ÉCOLE DE PHYSIQUE DES HOUCHES

STABILITYOFFLUIDFLOWS

Carlo COSSU

Institut de Mécanique des Fluides Toulouse CNRS – Université de Toulouse, also at Département de Mécanique, École Polytechinique

http://www.imft.fr/Carlo-Cossu/ http://www.enseignement.polytechnique.fr/profs/mecanique/Carlo.Cossu/

Le futur de l'astrophysique des plasmas 25/2-8/3/2013

WELCOME!

LECTURE CONTENTS:

- * Introduction to hydrodynamic stability
- * Linear stability: method of normal modes
- * Transient energy growth in stable systems

Some examples/results given (only) for hydrodynamic instabilities in incompressible shear flows

INTRODUCTION

An example of transition to turbulence

turbulent flow: multi-scale, non-periodic, unpredictable **Transition to turbulence** instabilities develop: the flow loses symmetry & is unsteady laminar flow: maximum symmetry predictable, usually steady

Laminar flow solution: same symmetries of problem Why not often observed?

Why observed solutions are less symmetric than the problem data? (e.g. unsteady if the problem is steady or non axi-sym etc.)

Can we predict when steadiness and symmetry are lost and why?

The hydrodynamic stability main idea

Solutions can be observed only if they are stable!

AN EXAMPLE: KELVIN-HELMHOLTZ INSTABILITY

Mechanism: induced forces amplify perturbations

basic flow:

counter streaming flows with opposite velocities U here the interface has been perturbed sinusoidally

In first approximation: h u = const. (mass conservation) p+pu²/2=const (Bernoulli)

The tilting tank experiment

Thorpe J. Fluid Mech. 1968

two immiscible fluids in a tilting tank. lighter: transparent, heavier: coloured

tilted tank: lighter fluid pushed up, heavier down → counter-streaming flows for finite time

increasing time

Billow clouds near Denver, Colorado, (picture by Paul E. Branstine. meteorological details, in Colson 1954) source: Drazin 2001

Instability active also in turbulent flows

Brown & Roshko, J. Fluid Mech. 1974

Instability of laminar flow

Transitional flow

Large scale coherent structures in turbulent flow

DEFINITIONS OF STABILITY

Evolution equations, basic flow, perturbations parameter(s) state,vector evolution $d\phi/dt = \mathbf{f}(\phi, \dot{r})$ equation l perturbation basic state / perturbation basic state decomposition $d\mathbf{\Phi}/dt = \mathbf{f}(\mathbf{\Phi}, r)$

perturbations evolution equation $d\phi'/dt = \mathbf{f}(\mathbf{\Phi} + \phi') - \mathbf{f}(\mathbf{\Phi})$

obtained replacing the decomposition in the evolution eqn. & then removing the basic state evolution eqn.

Norm of the perturbations

need to define a scalar "perturbation amplitude" e.g.

$$\|\mathbf{u}'\|(t) = \left[\iiint_{\mathcal{V}} (\mathbf{u}' \cdot \mathbf{u}') \, d\mathcal{V}\right]^{1/2} \text{ energy}$$

$$\|\mathbf{u}'\|(t) = \sup_{\mathbf{x} \in \mathcal{V}} |\mathbf{u}'(\mathbf{x}; t)| \quad \max_{\mathbf{x} \in \mathcal{V}} absolute value$$

other definitions OK as long as they are norms:

 $\begin{aligned} \|u\| \ge 0; \|u\| &= 0 \Leftrightarrow u = 0\\ \|\alpha u\| &= |\alpha| \|u\|, \forall \alpha \in C\\ \|u + v\| \le \|u\| + \|v\| \end{aligned}$

Stability definitions

Lyapunov

Stability (in the sense of Lyapunov): A base solution Φ is said to be *stable* if $\forall \varepsilon > 0$, it exists a $\delta(\varepsilon) > 0$ such that if $\|\phi'\|(t = 0) < \delta$ then $\|\phi'\|(t) < \varepsilon, \forall t \ge 0$.

Asymptotic (standard definition used in the following)

Asymptotic stability: A base solution Φ is said to be *asymptotically stable* if it is stable (in the sense of Lyapunov) and if furthermore $\lim_{t\to\infty} \|\phi'\| = 0$.

Unconditional

Unconditional (global) stability: A base solution Φ is said to be *unconditionally stable* if it is stable and furthermore $\forall \|\phi'\|(t=0) \Rightarrow \lim_{t\to\infty} \|\phi'\| = 0$.

Remarks: * single initial condition is sufficient to prove instability of the base flow * to prove stability one has to prove it for ALL possible initial conditions

Dependence on the control parameter

stability properties depends on the control parameter r

happen that r_c is infinite or that $r_a = r_c$

Linearized equations

$$\frac{d\phi'/dt}{dt} = \mathbf{f}(\Phi + \phi') - \mathbf{f}(\Phi) \quad \text{start from perturbation eqns}$$

$$\mathbf{f}(\Phi + \phi') = \mathbf{f}(\Phi) + (d\mathbf{f}/d\phi)(\Phi)\phi' + O(||\phi'||^2)$$
Taylor expansion of r.h.s. near basic flow \rightarrow
replace & neglect higher order terms
$$\frac{d\phi'/dt}{dt} = \mathbf{L}\phi' \quad \text{linearized evolution}$$
equations
$$\mathbf{L}(\Phi, r) = (d\mathbf{f}/d\phi)(\Phi, r) \quad \text{linearized (tangent)}$$
operator (Jacobian)

Linear stability: A base solution Φ is said to be *linearly stable* if the solutions of the evolution equations linearized about Φ are stable.

Linear stability analysis

linear problem → decomposition of generic solution on basis of `fundamental' solutions

$$\phi'(t) = \sum_{j \neq j} c_j \phi'^{(j)}(t)$$

constants depend
on the initial condition

complete set of linearly independent solutions

linear instability if at least one fundamental solution is unstable linear stability if ALL fundamental solutions are stable **new problem:** compute the basis of linearly independent solutions and analyze their stability

general method available for steady basic flows (steady L): **method of normal modes** THE METHOD OF NORMAL MODES: LINEAR SYSTEMS OF ODES

System of autonomous ODEs

Consider a system of N 1st-order ordinary differential equations with constant coefficients:

 $d\phi'/dt = \mathbf{L}\phi'$ state: Linear operator: N-dimensional NxN matrix vector L does not depend on t!

Eigenvalues & eigenvectors

$$\mathbf{L}\boldsymbol{\psi} = s\boldsymbol{\psi}$$

eigenvector (direction left unchanged by L)

eigenvalue (scalar)

Homogeneous system: non-trivial solutions if

$$det(\mathbf{L} - s \mathbf{I}) = \mathbf{0}$$

characteristic eqn \rightarrow algebraic
N-th order \rightarrow N roots for $s \rightarrow$
N eigenvalue-eigenvector pairs

$$\mathbf{L}\,\boldsymbol{\psi}^{(j)} = s^{(j)}\,\boldsymbol{\psi}^{(j)}$$

Modal decomposition for ODEs

assume N distinct eigenvalues \rightarrow N linearly independent eigenvectors = eigenvector basis \rightarrow express ϕ' in the modal basis:

$$\phi'(t) = \sum_{j=1}^{N} \psi^{(j)}q_j(t) \qquad \text{modal amplitudes } q$$

$$\sum_{j=1}^{N} \psi^{(j)}dq_j/dt = \sum_{j=1}^{N} L\psi^{(j)}q_j \qquad \text{N independent}$$

$$\sum_{j=1}^{N} \psi^{(j)}dq_j/dt = \sum_{j=1}^{N} s^{(j)}\psi^{(j)}q_j \qquad \text{N independent}$$

$$\sum_{j=1}^{N} \psi^{(j)}dq_j/dt = \sum_{j=1}^{N} s^{(j)}\psi^{(j)}q_j \qquad \text{modal amplitude}$$

$$\sum_{j=1}^{N} (dq_j/dt - s^{(j)}q_j)\psi^{(j)} \longrightarrow dq_j/dt = s^{(j)}q$$

Modal solution to the IVP: stability

Linear instability if at least one eigenvalue with s_r>0 (unbounded growth of a fundamental solution) Linear stability if ALL eigenvalues have s_r<0

Linear stability analysis: given L compute its eigenvalues and check their real parts

THE METHOD OF NORMAL MODES FOR LINEAR PDEs: AN EXAMPLE

The case of a `parallel' unconfined system

1D reaction-diffusion eqn BC: solution bounded as |x| → ∝

 $L = rI + d^2/dx^2 \rightarrow \rho px$ functions for which Ly=sy BUT they remain bounded only if p_=0 eigenfunctions = Fourier modes of $\psi(k,x) = e^{ikx}$ (real) wavenumber $k \rightarrow$ uncountable infinity of modes (derives from translational invariance of the system) eigenvalues found replacing the eigenfunction in in $L\psi = s\psi$ dispersion relation relating the complex temporal eigenvalue to the wavenumber k and the control parameter r

Modal decomposition for unconfined parallel flows

$$\phi'(x,t) = \int_{-\infty}^{\infty} q(k,t)\psi(k,x)dk = \int_{-\infty}^{\infty} q(k,t)e^{ikx}dk$$

modal decomposition:
sum \rightarrow integral on index k inverse Fourier transform

modal decomposition \rightarrow usual procedure \rightarrow usual solution: -

$$q_j(t) = e^{t s^{(j)}} q_j(0)$$

Linear instability: if at least one k exists for which s_r(k)>0 Linear stability: if s_r(k)<0 for all k

Typical stability plots: growth rate

growth rate vs. wavenumber for selected values of r maximum growth rate $s_{r,max}$ unstable most amplified k: ,k_{max} waveband from dispersion for r=1 relation: $s_r = r - k^2$ 2 first growth rate 0 instability $\mathbf{S}_{\mathbf{r}}$ -1 appears at -2 r_c,k_c r=-1-3 r=0r= 1 -4 -2 2 -3 0 3 -1 1

wavenumber k

Typical stability plots: neutral curve

neutral curve s_r=0: separates regions with positive growth rate from regions of negative growth rate in the r-k plane

defined as min _k[r_{neut}(k)]

MODAL STABILITY OF PARALLEL SHEAR FLOWS

Parallel incompressible shear flows

Will consider parallel basic flows $U = \{U(y), 0, 0\}$

Linearized Navier-Stokes eqns.

linearized Navier-Stokes equations

$$\frac{\partial \mathbf{u}'}{\partial t} + (\nabla \mathbf{U}) \mathbf{u}' + (\nabla \mathbf{u}') (\mathbf{U} + \mathbf{u}') = -\nabla p' + \frac{1}{\text{Re}} \nabla^2 \mathbf{u}'$$

usually transformed into $v-\eta$ form (exploiting div u'=0):

wall-normal velocity v $\nabla^{2} \frac{\partial v}{\partial t} = -\left(U\nabla^{2} - \frac{d^{2}U}{dy^{2}}\right)\frac{\partial v}{\partial x} + \frac{1}{\text{Re}}\nabla^{4}v$ $\frac{\partial \eta}{\partial t} = -U\frac{\partial \eta}{\partial x} + \frac{1}{\text{Re}}\nabla^{2}\eta - \frac{dU}{dy}\frac{\partial v}{\partial z}$

Orr-Sommerfeld-Squire system

consider Fourier modes in x-z (unconfined homogeneous direction)s;

$$\widehat{v}(y,t;\alpha,\beta)e^{i(\alpha x+\beta z)}, \widehat{\eta}(y,t;\alpha,\beta)e^{i(\alpha x+\beta z)}$$

D := d/dy replace and find the Orr-Sommerfeld-Squire system $\begin{bmatrix} D^2 - k^2 & 0 \\ 0 & 1 \end{bmatrix} \frac{\partial}{\partial t} \left\{ \begin{array}{c} \hat{v} \\ \hat{\omega_y} \end{array} \right\} = \begin{bmatrix} \mathcal{L}_{OS} & 0 \\ -i\beta U' & \mathcal{L}_{SQ} \end{bmatrix} \left\{ \begin{array}{c} \hat{v} \\ \hat{\omega_y} \end{array} \right\}$

Orr-Sommerfeld 2 operator

Squire operator \mathcal{L}

$$\mathcal{L}_{OS} = -i\alpha \left[U(\mathcal{D}^2 - k^2) - \frac{d^2 U}{dy^2} \right] + \frac{1}{\text{Re}} (\mathcal{D}^2 - k^2)^2$$

$$\mathcal{L}_{SQ} = -i\alpha U + \frac{1}{\text{Re}} (\mathcal{D}^2 - k^2),$$

eigenvalues - eigenfunctions found numerically solving the problem in the y direction

Fundamental results for parallel shear flows U(y)

Squire (viscous) theorem: The critical mode, becoming unstable at the lowest Reynolds number, is two-dimensional

Squire (inviscid) theorem: In the inviscid case, given an unstable 3D mode, a 2D more unstable mode can always be found

Confirmed by experimental observations → consider 2D perturbations in modal stability analyses

Rayleigh inflection point theorem: A necessary condition for U(y) of class at least C^2 to be unstable to 2D inviscid perturbations satisfying v(yb) = 0, v(ya) = 0 is that U(y) admits at least one inflection point in] yb , ya [

Inviscid instabilities only for inflectional profiles!

Typical neutral curves

typical free shear flows (no walls) \rightarrow inviscid instabilities allowed by inflectional profiles \rightarrow instability develops on short (shear) time scales

typical wall-bounded flows \rightarrow no inflection **points** \rightarrow may have viscous instabilities (Tollmien Schlichting) vanishing as $Re \rightarrow \infty$ develop on long (viscous time scales)

TRANSITION TO TURBULENCE IN SHEAR FLOWS

Transition to turbulence in mixing layers

Side view (xy)

Transition in a spatial mixing layer (Brown & Roshko J. Flud Mech. 1974)

Top view (xz)

2D fronts in transition

3D structures appear later & important in turbulent flow

Similar trends observed for modal instabilities of jets, wakes,

`Classical' transition scenario in boundary layers

figure: from DNS of Schlatter, KTH

HOWEVER...

some flows do not follow this scenario:

Plane Couette & circular pipe flow: linearly stable for all Re but become turbulent at finite Re

Plane Poiseuille flow: transition almost always observed for Re well below Re_c

Bypass transition in boundary layers

Transition for Re < Re_c No evidence of 2D TS waves → subcritical

Purely nonlinear mechanism?

Scenario observed in noisy environments Structures observed before transition: streaks Streaks: uniform in z / ~ periodic in x TS waves: ~periodic in x / uniform in z

Matsubara & Alfredsson,2001

in the 1990"-2000': a lot about bypass transition understood reconsidering classical linear stability analysis

ENERGY AMPLIFICATION IN LINEARLY STABLE SYSTEMS

Standard modal stability analysis:

- * Compute the spectrum of L
- * Linear asymptotic stability if spectrum is in the stable complex half-plane

Results apply when $t \rightarrow \infty$ What happens at finite times?

Can $||\phi'||^2$ become large during transients?

Not forbidden by asymptotic stability... but does energy actually grow? How much?

Find worst case disturbances \rightarrow optimal growth

Optimal energy growth in the IVP

* to each t corresponds a different G & optimal IC
* G(t): envelope of all energy gain curves

No energy growth if L is stable & normal

Simple 2D case with real eigenvalues-eigenvectors: $\phi'(t) = q_1(0) \Psi^{(1)} \exp(s^{(1)}t) + q_2(0) \Psi^{(2)} \exp(s^{(2)}t)$ Assume stable eigenvalues with $s^{(2)}$ the most stable and orthogonal eigenvectors $\Psi^{(j)}$. Choose $q_1(0) = -1$, $q_2(0) = 1 \rightarrow \phi'(0) = \Psi^{(2)} - \Psi^{(1)}$

Non-normality & transient growth

If stable eigenvalues & orthogonal eigenvectors \rightarrow energy growth impossible \rightarrow G=1 What happens if the eigenvectors are non-orthogonal? (i.e. if L is non-normal: LL⁺ \neq L⁺L)

Do-it-yourself: a simple 2x2 example

non normal matrix ~ Orr-Sommerfeld--Squire system

$$\mathbf{L} = \begin{bmatrix} -1/\text{Re} & 0\\ 1 & -3/\text{Re} \end{bmatrix}$$

eigenvalues: -1/Re and -3/Re → linearly stable eigenvectors: non-orthogonal with angle decreasing with Re

 $G(t) = || e^{tL} ||$ computed in a few matlab (or octave!) lines:

```
Reynolds=20
L=[-1/Reynolds, 0 ; 1 , -3/Reynolds]
t=linspace(0,60,60);
for j=1:60
  P=expm(t(j)*L);
  G(j)=(norm(P))^2;
end
plot(t,G);
```

2x2 example: scaling of growth with Re

Optimal amplification in forced responses complex harmonic linear forced system forcing/response (L assumed stable) $= \mathbf{L} \boldsymbol{\phi}' + \mathbf{f}'$ $\mathbf{f'} = \widetilde{\mathbf{f}} e^{\zeta t} \ \boldsymbol{\phi'} = \widetilde{\boldsymbol{\phi}} e^{\zeta t}$ resolvent operator $\mathbf{R}_{\zeta} = (\zeta \mathbf{I} - \mathbf{L})^{-1}$ $(\zeta \mathbf{I} - \mathbf{L})\,\boldsymbol{\phi} = \mathbf{f}$ $\mathbf{b} = \mathbf{R}_{\mathcal{C}}\mathbf{f}$ also called pseudospectrum infinite if ζ =eigenvalue $\|\mathbf{R}_{\zeta} \widetilde{\mathbf{f}}\|^2 := \|\mathbf{R}_{\zeta}\|^2$ $R_{\zeta} = \sup$ $= \sup_{\widetilde{f}}$ **|f||**² ||**f**||2 Ĩ optimal amplification of forcing energy

Response to harmonic forcing

harmonic forcing: $\zeta = i \omega$ resolvent norm computed for 2x2 toy model:

 $\mathbf{L} = \begin{bmatrix} -1/\text{Re} & 0\\ 1 & -3/\text{Re} \end{bmatrix}$

Reynolds=20 L=[-1/Reynolds, 0 ; 1 , -3/Reynolds] freq=linspace(-2,2,40); for j=1:40 Resol=inv(freq(j)*eye(2)-L); R(j)=(norm(Resol))^2; end plot(t,R);

> non-normality → large excitability far from resonance!

reference curve: _response that would be obtained with a normal matrix with same eigenvalues

1e+06

100000

10000

1000

100

10

1

0.1

 $\| R_{i \omega} \|^2$

0

0.5

Re=20

Re=50

Re=50 ref

-0.5

SHEAR FLOWS: STREAKS, VORTICES & SELF-SUSTAINED PROCESSES

Vortices & streaks: the lift-up effect

Tentative explanation: the self-sustained process

lift-up effect: selection of amplified spanwise scales Λ_z (waveband β)

streamwise scales Λ_{x} (waveband a) Streaks Breakdown Streak formation (instability) (linear advection) SSP self-Streamwise x-dependent sustained vortices flow process Vortex regeneration (nonlinear interactions)

selection of unstable

Figure from Hamilton et al. .JFM 1995

Streaks in wall-bounded turbulent flows

4/2

SSP mechanism active at small scale near walls

Kline et al. JFM 1967

SSP active also at large scale (not induced by small scale)

10

15

Hwang & Cossu , Phys. Rev. Lett. 2010.

USING EXCITABILITY TO MANIPULATE THE FLOW

streaks & flow control

stable streaks (below critical amplitude):

- \rightarrow strongly modify the basic flow 2D U(y) \rightarrow 3D U(y,z)
- \rightarrow can be forced with low O(1/Re²) input energy

transient growth efficiently used to modify basic flow

- \rightarrow used to stabilize the flow
- * lift-up effect: O(Re²) actuator energy amplifier
- * kill one instability with another = vaccination

Forcing streaks with roughness elements

Experimental test of flow vaccination

Transition delay with forced streaks

Fransson, Talamelli, Brandt & Cossu, Phys. Rev. Lett. 2006

general idea: use optimal energy amplification to manipulate flows

idea extended to coherent non-normal amplification in turbulent flows

can probably be extended to MHD applications

THANK YOU FOR YOUR ATTENTION

http://www.imft.fr/Carlo-Cossu/ http://www.enseignement.polytechnique.fr/ profs/mecanique/Carlo.Cossu