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Plasmas are ubiquitous in astrophysics

More than 99 % of the matter in the known universe exists as plasma.
Examples include stars (interior/ coronas), nebulae, interstellar particles, 

interplanetary medium...

Distant astrophysics allows only to investigate indirect consequences of the plasma 
phenomena (radiations propagating outside), but

space environment, with in-situ measurements, provides the best natural laboratory 
for Plasma Physics
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Neutral gas vs plasma

A plasma is a gas (or a liquid) of charged particles.
I will focus here on gases (excludes the star and planet interiors)

Our common intuition about gases comes from our terrestrial atmosphere,
i.e. from the neutral gases that exist in a thin layer (~100 km) around our planet.  

In atmospheres, the thermal particle energy is smaller than the ionization limit: the 
"normal" state is the neutral state.

To obtain plasmas, external energy must be supplied to ionize the gas,
at least partially (cf. ionosphere or lab experiments).

  
In other places, the reversed condition is valid: the "normal" state is

the (fully ionized) plasma state (cf. solar wind).
No need of any additional ionization process in this case.   

!
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Collisionless plasmas are ubiquitous too
(but less)

In space plasmas:
Atmospheres are neutral and ionospheres are partially ionized, but full ionization 

beyond

Solar wind, planetary magnetospheres, etc. are fully ionized and they are
mostly "collisionless"

mean free path = a fraction of AU in Solar Wind.

Collisionless conditions are quite frequent also in astrophysics, 
in all "hot plasmas", whenever they are sufficiently dilute.

Cf. for instance, collisionless shocks for supernovae, etc.   
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The plasma loop
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Collisionality:
consequences for modeling? 

In collisional media:
fluid theories (ρ, u, P) are robust and well established

f(v) = Maxwellian
corresponding to the notion of local thermodynamical equilibrium

all the thermodynamical arguments relevant (e.g. entropy).   

In collisionless media:
Fluid models like MHD have no universal validity in this case.

Kinetic description of f(v) a priori preferable but generally not possible.
Fortunately, fluid models can still be used in many circumstances, with 

some precautions (cf. closure equation).   
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Non collisionality in space physics:
a Cluster example

Non isotropic (but gyrotropic)
Non Maxwellian

Electron distribution
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The form of f(v) is not always important
two examples

• In these two examples, the fluid result is identical -or close- to the kinetic one

• Langmuir wave 

• Density and temperature distribution  in a quasi-stationary flux tube

Exact relations between
the macroscopic parameters,

whatever f(v)
if ω/ k// << Vthe

Independent of f(v)
everywhere vφ >> Vthe
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Fluid/ kinetic

For an initial value problem
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Outline1:
Kinetic and fluid models: basics

• Notion of collision in a plasma
Collective and collision electric field
The effect of the collision field on a particle
Mean free path and other collisional effects

• Kinetic and fluid descriptions: variables
Macroscopic variables and distribution function
Fluid description is the most affordable
Behind the fluid description: Toy models

• Kinetic and fluid models: equations
Moment equations
Closure equations
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Outline2:
Solar/stellar wind expansion:

•  Necessity of a wind:
the fluid point of view

the particle point of view

•  Fluid: the Parker model

•  Kinetic: the exospheric models
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Outline3:
Collisionless damping

• A simple example: the Langmuir wave
• Fluid treatment 
Closure equation?

• Kinetic treatment
An infinity of modes with exotic distribution functions
Notion of kinetic mode: Landau damping
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Outline4:
Magnetized plasmas

• MHD
The MHD system
Approximations
Beyond MHD

• Ohm’s law
Freezing
Reconnection collisional/ collisionless

13



Notion of collision in a plasma
1. Collective and collision electric field

Electric field Ex along the x axis

x

Variations at all scales with a 
decreasing spectrum.

•Strong short peaks due to one single 
particle.

• Weak large scale variations due to 
many distant particles.

Average value on a large sliding 
window = collective field

Departure = collision field 

Lauching a test particle in this field  deviations
The weak large scale variations are much more efficient than the short peaks 14



Notion of collision in a plasma
2. The effect of the collision field on a particle 

No sharp bend of the trajectory.
The smooth deviation much depends on 

the test-particle speed. 
Only the extremely slow particles would 

be sensitive to the high electric peaks and 
give strong "binary" collisions

(diffusive centers are supposed steady)

One never obtains the classical image of 
hard spheres colliding which prevails in 

neutral collisions
(because of the long range electrostatic  

interaction in r -2) 
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Notion of collision in a plasma
3. Mean free path and other characteristic lengths for collisions 

d0 = Landau length = "electrostatic dimension" of the particle  = 
distance for strong collision

d = n -1/3 = interparticle distance
Λ = λD/ d0 = huge ratio (ln Λ = Coulomb logarithm ≈ 20 in SW) 

Proportional to d0
-2  to v -4

All ratios 
determined by 

one single 
parameter Λ 
(very large)
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Notion of collision in a plasma
3. Role of the Debye length 

with Λ = λD/ d0

λD = Debye length

Mean free path = length to get δφ = π/2 
Calculation of the mean free path : δφ2 = ∑ δφi

2

Deviation due to the sum of all the individual deviations,
supposed random and steady,

integral a priori up to infinite distances.

As mentioned, large distance dominant in the sum,
but calculation becomes invalid at too large scales because of collective effects.

Reaction to mean charge densities  waves 
upper limit for the hypotheses "random and steady"

 only the particles at r < λD can actually diffuse the test-particle trajectory       
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The notion of Debye screening is due to waves. It cannot be viewed as a
spatial and stationary effect  

If one diffusing ion was 
"screened" by electrons 
in a stationary manner, 
all the other ions could 
not be screened at the 

same time by the same 
electrons... 
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Other collisional effects

Short peaks in the electric field , even strong, are not 
efficient for deviating a particle.

But other phenomena can be less demanding for the 
duration of the interaction than the momentum exchange.

It is the case for the charge exchange
(cf. heliosphere, collisionless, but with charge exchange). 

The difference between the two phenomena cannot be 
understood if keeping in mind the classical image of collision 

with hard speres
 

0

+

+

0

19



What is called collisionless?

• It is when Kn = λmfp/ L  >> 1, L being the characteristic 
scale of the phenomena under study. 

• Examples in space physics:
The magnetopause phenomena are unambiguously collisionless since d ≈ 

103 km while λmfp ≈ 107 km 

The variations of temperature at large scale in the solar wind expansion 
are neither collisionless nor strongly collisional (for e-e collisions):

20



A measurable effect of collisions in the 
solar wind

The heart of the proton distribution is 
isotropized by collisions, but not the 

higher energies (at 1 AU)
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Less than one collision? 

• On a distance of λmfp / 10, one has 0.1 collision 

• In a hard sphere view, it means that, in general, a 
particle has no collision at all on this distance.

• In a plasma, it means that its trajectory has been 
deviated of π/20. This is not always negligible. 
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Outline1:
Kinetic and fluid models: basics

• Notion of collision in a plasma
Collective and collision electric field
The effect of the collision field on a particle
Mean free path and other collisional effects

• Kinetic and fluid descriptions: variables
Macroscopic variables and distribution function
Fluid description is the most affordable
Behind the fluid description: Toy models

• Kinetic and fluid models: equations
Moment equations
Closure equation
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Kinetic and fluid variables

• For each population (at least one for each species, electron and 

ions), the plasma is described by the fields E and B, and 
by:

• Kinetic: distribution function f(v)
• Fluid: density, fluid velocity, pressure, ρ, u, P

possibly other macroscopic variables as Q (heat flux), etc...
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The fluid variables are just the moments 
of the kinetic ones

etc.
Except order 1, all moments are centered (δv = v - u). 

The mass density is a scalar, the fluid velocity is a vector, the 
pressure P is a 2d order tensor, Q is a third order tensor, etc.

and ρ = nm
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Collisions bring approximate isotropy, 
which simplifies the tensors

Full thermodynamical equilibrium: 
Homogeneous medium or Kn <<< 1

P = P I     with P = nT (definition of the temperature here) 
Q =0

R = R I      with R/m = 3 (P/m)2 

Local thermodynamical equilibrium and transport coefficients: 
Kn << 1

P = P I - σ       with σ = f(∇u)     
Q = q              with q = f(∇T)

...
In collisionless plasmas, isotropy is never guaranteed, but gyrotropy 

is generally insured at large scale. 
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Fluid description is the most affordable

• Describing the solar wind/ magnetosphere interaction:
"The flow velocity is unperturbed until it reaches a shock where it is deviated, 

and where the pressure and the temperature increase sharply"
One rarely describes the behavior of the distribution function (neither the 

individual particle trajectories): only the moments are generally interesting. 

27



Behind the fluid description:
Toy models

No collisions,
no interaction

The evolutions of n, u and P respect all the fluid equations,
except possibly one (closure equation) 
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Results of an hybrid simulation code
Same remarks as above
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Outline1:
Kinetic and fluid models: basics

• Notion of collision in a plasma
Collective and collision electric field
The effect of the collision field on a particle
Mean free path and other collisional effects

• Kinetic and fluid descriptions: variables
Macroscopic variables and distribution function
Fluid description is the most affordable
Behind the fluid description: Toy models

• Kinetic and fluid models: equations
Moment equations
Closure equations
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From kinetic to fluid
(general: with or without collisions)

* δvp and integrated 

( if specifying F = q [E + vxB] )

31



Moment system

•  The system includes all the well-known conservation laws (continuity, etc.)
•  Each equation is valid as generally as the original kinetic equation

(if kept under this complete tensorial form, without symmetry assumption)
•  The tensorial complexity increases with the order of the moments
•  ∂tMp is related to ∇.Mp+1  cannot be closed at a finite order without 

approximation

 Necessity of a closure equation (not universal)32



Closure equations

•  When strongly collisional (Kn << 1), Chapman Enskog expansion in Kn 
 closure at order 3: 

•  q = -κ ∇T   (q = vector: qi = 1/2 Qijj = sufficient in this quasi-isotropic case)

•  Not valid in collisionless or weakly collisional media. See solar corona heating: 
even the sign is wrong: the source of heat is below and the temperature increases 

upward. 

•  In collisionless media (Kn >> 1), closure equations can be found, with limited 
ranges of validity. All come from symmetry properties of the distribution functions.
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Adiabatic closure

•  In a magnetized plasma, the most common closure is the adiabatic closure
Q = 0.

It is valid for fast propagating structures (ω/k// >> Vth).
It means that, if f(v) is even, it remains even in these conditions. 

•  Consequences for the pressure: CGL laws, from (Chew, Goldberger, Law, 1956):

In isotropic conditions, the second law writes:
Dt (p3/ρ5) = 0 or Dt (p/ρ5/3) =0, as well known. 
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Closure for quasi stationary conditions

Opposite conditions with respect to the adiabatic ones:
 ω/k// << Vth

Also leads to simple relations for the variations of the parallel and perpendicular 
pressures (along B):

In the isotropic case, it simply leads to T = cst  (isothermal)
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Other closures

Specific closures can be calculated, which intend to mimic correctly some 
phenomena that are known either experimentally or theoretically:

1. Simple laws with a few free parameters to be chosen in an empirical way. It 
is the case in particular for the popular "polytropic" laws:

Dt (P///ργ//) = 0
Dt (P⊥/ργ⊥) = 0

The indices γ// and γ⊥ ar the free parameters to be chosen
(γ//=γ⊥ =5/3  isotropic+adiabatic)

2. More sophisticated laws elaborated to mimic phenomena that can be 
calculated completely in the kinetic formalism. It is the case of the Landau-
fluid models, which can reproduce the Landau effect (collisionless damping) 

in the linear -or weakly nonlinear- limit (see Thierry Passot's talk). 
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Outline2:
Solar/stellar wind expansion:

•  Necessity of a wind:
the fluid point of view

the particle point of view

•  Fluid: the Parker model

•  Kinetic: the exospheric models
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Necessity of a wind : Fluid

rR

p

po

Non null pressure at infinity
Impossible to confine the atmosphere in vacuum

(gravity non sufficient) 

Why not a hydrostatic equilibrium?  1. Isothermal
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Fluid: Why not a hydrostatic equilibrium? 
2. Polytropic

Pressure at infinity

 Possible confinement if γ  > 1 and Vtho small enough

Opposite conclusion  Crucial importance of the closure
in any fluid modeling

  Can be negative if: ⇔

Why not a hydrostatic equilibrium?  2. Polytropic (with γ ≠1)
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Necessity of a wind:
individual particle argument

 Escape for

Always particles, at least in the tail of the distribution, with v0 > Vl0

 wind.

Without collision, each particle follows:

Vl0  is the "escape velocity" at the lower boundary of the model
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Fluid: The Parker model

Solutions with non null velocities  (isothermal but not hydrostatic)  

Stable solution = transonic
Pressure tends to zero. Velocity increases

Model very simple and rustic
Gives a velocity at 1 UA of 400 km/s instead of 800 km/s for the fast wind 

NB. Accretion = reverse problem (same equations) 
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Kinetic: The exospheric models

Gives the variations of n, u, P with altitude.
Should be closer to reality.

Drawbacks:

•  Initial distribution unknown (Maxwellian, 
kappa,.. ?)

• Final velocity depends on such free parameters 
(difficult to obtain 800 km/s anyway)

•  Electric field  trapped particles difficult to 
take into account

•  No such cut off observed
•   
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Modeling of the solar wind expansion: 
moral 

Simple fluid isothermal model (Parker)  approximate results quite correct
A priori difficult to do better with fluid models (as long as arbitrary closures)

Kinetic methods seem to be the only way to better capture the physics.
But many unknown parameters in the kinetic treatment, which still make it not 

very robust nowadays.  
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Outline3:
Collisionless damping

• A simple example: the Langmuir wave
• Fluid treatment 
Closure equation?

• Kinetic treatment
An infinity of modes with exotic distribution functions
Notion of kinetic mode: Landau damping
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A simple example : the Langmuir wave

Langmuir wave =1-D electrostatic electron oscillations
High frequency  : only the electrons move

they move under the effect of the electric field
Their density creates the electric field  
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Fluid treatment

Adding an adiabatic closure equation
leads to the dispersion equation of the 

Langmuir mode:

with 

The 3 above equations are "exact" from a kinetic point of view.
If the kinetic dispersion departs from this one,

it is because the adiabatic closure becomes invalid.   

linear .+ Fourier 
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Kinetic treatment

Instead of starting from the fluid equations  
(which demands a closure),

let us start with the initial Vlasov equation

Adding the Gauss equation as before and performing the same work 
(linearization, Fourierization) leads to: 

 ∂tf + v ∂ xf - e/m E f0' =0

with

This is not directly a dispersion relation since the LHS contains f1 and the 
RHS contains n1, which is the integral of f1. 
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Preliminary remark:
number of solutions expected

Fluid treatment:
 two first order differential equations /t  two modes

Similarly, compressible gas dynamics:
two first order differential equations /t   two modes

MHD:
six first order differential equations /t  six modes,

etc... 

Vlasov:
one first order differential equations /t for each value of v  infinite number of 

modes expected.

Is there one or two mode(s) among this infinity which can be called Langmuir?
Close to the fluid one? 
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Kinetic treatment: resolution 

Where a1 is proportional to n1 i.e. to the integral of f1.

To obtain an equation in n1, can we write f1 =                and integrate?   

No.
Because of the resonant denominator, n1 cannot be calculated in this way.

The corresponding integral is not defined.
In the theory of distributions, the value of f1 is:

    

The two terms correspond, in Fourier space, to the usual result
for a first order differential equation:

the general solution is a particular one + the general solution with RHS = 0 
    49



Kinetic treatment: resolution2 

a1 = α ∫ f1 dv

vϕ can be chosen arbitrarily thanks to b1, which is itself arbitrary.
 Infinity of solutions as expected

But all these solutions are exotic since they involve singular distributions:
the Dirac part and the principal value part.

Is it possible to build a linear superposition of these modes which would involve a 
regular distribution function?    
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Kinetic treatment: resolution3 

One can build density perturbations which are wave packets decreasing from their 
initial value, with any damping rate γ.

The corresponding distribution functions have the value, at time t = 0:
 

 

n1

t

Dp is a real integral corresponding to the principal value part. 
All of them have a complex pole in v = vϕ except one: 
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Comments on the kinetic Landau solution

•  Dp is a real function of vϕ whose expansion for vϕ >> Vthe corresponds exactly to 
the adiabatic fluid solution

• The second term comes from the Dirac part and provides the Landau damping 
• The damping depends on f0 via its derivative in v = vϕ
•  The damping is small whenever f0' is small, i.e. generally when vϕ is in the far tail 

of the distribution function
•  A distribution with a complex pole is not singular for v real, but it corresponds to a 
special signature, which cannot exist as long as the system is not specially prepared 

for that (cf. simulation).  

 

The only solution with no pole is called the kinetic mode.
It has an imaginary part: Landau damping 
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Phase space: δf (x, v)

Landau
γ = γL

Non Landau
γ = prescribed (pole)

vϕvϕ
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What is specific in the kinetic mode
calculation?

• Why are these mathematical delicate treatments necessary for kinetic 
modes and not for fluid ones or for any usual mechanical problem?

• It is just because of the existence of an infinity of resonances (any 
value of vϕ is resonant with one velocity v = vϕ).  

• Exciting one single monochromatic mode would demand an infinite 
accuracy in the initialization. The kinetic mode retained is the only 
regular, which does not demand such an accuracy. It can be described 
by a « coarse-grained » distribution function. (This incomplete 
description can be quantified by an « entropy », which increases in 
association to the damping, while the complete distribution function is 
perfectly reversible)

Infinity of oscillators


Infinity of fingers 
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Outline4:
Magnetized plasmas

• MHD
The MHD system
Approximations
Beyond MHD

• Ohm’s law
Freezing
Reconnection collisional/ collisionless
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Magnetized plasmas

• They are ubiquitous…
(once again)
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MHD system

Ideal MHD:
δE = 0 (ideal Ohm’s law)

q = 0 (adiabatic)
δF = 0 (only Laplace force)

+δE

Dissipative MHD:
δE = η j (resistive Ohm’s law)

q = -κ ∇T (thermal conductivity)

δF = ν ∇2u (viscosity)    

+δF
with
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Approximations to get the MHD system

• Mono-fluid (no distinction ion-electron)
 ρ ≈ Σρi, P ≈ Σ Pi +Pe.Valid if one single ion population or if all ion populations have 

the same velocity
• Scalar pressure P. Special condition of isotropy. At large scale, gyrotropy is general, 

but one should still distinguish T// and T⊥ in a collisionless plasma.

• Closure equation supposed on the global q. Generally not justified except if q is 
carried by only one population or if all populations are adiabatic qs = 0. 

• No ρe E in the force terms: quasi-neutrality. Valid whenever

• No ∂t E (displacement current) in Faraday eq. Valid whenever ω/k << c

• Ohm’s law simplified.  Should be:
Valid at large scale (with respect to di and RLi)
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Ohm’s law

E = - uxB (ideal) instead of:
with ue = u – j/ne  and  j = ∇ x B/µ0 

Difference between ue and u  Hall effect.

Negligible for kdi << 1 (ion inertial length)  

Term  in dt ue: electron inertia

Negligible for kde << 1 (electron inertial length)  

Term  in ∇.Pe: electron pressure

Negligible for kRLe << (me/mi )1/2  (RLe = electron Larmor radius)  

Term  in ηj: resistivity

Negligible for ω << ωη (resistive time-1)  
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Freezing/ defreezing/ reconnection

• Ideal Ohm’s law  E// = 0  ideal field line motion at 

ExB/ B2 
Each field line keeps its identity in this motion  no change 

of magnetic connections
May lead to the formation of thin layers when two magnetized 

plasmas of different origins meet

Solar wind
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Freezing/ defreezing/ reconnection

• If layers thin enough: large scales conditions of validity for MHD violated 
 possibility of reconnection 

Solar wind
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Consequences of reconnection

• Change of magnetic connections  penetration through the 
boundaries and possible changes of magnetic topology

• Acceleration of the flow from u1 = ε VA1 to u2 ≈ VA1

• Heating : flux of thermal energy ≈ flux of bulk kinetic energy

• Acceleration of energetic particles: not with simple geometries
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Zooming on the X line
(if 2-D)

Sweet Parker : too slow
(small exhaust)

Petsheck : fast
but non stationary

Collisionless : fast
and stationary

(2 small scales in the physics :
i and e)
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Remark : the apparent "breaking" of a 
field line

• It is anedotic and not to be considered as a definition of 
reconnection. As soon as no strict null point (guide 
field), nothing breaks during reconnection.

64



3-D reconnection

Solar physics : 
encounter of 2 coronal loops  intrinsically 3-D geometries.

Collisionless physics less developed in this case
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Triggering of reconnection

• Can be due to an instability of the current layers (tearing 
mode). In resistive MHD : 

• Can be large even if η is small if δy is sufficiently small, 
for instance if it depends on η as η 1/2 (SP)

• Larger in Hall-MHD or in any model with collisionless 
terms in Ohm's law 

• Can be a secondary instability
• of KH or RT (thinning layers)
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Conclusion

After all these examples of the kinetic/ fluid duality, brief 
conclusions concerning MHD :

3 kinds of approximations and 3 kinds of remedies :

1. Ideal/ resistive Ohm's law not sufficient (small scales): 
not a serious problem. Use a generalized Ohm's law.

2. Mono fluid hypothesis not justified (high frequency): 
not too serious either. Use bi-fluid theory.

3. Problem with the closure equation (ω/k = Vth): more 
difficult. If specific full kinetic treatment untractable, 
see Landau fluid models (cf. Thierry Passot).
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Laboratoire de Physique des Plasmas

The end


