systems of equations have been regarded as constant in both cases. This practice
has to be substantiated and justified.

The underlying method, which is used to couple the two systems and their respective
schemes is referred to as Strang splitting. The basic idea is to divide a problem into smaller
parts, which are easier to handle, instead of solving the complete problem, which might be
hard to do. In order to obtain useful partitions of real problems, the occurence of an error
is accepted, i.e. the separated problem differs from the original one (in some cases a lossless
separation is possible, but this is usually only the case for relatively simple problems). In
the context of numerical methods this is no problem, because there is always some kind of
error due to the discretization anyway. Nevertheless it is important to make sure that the
error is sufficiently well behaved and under control.
In this section Strang splitting and general results with respect to it are presented before
this considerations are employed on the multifluid Maxwell model and the coupling of the
two methods described above.

Consider a Cauchy problem

@

t

y = f(y), y(t = 0) = y0, (4.34)

in which the operator f can be decomposed into two distinct operators:

f = f1 + f2

As a simplification suited to the actual problem that is considered below, let f1 be linear.
The Cauchy-Kowalevski theorem guarantees the existence of a unique solution to this prob-
lem in some neighbourhood of 0 for many physically relevant cases. Let �

⌧,f

(y0) be the
function, that maps (4.34) to its solution at the time t = ⌧ .
Now instead of solving (4.34) (i.e. getting �

⌧,f

(y0)) it might be advantageous to solve the
two problems

@

t

y = f1(y), y(t = 0) = y0 and @

t

y = f2(y), y(t = 0) = �

⌧,f1(y0) (4.35)

44

Fluid: strongly stable TVD Runge Kutta (Shu-Osher 1988)

subcycling and interpolation

2D Simulations: GEM Setup

5.1 Geospace Environment Modeling Problem 5 SETUP AND SIMULATIONS

For the 10-moment model the initial conditions read

⇢

s

(y) =

n0

|M
s

|
✓
sech

2
⇣
y

�

⌘
+ n1

◆
(5.2a)

u

x,s

= u

y,s

= 0 (5.2b)

u

z,s

(y) = �⇥

s

B0

�M

s

sech

2
⇣
y

�

⌘
(5.2c)

E
xx,s

= E
yy,s

=

1

2

⇥

s

B

2
0

✓
sech

2
⇣
y

�

⌘
+ n1

◆
(5.2d)

E
zz,s

=

⇥

2
s

B

2
0

|M
s

|�2n0
sech

2
⇣
y

�

⌘
+ E

yy,s

(5.2e)

E
xy,s

= E
xz,s

= E
yz,s

= 0 (5.2f)
E = 0 (5.2g)

B

x

(y) = B0tanh

⇣
y

�

⌘
� 0

⇡

L

y

cos

⇣
2⇡x

L

x

⌘
sin

⇣
⇡y

L

y

⌘
(5.2h)

B

y

= 0 + 0
2⇡

L

x

sin

⇣
2⇡x

L

x

⌘
cos

⇣
⇡y

L

y

⌘
(5.2i)

B

z

= 0 (5.2j)

Herein, the perturbation terms are marked in red, while the other terms describe an equi-
librium configuration.
Note that it is necessary to have an unisotropic temperature for an equilibrium solution in
the presence of a non-vanishing background density. For the 10-moment model, right from
the definition (3.15) the following profile can be obtained:

T

zz,s

= T

s

"
1 +

2⇥

s

|M
s

|�2n0

✓
1

1 + n1cosh

2
�

y

�

� � 1

[1 + n1cosh

2
(

y

�

)]

2

◆#
(5.3)

where T

s

is the isotropic scalar equilibrium temperatur that remains for the case n1 = 0.

5.1.3 Parameters and their Impact

In accordance to [2] the following parameters are chosen in the implementation of (5.1) and
(5.2):

m

i

m

e

= 25

T

i

T

e

=

q
m

i

m

e

= 5 � = 0.5

n0 = 1 n1 = 0.2 B0 = 1

 0 = 0.1 L

x

= 8⇡ L

y

= 4⇡

This means:

55

5.2 Simulations 5 SETUP AND SIMULATIONS

B0 is simply the magnitude of the magnetic field and determines how steep the gradient of
B

x

is at the sheet. Thus it also implies the initial magnitude of the current that is necessary
to keep the system in an equilibrium and the thermal pressure that balances the magnetic
pressure.
The magnitude of the perturbation �0 is chosen in a way, that the initial magnetic island’s
width is of the same order as that of the current sheet. As pointed out in [2] the perturbation
is rather large, but directly drives the configuration into the nonlinear reconnection process,
thus saving simulation time and circumventing the phase, in which the tearing mode grows
linearly and strongly depends on the electron physics. This is avoided, because it is the
independence of the reconnection rate from the electron mechanisms in the later stage that
should be investigated in the GEM challenge [?].

The background density n0n1 is important because of the sensitivity of the simulation to
small densities, which was discussed above. Nevertheless, as pointed out for example in [?
] the amplitude of this density has a serious impact on the results and therefore needs to
be kept in mind in the interpretation of the results.

The basic length scales that are implied by the parameters are �, which corresponds to the
sheet width and L

x

respectively L

y

as a kind of global length scale. Defining the borders
of the sheet as the lines, where the current’s magnitude is half of its maximum value, the
sheet width can be estimated as 2�.

Name Expression Electrons Ions

thermal velocity vth,s =
p
2T0,s

q
m

i

m

s

2.0 0.91

plasma frequency !p,s = c

q
m

i

m

s

p
n0,s 100 20

gyro frequency ⌦

s

=

m

i

m

s

B0 25 1

Larmor radius r

s

=

p
2T0,s

q
m

s

m

i

1
B0

0.082 0.91

Debye length �D,s

=

1
c

q
T0,s

n0,s
0.014 0.032

skin depth/inertial length �

s

=

q
m

s

m

i

1p
n0,s

0.2 1

Table 5.1: Plasma Regime in GEM Problem
List of relevant plasma parameters in SI-units and in non-dimenzionalized form. If there are
species specific quantities involved the respective parameters are marked with a subscript
s.

5.2 Simulations

In Table 5.2 an overview of the simulations that were carried out is given.
The focus of the subsequent analysis lies on 5m-2048, because this 5-moment based simula-
tion exhibits the highest resolution and is thus expected to give the most useful results. The

57

5.2 Simulations 5 SETUP AND SIMULATIONS

10

�2

10

�1

10

0

(
sheet width: 2� = 1.0

ion skin depth: 1.0
ion gyro radius: r

i

= 0.91

�x64 = 0.39

electron skin depth: 0.20

�x128 = 0.19

�x256 = 0.098

electron gyro radius: r

e

= 0.082

�x512 = 0.049

ion Debye length: �

D,i

= 0.032

�x1024 = 0.024

electron Debye length: �

D,e

= 0.014

�x2048 = 0.012

Figure 5.6: Length Scales
Comparison of some characteristic length scales. Due to the broad range that has to be
covered a logarithmic scale is used. The subscripts of the �x’s denote the respective
resolution (i.e. n

x

). All lengths are in units of v

A

/⌦
i

58

Parameters:

0

0.5

1

1.5

2

2.5

3

3.5

4

0 5 10 15 20 25 30 35 40

r
e
c
o
n
n
e
c
t
e
d

m
a
g
n
e
t
i
c

fl
u
x

t [⌦�1
i]

Reconnected flux

Ok, now we have a fluid code !

Let’s do Vlasov

Vlasov simulations

collisionless Plasma: Vlasov equation

�fk
�t

+ v ·⇤xfk +
qk

mk
(E + v ⇥ B) ·⇤vfk = 0

+ Maxwell, k = e, i

important: positive conservative scheme, semi-Lagrangian,
Boris, backsubstitution method
(Filbet, Sonnendrücker, Bertrand 2001)

Darwin-Approximation

CFL-condition too restrictive
=⇤ Darwin approximation

electric field split into longitudinal and transversal part

E = EL + ET mit ⌅ · ET = 0und ⌅⇥ EL = 0

Maxwell equations

⌅⇤ E = �⌅B
⌅t

⌅ · E =
⇥

⇤0

⌅⇤ B = µ0

�
⇤0

⌅E
⌅t

+ j

⇥
⌅ · B = 0

Darwin-Approximation

CFL-condition too restrictive
=⇤ Darwin approximation

electric field split into longitudinal and transversal part

E = EL + ET mit ⌅ · ET = 0und ⌅⇥ EL = 0

Maxwell equations

⌅⇤ ET = �⌅B
⌅t

⌅ · EL =
⇥

⇤0

⌅⇤ B = µ0

�
⇤0

⌅E
⌅t

+ j

⇥
⌅ · B = 0

Darwin-Approximation

CFL-condition too restrictive
=⇤ Darwin approximation

electric field split into longitudinal and transversal part

E = EL + ET mit ⌅ · ET = 0und ⌅⇥ EL = 0

Maxwell equations with Darwin approximation

⇧⇤ ET = �⌅B
⌅t

⇧ · EL =
⇥

⇤0

⇧⇤ B = µ0

�
⇤0

⌅EL

⌅t
+ j

⇥
⌅ ⇧ · B = 0

no timestep restriction by the speed of light, but 8 elliptic equations

Semi-Lagrangean scheme

Consider

The characteristics of this PDE are given by:

Denote the solution as

@

t

f + @

x

(v(t, x)f) = 0

dX

ds

(s) = v(s,X(s))

X(t) = x

X(s, t, x)

Since

df

ds

= 0 (r.h.s. of the PDE), we have

Z
x2

x1

f(t, x)dx =

Z
X(s,t,x2)

X(s,t,x1)
f(s, x)dx

With this we can update the cell-average of f in the ith cell:

Z
x

i+1
2

x

i� 1
2

f(tn+1
, x)dx =

Z
X(tn,tn+1

,x

i+1
2
)

X(tn,tn+1
,x

i� 1
2
)
f(tn, x)dx

t

x

t
n+1

t
n

x
i-½

x
i+½

The integral of f over the hatched area is conserved. “This part of the fluid will

always stay between the two characteristics.”

Z
x

i+1
2

x

i� 1
2

f(tn+1
, x)dx =

Z
X(tn,tn+1

,x

i+1
2
)

X(tn,tn+1
,x

i� 1
2
)
f(tn, x)dx

Conservative semi-Lagrangian schemes

Let f̄n

i

denote the cell-average in the ith cell at time t

n.

f̄

n+1
i

= f̄

n

i

+ �
i� 1

2
� �

i+ 1
2

= f̄

n

i

+

Z
x

i� 1
2

X(tn,t

n+1
,x

i� 1
2
)
f(tn, x)dx�

Z
X(tn,t

n+1
,x

i+1
2
)

x

i+1
2

f(tn, x)dx

Strategy:

Follow the Characteristics ending at the cell borders backwards in time and find their
footpoint

Reconstruct the integral of f from the footpoint to the cell border

Update with f̄

n+1
i

= f̄

n

i

+ �
i� 1

2
� �

i+ 1
2

This will lead to a conservative scheme.

Martin Rieke (Ruhr-Uni Bochum) The PFC scheme February 22, 2013 5 / 8

The PFC scheme

Developed by Filbet, Sonnendrücker, Bertrand (JCP 2001)

PFC = Positive Flux-Conservative

Let’s consider the simple second-order scheme for positive velocities: Approximate the primitive
function of f in the interval [x

i� 1
2
, x

i+ 1
2
] (again, f̄

i

denotes the cell average):

F (x) =

Z
x

�1
f(x)dx

by

F̃ (x) = w

i�1 + (x� x

i� 1
2
)f̄

i

+
1

2
(x� x

i� 1
2
)(x� x

i+ 1
2
)
f̄

i+1 � f̄

i

�x

Now we can reconstruct f itself:

f̃(x) =
dF

dx
(x) = f̄

i

+ (x� x

i

)
f̄

i+1 � f̄

i

�x

Martin Rieke (Ruhr-Uni Bochum) The PFC scheme February 22, 2013 6 / 8

The PFC scheme

However this scheme can cause negative reconstructed f̃ . To avoid this, one can introduce a
slope-limiter ✏ to ensure that the reconstruction lies between 0 and f1:

✏

i

=

⇢
min(1; 2f̄

i

/(f̄
i+1 � f̄

i

)) if f̄
i+1 > f̄

i

min(1;�2(f1 � f̄

i

)/((f̄
i+1 � f̄

i

)) if f̄
i+1 < f̄

i

,

to obtain

f

h

(x) = f̄

i

+ ✏

i

(x� x

i

)
f̄

i+1 � f̄

i

�x

Let’s denote the distance from the footpoint of the characteristic to the cell-boundary by ↵.
Integrating f

h

then gives the flux through the boundary at x
i+ 1

2
:

�
i+ 1

2
=

Z
x

i+1
2

x

i+1
2
�↵

f

h

(x)dx

= ↵

⇣
f̄

i

+
✏

i

2

⇣
1�

↵

�x

⌘
(f̄

i+1 � f̄

i

)
⌘

Martin Rieke (Ruhr-Uni Bochum) The PFC scheme February 22, 2013 7 / 8

The PFC scheme

Some remarks:

This scheme can be extended to higher orders. We use the third order one.

A similar derivation produces the scheme for negative velocities.

The length of the characteristics can be arbitrarily large with only a minor change in the
derivation.

The accuracy in time depends only on how good the characteristics can be calculated.

Martin Rieke (Ruhr-Uni Bochum) The PFC scheme February 22, 2013 8 / 8

The Vlasov equation

@

t

f

s

+ v ·r
x

f

s

+

q

s

m

s

(E+ v ⇥B) ·r
v

f

s

= 0

We want to solve this PDE using a one-dimensional semi-Lagrangian scheme.
Why? Becase one-dimensional schemes can have fancy limiters, conservation-properties and
e�cient implementations that are di�cult to generalise to higher dimensions.
Remember: The Vlasov equation is a conservative, hyperbolic PDE in 6 dimension (plus time)

One way to do this is splitting.

Martin Rieke (Ruhr-Uni Bochum) Splitting and Backsubstitution February 24, 2013 2 / 13

Splitting

Consider @
t

f = Af + Bf , where A and B are linear operators (with no time dependance).

The formal solution to this is
f(t) = exp

�
(A+ B)t�f0

If A and B commute, we can also write:

f(t) = exp(Bt) exp(At)f0

This means we can just solve @

t

f = Af , use the result as an initial value for
@

t

f = Bf and still get the correct solution!

Martin Rieke (Ruhr-Uni Bochum) Splitting and Backsubstitution February 24, 2013 3 / 13

Godunov splitting

What happens when A and B do not commute?
Let’s look at the Zassenhaus formula (A variation on Baker-Campbell-Hausdor↵):

exp ((A+ B)t) = exp (Bt) exp (At) exp

✓
[A,B] t

2

2

◆
exp

�O(t

3
)

�

So now we have:
f(t) = exp(Bt) exp(At)f0 +O(t

2
)

We still get an approximate solution accurate to first order in time.
This is called Godunov splitting or Lie-Trotter splitting

Martin Rieke (Ruhr-Uni Bochum) Splitting and Backsubstitution February 24, 2013 4 / 13

Strang splitting

Can we do better?

A scheme accurate to second order in time is the Strang-Splitting:

f(t) = exp(Bt/2) exp(At) exp(Bt/2)f0 +O(t

3
)

By manipulating the Baker-Campbell-Hausdor↵ formula, splitting schemes of arbitrary order can
be constructed.

However, the Sheng-Suzuki theorem states that all splitting schemes better than second order will
have at least one negative exponent (i.e. negative time-steps).

Martin Rieke (Ruhr-Uni Bochum) Splitting and Backsubstitution February 24, 2013 5 / 13

Strang splitting and the Vlasov equation

We will now use Strang splitting on the Vlasov equation:

@

t

f

s

+ v ·r
x| {z }

A

f

s

+

q

s

m

s

(E+ v ⇥B) ·r
v

| {z }
B

f

s

= 0

f

s

(t

n+1
) = exp(Bt/2) exp(At) exp(Bt/2)f

s

(t

n

) +O(t

3
)

This means we update the velocity-part of f
s

over one half time-step,
then update the position-part over one full time-step,
then update the velocity-part again over one half time-step.

This is equivalent to the Leapfrog or Strömer-Verlet schemes in PIC simulations!

Martin Rieke (Ruhr-Uni Bochum) Splitting and Backsubstitution February 24, 2013 6 / 13

The position update

We want to solve
@

t

f

s

+ v ·r
x

f

s

= 0

Let’s rewrite this equation to

@

t

f

s

+ @

x

v

x

f

s

+ @

y

v

y

f

s

+ @

z

v

z

f

s

= 0

Since v is just a variable and does not depend on x, we can write this in a conservative form.
Now we have three linear operators that all commute!

We can just solve each step seperately and the solution is still exact. By using a conservative
numerical scheme, the conservation property of the Vlasov equation is kept.

Martin Rieke (Ruhr-Uni Bochum) Splitting and Backsubstitution February 27, 2013 7 / 13

The velocity update

The velocity part is not that easy.

@

t

f

s

+

q

s

m

s

(E+ v ⇥B) ·r
v

f

s

=

@

t

f

s

+

q

s

m

s

@

v

x

(E

x

+ v

y

B

z

� v

z

B

y

)f

s

+

q

s

m

s

@

v

y

(E

y

+ v

z

B

x

� v

x

B

z

)f

s

+

q

s

m

s

@

v

z

(E

z

+ v

x

B

y

� v

y

B

x

)f

s

= 0

We can still rewrite this in a conservative way, but the three operators do not commute because
of the velocity in the v ⇥B term.

Martin Rieke (Ruhr-Uni Bochum) Splitting and Backsubstitution February 27, 2013 8 / 13

The velocity update

Can we use Strang splitting?

If we denote the individual operators by V
x

, V
y

, and V
z

we will have

f(t

n+1
) = exp(V

x

t/4) exp(V
y

t/2) exp(V
x

t/4)

⇥ exp(V
z

t)

⇥ exp(V
x

t/4) exp(V
y

t/2) exp(V
x

t/4)f(t

n

) +O(t

3
)

This means 7 steps for the velocity update and we have a numerically preferred direction.

Martin Rieke (Ruhr-Uni Bochum) Splitting and Backsubstitution February 27, 2013 9 / 13

Backsubstitution

What we really want is:

Just one step per operator

No splitting error in time

So let’s revisit what the semi-Lagrangian scheme does (for simplicity in 2D).
A full two-dimensional scheme would transport the value of f along the black characteristic.

Martin Rieke (Ruhr-Uni Bochum) Splitting and Backsubstitution February 27, 2013 10 / 13

Equations of motion:

d

dt
mv = q(E+ v ⇥B)

d

dt
x = v

looks implicit

leap-frog

vn+1/2 � vn�1/2

�t
=

q

m

✓
En +

1

2
(vn+1/2 + vn�1/2)⇥Bn

◆

Solution: Boris (1970) explicit

vn�1/2 = v� � qEn

m

�t

2

vn+1/2 = v+ +
qEn

m

�t

2
v+ � v�

�t
=

q

2m
(v+ + v�)⇥B

v� = vn�1/2 +
q�tEn

2m
v0 = v� + v� ⇥ tn

v+ = v� + v0 ⇥ 2tn

1 + tn · tn

vn+1/2 = v+ +
q�tEn

2m

with tn =
q�tBn

2m

Proof:

We know:

v+ � v� =
q�t

2m
(v+ + v�)⇥ B

We want to proof:

v+ � v� = v⇥ ⇥ s

v⇥ = v� + v� ⇥ t , t =
q�t

2m
B , s =

2t
1 + t2

thus:
v+ � v� = v� ⇥ s + (v� ⇥ t)⇥ s

v� ⇥ s = v� ⇥ B
q�t

2m

2

1 + t2

= �v+ ⇥ B
q�t

2m

2

1 + t2
+ (v+ � v�)

2

1 + t2

= �(v+ � v�)⇥ B
q�t

2m

1

1 + t2
+ (v+ � v�)

1

1 + t2

(v� ⇥ t)⇥ s = (v� ⇥ s)⇥ t

= �
�

q�t

2m

⇥2 1

1 + t2
[(v+ � v�)⇥ B]⇥ B +

q�t

2m

1

1 + t2
(v+ � v�)⇥ B

=⇤ v+ � v� = (v+ � v�)
1

1 + t2
+

�
q�t

2m

⇥2 1

1 + t2
B⇥ [(v+ � v�)⇥ B]

(v+ � v�)⇤ B =
q�t

2m
[(v+ + v�)⇤ B]⇤ B =: C⇤ B

B⇤ (C⇤ B) = CB2 � BB · C =
q�t

2m
[(v+ + v�)⇤ B]B2

=⌅ t2(v+ � v�) =

�
q�t

2m

⇥2

B2[(v+ + v�)⇤ B]
q�t

2m

t2 =

�
q�t

2m

⇥2

B2 =⌅

xn+1/2 � xn�1/2

�t
= vnI)

PIC

jn =
⇤

vn
�S(x

⇥)

x⇥ =

�
xn+1/2
� + xn�1/2

�

2

⇥
= xn + O(�t2)

II)

En+1/2�En�1/2

�t = ⇤⇥ Bn � jnIII)

Bn+1�Bn

�t = �⇤⇥ E n+1/2IV)

Vlasov

vn+1 � vn

�t
=

q

m

�
E n+1/2(xn+1/2) +

vn+1 + vn

2
⇥ B�(xn+1/2)

⇥

B� =
Bn+1 + Bn

2
= Bn+1/2 + O(�t2)

V) Boris Boris

f̂ n+1(xn+1/2, vn) = ⇥x(�t)f̃ n(xn�1/2, vn)

f̃ n+1(xn+1/2, vn+1) = ⇥v (�t)f̂ (xn+1/2, vn)

jn =
⇤

vn
�f

⇥
� (x

n, vn)

f ⇥(xn, vn) =

�
f̃ n(xn�1/2, vn) + f̂ n(xn+1/2, vn)

2

⇥

= f n(xn, nv) + O(�t2)

So let’s revisit what the semi-Lagrangian scheme does (for simplicity in 2D).
A full two-dimensional scheme would transport the value of f along the black characteristic.

H. Schmitz, R. Grauer / Computer Physics Communications 175 (2006) 86–92 89

Fig. 3. Schematic diagram of the first step of integration of the characteristics
using the backsubstitution algorithm. The distribution function is shifted in the
vx -direction from the source point S(1) of the characteristic to the grid point G.
Gray lines show corresponding characteristics in the other cells. The dashed
line is the characteristic ending on G which is important in the second step.

above drawbacks. Here we will present first the general idea of
this backsubstitution method and then write down the equations
for the general system described above.

Suppose we are given a one dimensional integration scheme
for the transport equation (2). To create a scheme for the in-
tegration of the three-dimensional velocity space there is no
other choice but to split the full three-dimensional problem into
a number of one-dimensional substeps. For each of these sub-
steps the characteristics will be calculated and then projected
onto the direction of the advection step. We still have the free-
dom, which characteristics to integrate and in which order to
integrate them.

To start with, let us again consider the standard case de-
scribed in the last section. Our aim is to formulate a splitting
scheme in which the characteristics are integrated exactly, and
which uses the minimum number of integration steps. Since we
can ignore the vz-direction, this means we want only two inte-
gration steps, one for vx , and one for vy .

The distribution function is first shifted in the vx , and then
in the vy -direction. Fig. 3 illustrates the first step while Fig. 4
illustrates the second step. Both shifts together should trans-
port the value of the distribution function from a source point
S = (Sx, Sy) of a characteristic to its destination point D =
(Dx,Dy) with S = X(t − !t, t,D). Here the indices x, y, and
z are used to denote the velocity components vx , vy , and vz.
This means that we aim to find a scheme such that

(17)f new(Dx,Dy) = f old(Sx, Sy).

In the first step the shift in vx has to transport f from S to an
intermediate point (Dx,Sy). In the semi-Lagrangian schemes
which we are considering here, the characteristics are integrated
backward from the grid points. This implies that in the first
step (1) the grid point G has to coincide with the intermediate

Fig. 4. Schematic diagram of the second step of integration of the characteris-
tics using the backsubstitution algorithm. The distribution function is shifted in
the vy -direction from the intermediate point to the destination point G of the
characteristic. Gray lines show corresponding characteristics in the other cells.

point G = (D
(1)
x , S

(1)
y), or equivalently S(1) = (S

(1)
x ,Gy) and

D(1) = (Gx,D
(1)
y). We have displayed these characteristics in

Fig. 3. In this way the distribution function has been shifted
along vx according to

(18)f inter(Gx,Gy) = f old(S(1)
x ,Gy

)
.

Given a sufficiently smooth behavior of the characteristics we
can assume that the interpolation scheme causes all other points
of the distribution function to be shifted accordingly. This is
particularly true for the characteristic that ends in the grid
point G (dashed line in Fig. 3). This characteristic will be im-
portant in the following step.

In the second step (Fig. 4) we, therefore, need to choose the
characteristic that ends in G. Then the source point S(2) is given
by S(2) = X(t − !t, t,G). The shift is performed in the vy -di-
rection so that

(19)f new(Gx,Gy) = f inter(Gx,S
(2)
y

)
.

Since in the first step we had (assuming again correct interpo-
lation)

(20)f inter(Gx,S
(2)
y

)
= f old(S(2)

x , S(2)
y

)
,

we finally have

(21)f new(Gx,Gy) = f old(S(2)
x , S(2)

y

)
.

We now use this motivation to write down a general scheme
for three-dimensional velocity space. For every grid point G

we perform the integration in three one-dimensional substeps,
one for each component vx, vy, vz. For each integration a source
coordinate S

(1)
x , S(2)

y , and S
(3)
z is calculated from a characteristic

which does not necessarily pass through G. To find S
(1)
x for the

vx -integration we demand

(22)Gx = D(1)
x ,

fnew(D
x

, D
y

) = fold(S
x

, S
y

)

Splitting:

would like to have:

f inter(G
x

, G
y

) = fold(S(1)
x

, G
y

)

fnew(G
x

, G
y

) = f inter(G
x

, S(2)
y

)

assuming correct interpolation f inter(G
x

, S(2)
y

) = fold(S(2)
x

, S(2)
y

)

fnew(G
x

, G
y

) = fold(S(2)
x

, S(2)
y

) X=)

fold is lossed, only have f inter

Backsubstitution for the velocity update

The characteristics for the velocity update can be calculated by the Boris scheme. Define

k =

�t

2

q

s

m

s

B s =

2k

1 + k

2

Now the backward in time Boris scheme is given by:

v

+
= v

n+1 � �t

2

q

s

m

s

E

˜

v = v

+ � v

+ ⇥ k

v

�
= v

+ � ˜

v ⇥ s

v

n

= v

� � �t

2

q

s

m

s

E

This formula has to be brought into this form:

v

n

x

= v

n

x

(v

n+1
x

, v

n

y

, v

n

z

)

v

n

y

= v

n

y

(v

n+1
x

, v

n+1
y

, v

n

z

)

v

n

z

= v

n

z

(v

n+1
x

, v

n+1
y

, v

n+1
z

)

Martin Rieke (Ruhr-Uni Bochum) Splitting and Backsubstitution February 27, 2013 12 / 13

Backsubstitution for the velocity update

v

n

x

= v

n

x

(v

n+1
x

, v

n

y

, v

n

z

) (1)

v

n

y

= v

n

y

(v

n+1
x

, v

n+1
y

, v

n

z

) (2)

v

n

z

= v

n

z

(v

n+1
x

, v

n+1
y

, v

n+1
z

) (3)

The last equation (3) is given simply by the z-component of Boris’ scheme.
To find (2) we solve (3) for vn+1

z

and substitute this into the y-component of Boris’ scheme.
Equation (1) can be found by using the x-component of the forward in time Boris scheme and
solving for vn

x

.

Martin Rieke (Ruhr-Uni Bochum) Splitting and Backsubstitution February 27, 2013 13 / 13

New Code: DSDV II (Martin Rieke)

‣full Maxwell Solver
‣parallel CUDA

The DaVinci-cluster at the Ruhr-Universität
Bochum consists of 17 nodes with a total of

‣16320 cores and 272 GB RAM on GPUs
 (68~NVidia Tesla S1070 cards with
 240 cores and 4 GB RAM each)
‣136 respectively 272 (with HT) cores and
 408 GB on CPUs (34 Xeon E5530 Quad Core CPUs
 (2.4 GHz) with 8 cores respectively 16 cores
 (with HT) and 12~GB RAM each)

Hardware and CUDA performance

system resolution duration of run

CPUs (Schmitz, Grauer) 256⇥ 128⇥ 30

3 ⇠ 150 h

GPUs (this work) 256⇥ 128⇥ 32

3 ⇠ 8 h

Comparison of the time necessary to simulate one quarter

of the GEM setup until t = 40⌦

�1
i .

Ok, now we have a Vlasov code !

Let’s do the coupling

Multifluid and Vlasov blocks communicate via exchange of ghostcells.

‣In a first step, the phase-space density is extrapolated into the ghostcells.
 This is of coarse not correct but respects phase space structure.
‣Next, it is modified to match the moments given by the fluid in the
 respective cell by rescaling, translating, and squeezing.
 This is implemented as advection along suitably chosen characteristics.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

-8 -6 -4 -2 0 2 4 6 8

P
h
a
s
e
-
s
p
a
c
e
d
e
n
s
i
t
y

Velocity

original

modified

‣The multifluid ghostcells are filled with the
 moments calculated from the phase-space
 density of the Vlasov simulation.
 Because the RK scheme is a multi-stage
 method, these moments are interpolated
 linearly in time.

� � � � � �

� � � 	
 � � �
 �

 �

∆t

Velocity

Position

E
B

� �

� �

�

�

� �

t

‣Both codes calculate the current density in their respective regions.
 These are collected and used to integrate Maxwell's equations globally.

‣Each code can be executed on its own, or coupled to the other via MPI.
 This concept is known as Multiple Program Multiple Data (MPMD).

The GEM reconnection challenge (2001), where there is a
clearly localized area of interest at the current sheet, was
simulated as a test case.

Results/Examples

0

0.5

1

1.5

2

2.5

3

3.5

0 5 10 15 20 25 30 35 40

R
e
c
o
n
n
e
c
t
e
d
fl
u
x
[
B

0
�
2 i
]

Time [⌦

�1
i]

� � � �

� � �

� � � � �

Bz together with magnetic field lines at time of peak reconnection rate. Reconnected magnetic flux over time.

Future dreams:
‣adaptive fluid-kinetic coupling

 indicator: difference between 5- and 10-moment model

‣multiscale-multiphysics
 MHD -> Hall-MHD (Ohms law) -> 5 moment 2 fluid -> kinetic

Thank You

