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What jet physics can we study in the laboratory?

> Hydrodynamic and magneto-hydrodynamic instabilities (including
radiation)

> Turbulent jets propagation and mixing with the ambient medium
> Generation of bow shocks and collision dynamics
> Aspects of magnetic jet formation and collimation



Warning from the past...

Symposium on Gas Dynamics of Cosmic Clouds, Cambridge 1953

A

NGC 1501, a planetary nebula of ap-
parently turbulent character. Estimated
distance 3400 par:

meter 0.9 parsec.

estimated dia-

Flame propagation in a turbulent
stream. Tenfold exposure of flame at
100 microseconds after ignition in a
stream of turbulent gas with velocity

50 meters/second. Diameter 7 millime-
ters.

The similarity of these pictures may not mean a physical similarity of the pro-
cesses involved.
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...to bring together workers from astrophysics and from aerodynamics. ..
...to consider which developments in fluid mechanics may be applicable to astro-
physical problems. ..

> Attendees to the conference included

» B. J. Bok, E. Schatzman, G.K. Batchelor, H. Bondi, F. Hoyle, D.W. Sciama,
G.l. Taylor, L. Mestel, M.J. Seaton, T.G. Cowling, J.M. Burgers, Th. von
Karman, J.H. Oort...E. Fermi & S. Chandrasekhar

First symposium “Problems of Cosmical Aerodynamics” was held in Paris in 1949
“Gas Dynamic of Cosmic Clouds” Cambridge, UK 1953
“Cosmical Gas Dynamics”, Cambridge, USA, 1957

“Cosmical Gas Dynamics: Aerodynamic Phenomena in Stellar Atmospheres”,
Varenna, Italy, 1960

5. The Fifth Symposium on Cosmical Gas Dynamics, Nice, France, 1965

e



The first “astrophysics experiments” on flow dynamics

> A. Kantrowitz (Cornell University) “Experiments on the Radiation and
lonization Produced by Strong Shocks Waves”
> “In the identification of shocks waves and in determining the role of shock

phenomena in astrophysics, laboratory studies of strong shocks waves can
make a contribution”



The first “astrophysics experiments” on flow dynamics

> A. Kantrowitz (Cornell University) “Experiments on the Radiation and
lonization Produced by Strong Shocks Waves”
> “In the identification of shocks waves and in determining the role of shock

phenomena in astrophysics, laboratory studies of strong shocks waves can
make a contribution”

> W. Bostick (Lawrence Livermore) “Possible Hydromagnetic Simulation of
Cosmical Phenomena in the Laboratory”

» Discussed the scaling to astrophysical phenomena



Alfvén scaling...

from his book "“Cosmic Electrodynamics”, 1950
Linear Density Magnetic field
Problem dimension | particlesjem.® gauss Time
Aurora and magnetic Initinl phase of
storms - 3.10° 108 1-10%2 0:5-0-01 storm = 3h. = 10¢
Reduced: 7 = 3. 108 10 3.1012-3.1020} 1.5.10%-3.10° | sec. — 30 usec.
Solar corona . . Lf 10n-100% | 10%-108 20-0-02 Life of coronal
arc = 10°® sec.-—»
10~7 sec.
Reduced: p = 10101 10 1081017 2.101-2.10° [ Solar cyels = 11
years = 3.10%sec.
— 0-03 seec.
‘Chromosphere 10° 10t1-101¢ 20 Solar flare 1,000
Reduced: n = 108 10 10101022 2.10° sec. — 10 pusec.
Prominence  10°
sec. — 1,000 usece.
Planetary system . 101810 | 1032 10-5-10-% 1 year — 3-30 usec.
Reduced : n =~ 1013 101“ 10 10t8-1Q16 ? 107-105
Galaxy . 3.10%22 1 1027 Age of universe =
Reduced: n = 3. 10*‘1 10 3.10% 3.100¢ 100 years = 3.1017

sec, — 100 usec.




Plan of the talk

> Jets in young stars
» Divide jet physics into hydrodynamics and
magneto-hydrodynamics
> High-energy density installation (laser and z-pinch)

> Modelling of astrophysical jets and designing MHD jet
experiments

» Simplifications needed to study magnetic jet formation and
collimation experimentally

> Hydrodynamic jets: propagation and interaction with an ambient
medium



Jets/outflows during low-

Collapsing pre-stellar
dense core

beginning of an outflow

mass star formation

-100k 0 Time in years

Core size few x 10* AU
Mass core ~ few x Mg > M,
Mace ~ 10™* Mg year™!

Jet/Outflow:

> First evidence (?) of an outflow from an adiabatic

core
> Estimated age 200 years

> Slow, few km/s outflow

100k ™

—242892F ()

Declination (J2000)

Loinard et al., MNRAS 2012 -- (ALMA & VLA)

16732"22.80° 22.70° 22.60°

Right Ascension (12000)

(km/s)

Velocity



Jets/outflows during low-mass star formation

Collapsing pre-stellar Class 0

dense core Young Accreting Protostar
beginning of an outflow jet/outflow ~ sub-pc scale
-100k 0 Time in years 100k 1™

Envelope ~ 1000 AU
Mass envelope/disk > M,
Mice ~ 1072 Mg year_l

Jet/Outflow:
> Atomic jet close to the source
> Mostly observed as (swept up) molecular flows

> Slow (v < 10 km/s) cavities
> Fast (v ~ 10 — 100 km/s) jet/bullets

Couleurs : Hp 2.12 pum

Contours blancs : CO J=2-1 V<10 km/s
Contours rouges : Continuum 230 GHz.

5000 UA



Jets/outflows during low-mass star formation

Collapsing pre-stellar Class 0 Class |
dense core Young Accreting Protostar Evolved Accreting Protostar
beginning of an outflow jet/outflow ~ sub-pc scale jet/outflow ~ parsec scale
-100k 0 Time in years 100k 1™

Disk/envelope size few x 100 AU

Mass envelope/disk < M, HH34 (Class I) &
Mace ~ 1076 Mg year™! &
Jet/Outflow: ’
5000 AU
> Atomic jet traced to pc-scales Repur ksl 1997

> Weaker swept up molecular flow

> Clear evidence jet episodicity and variability



Jets/outflows during low-mass star formation

Collapsing pre-stellar Class 0 Class | o Class Il
dense core Young Accreting Protostar Evolved Accreting Protostar %. Classical T Tauri Star
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beginning of an outflow jet/outflow ~ sub-pc scale jet/outflow ~ parsec scale micro-jets < 1000 AU

-100k 0 Time in years 100k 1™

Disk size < 100 AU
Mass disk < M, DG Tau (Class II)
Mace $1077 Mg year™? a

Jet/Outflow:

> Fast, several 100 km/s atomic jets

> Wide-angle, slow Hp
> Rapid (few years) jet variability



Simplifying is the key

hydrodynamic vs. magneto-hydrodynamic jets

TABLE 1
AVERAGE JET PARAMETERS
Distance from Star n® N
(AU) Arcseconds® (em™?) B, (kms™")
34 (Cl 0.02 25%10°  82mG 113
HH34 (Class I) 0.06 15x10° 53 mG 94
02 45x10° 19 mG 62
0.6 88x 10 48 mG 35
22 10° 0.75 mG 16
6.5 12 x 1% 124 uG* 7.8
22 110! 16 uG* 33
65 12¢ 2.4 uG* 15
5000 AU

Reipurth et al. 1997

@ Spatial offset from the star at the distance of the Orion star-forming region
(460 pe).

" Densities for a conical flow with a half opening angle of 5° and a base
width of 10 AU, taking the density to be 10* cm ™3 at 1000 AU.

© The Alfvén speed V, determined from the total density n.

4 Values refer to an average density; densities at large distances are highly
influenced by shocks and rarefaction waves. See text.

Hartigan et al 2007



Simplifying is the key

hydrodynamic vs. magneto-hydrodynamic jets

Formation Propagation
; bow shock
,Eagnetn: fields Pt W shoc
e P
|~
\-b - .
magneto-hydrodynamics =% hydrodynamics
L L J L J
launching < few 100 AU from few 100 AU to few 100000 AU
< few AU

> Formation —> Magneto-hydrodynamics
» Essentially only on z-pinches and one new expt. on laser
> Propagation —> Hydrodynamics

» Many experiments on lasers and z-pinches



High-energy density plasma (HEDP) facilities

Working definition: energy density & > 10 erg cm~3; pressure p > 1 Mbar

Lasers Pulsed-power generators (z-pinch)
> Energy: ~1—10*J — MJ > Energy: 100 J to several MJ
> time-scales 10s of ns > Time-scales 100s ns
> plasma volumes ~ mm® > Plasma volumes ~ cm®
laser facilities pulsed-power facilities

Vulcan UK LIL France FIREX Japan Z-machine i the USA has 11.4 MJ of stored energy
and delvers a 20 MA currentin 100 ns

Mega Joule Facilities

OMEGA USA NIF USA LMJ France

ZEBRA USA

SPHYNX France

For a review of HEDP laboratory astrophysics experiments see Remington et al 2006



High-energy density plasmas

Working definition: energy density & > 10 erg cm~3; pressure p > 1 Mbar
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High-energy density plasmas

Working definition: energy density & > 10 erg cm~3; pressure p > 1 Mbar

“Nominal” plasma conditions (laser):

> Length scale L ~ 0.1 cm
> Temperatures T ~ 500 eV
> Density p ~ 1073 gcm™3
> Bulk flow speed v ~ 500 km/s
> Amp < L

> B~ 0.1MG

> B~ 10°

> ingeneral K 1tof>1



Magneto-hydrodynamic jets

Formation Propagation
>
ﬁagneﬁc fields o bow shock
OC> = =
[~
[~ . .
magneto-hydrodynamics ===» hydrodynamics
L )L J L J
launching <few 100 AU from few 100 AU to few 100000 AU

< few AU



Basics of jet launching!

From the (axisymmetric) induction equation:

0B,
ot

differential angular rotation, w, along an
initially poloidal field line, Bpol, generates an
azimuthal component By.

= —rBpol - Vw(r, z)

IBlandford & Payne 1982; Pelletier et al 1992; Ferreira 1995 & 1997; ....
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Basics of jet launching!

Magnetic force on the plasma F = j x B:

Azimuthal-
Bol
F, =22V, (rB
©= o I (rBs)
Poloidal-

By
F = —-22v, (B
I or V| (rBy)

B
F = ——¢VL (I’B¢) =+ BpoIqu
Hor

Current (field) distribution is fundamental:

| =—rB
wo

IBlandford & Payne 1982; Pelletier et al 1992; Ferreira 1995 & 1997; ....



Basics of jet numerical modelling

Collapsing prestellar dense-cores?

I> Early stages (few thousand years) of jet evolution
> Essentially limited to slow outflow components (protostar either not there or just formed)
> 2D and 3D “self-consistent” jet/disk system

dp
Frie =V - (pv)

17} jxB
paf‘;+(pv)~Vv = —Vp-&-Ji—deH- non-ideal terms
c

Oe . P

B + V - (ev) = — pV - v + non-ideal terms o,
oB =
T V X (v X B) + non-ideal terms

sR

2Machida et al 2006; Banerjee & Pudritz 2006; Mellon & Li 2008; Hennebelle & Fromang 2008;
Hennebelle & Ciardi 2009; Ciardi & Hennebelle 2010; Joos et al 2012



Basics of jet numerical modelling

Disk included (and star)?

> Start with an initial star-disk/ambient structure and large-scale poloidal field
[> Essentially limited to 2D and relatively short time-scales
[> Jets can have a feedback on the disk and star

ap ;
— = _V - v ideal MHD
ot (pv) “

ov ixB 2
pa+(pv)<Vv:7Vp+7*PV¢*Vv"
c

outflows
%JFV'(CV):7PV'V7Arad+AOhm+Avisc disk \\\ \ f ]}}

ot star-disk

oB " /\/ : :
-V _ anomalous rotation
ot X (vXB—nmV xB) viscosity & resistivity

2Kudoh et al 1998; Zanni et al. 2007; Bessolaz et al 2008; Zanni & Ferreira 2012



Basics of jet numerical modelling

Disk (or Poynting flux injection) as a boundary condition?

> Field distribution, rotation and mass injection at the base of the jet are imposed
> No jet/wind feedback on the disk
> 2D and 3D over long time and spatial scales

> May neglect gravity

Op

— V- (ov ideal MHD

ot (P) jet
v jixB
P+ (pv) - Vv=—-Vp+
ot
Oe
a"l‘v‘(ev):_pv'v_/\md

oB

— =V x(vxB

gy (v xB)

2Ouyed & Pudritz 1997; Ustyugova 1999; Anderson et al 2005; Fendt 2006; Matsakos et al 2009



Modelling jets in the laboratory

Astrophysical jet Modelling Box

ideal MHD
et

To design a laboratory astrophysics jet experiments requires:

1. ideal MHD to be applicable
2.



Modelling jets in the laboratory

resistivity

wos

N\

thermal conduction

To design a laboratory astrophysics jet experiments requires:

1. ideal MHD to be applicable
2. Relevant initial /boundary conditions

S Modelling Boy .
Astrophysical jet /‘\‘/'"*\/‘“\ Laboratory jet
ideal MHD ideal MHD
jet jet
& &
,\c@\\ ,\0&\\5
& S
e e
Qqs é‘“'\ Q‘bo ﬁe}
S &q;\sﬂ«“
& S
S® N
B outflows
ENGINE

e ANAAN )

electrodes




Modelling jets in the laboratory

. i Modelling Box .
Astrophysical jet /‘\‘/'"*\/‘“\ Laboratory jet
ideal MHD ideal MHD
jet jet
& &
A &
cf'?"\"‘\\ﬂv\b L&\V‘\\bb
S S
qs\Q(: &0 q}-\\é‘ &
L& & .. &
\\\(to‘\& <,°\\\<?0*®

To design a laboratory astrophysics jet experiments requires:

1. ideal MHD to be applicable

2. Relevant initial /boundary conditions




Modelling jets as ideal-magnetofluids

Op

£ __v.

T (pv)

ix B—VV2V

0
P+ (pv) - Vv = —Vp +
ot c

Oe
a + V- (GV) = - PV'V \= q _Arad+AOhm +Avisc
B
%:VX(VXva]mVXB)

From non-ideal to ideal MHD

> Reynolds number

vL

Re = >1

visc

> Magnetic Reynolds number

vL
Rem = F >1

m

> Peclet number
vL
Pe=—>1
Dt



Scaling laboratory astrophysics experiments 3

Transformations of the ideal (M)HD equation

Ideal MHD equation (without gravity)

% _ 9 (ov)

ot

)
paf:+(ﬂV)~VV=—Vp+j><B

19)
AV (pY) = (v = 1PV v = (7 = D

oB

— =V x(vxB
5t ( )
p=CpT"
Arsd = Nop*p®

3Ryutov et al 2000, 2001; Falize et al 2010, 2009; Bouquet et al 2011



Scaling laboratory astrophysics experiments 3

Transformations of the ideal (M)HD equation

Transformation:

Ideal MHD equation (without gravity)

ap X =X\iX
Eri =V - (pv) s .
where \°/ are the scaling parameters.
For example:
Y o). v Vp+ixB
—_ v) - Vv = —
p@t P P ;= )\51;
t = \%2%
v =A%y

op
-+ V- (pv)=—(v—1)pV -v— (7= 1)Ang
One obtains a set of constraints on the scaling

ot
oB parameters.
— =V x (vxB)
ot > In general the number of constraints is
TV smaller than the number of scaling
p==tr parameters, allowing a certain flexibility.
Arsd = Nop*p®

3Ryutov et al 2000, 2001; Falize et al 2010, 2009; Bouquet et al 2011



High-energy density plasmas

Working definition: energy density & > 10 erg cm~3; pressure p > 1 Mbar

Nominal plasma conditions (laser):

Length scale L ~ 0.1 cm > Mach number M 2> 3
Temperatures T ~ 500 eV > Pe~ 15
Density p ~ 1073 gcm ™3 > Re ~ 10°

> Rep ~ 600

Bulk flow speed v ~ 500 km/s
)\mfp < L
B~ 100

> in general S K 1to > 1)

>
>
>
> B~ 0.1 MG
>
>
>



Laboratory vs. Simulations vs. The real thing

Approximating the ideal-MHD equations

Stellar jets  Simulations Laboratory

Re 1012 10 — 103 > 10°

Re,, 1016 10 — 103 10 — 103

Pe 1010 10 — 103 10 — 103
_ Teool _ 1 % £ <1

Thydro Thydro Nrad

Compressible, radiative magneto-hydrodynamic flows in the laboratory



Laboratory vs. Simulations vs. The real thing

Approximating the ideal-MHD equations

Stellar jets  Simulations Laboratory

Re 1012 10 — 103 > 10°

Re,, 1016 10 — 103 10 — 103

Pe 1010 10 — 103 10 — 103
x = Tcool _ 1 « € <1

Thydro Thydro Nrad

Compressible, radiative magneto-hydrodynamic flows in the laboratory

What about the initial /boundary conditions?



“Poloidal” versus “Toroidal” collimation

Collimating and accelerating force components

By
F = —-22v, (B
I or V| (rBy)

B
F. = ——"’VL (rB¢) + Bpo/J¢
Hor

Experiments to investigate

1. By > Bpo — acceleration and collimation by toroidal component

2. Bpor > By —+ collimation by poloidal component



The basic ingredients to make a jet

To model jet formation in the laboratory seems to require at least (differential)
rotation and an initially poloidal magnetic field

35 T
L 30F P el d
1. At a certain distance from the source

where Vp ~ va = (BP/\/W) 251 /, 4

By > B, S

2. Current distributions are important.
The circuit needs to be closed within oF
the outflow — need for an ambient
medium

I
20 40 60 80 100 120

(Images credit: Zanni et al A&A 2007)



The basic ingredients to make a jet

To model jet formation in the laboratory seems to require at least (differential)
rotation and an initially poloidal magnetic field

1. At a certain distance from the source

where v, ~ v, = (Bp/\/47rp):
By > B,

2. Current distributions are important.
The circuit needs to be closed within
the outflow — need for an ambient
medium

10 20 30
T

(Images credit: Zanni et al A&A 2007)



The basic ingredients: B, and a plasma

P f Jet

Ambient Medium

Magnetib Fields 'Outflow Region

Disc PR
= ;
Rotation ~/ Driving Region

Young star



An example of astrophysical simulations with By, > Bp

Early phases of star formation®

Magnetized wind into an ambient density distribution from analytical, isothermal collapse
models.

By ~r~ pr~r v = const

z(AU)

-2000 0 2000
@ (AU)

4Shang et al ApJ 2006



Formation of magnetized laboratory jets®

> Pulsed-current generator

» MAGPIE generator Imperial College micron-sized metallic wires
> currents several 1 — 1.4 MA ~ few cm
> Load

» thin metallic wires or foil (few - few x 10
pm)

» material: aluminium, copper, tungsten....
> Time-scale few hundred nanoseconds N

> Length-scale few cm of plasma

electrodes

~ few cm

5Lebedev et al 2005, Ciardi et al 2005



Formation of magnetized laboratory jets®

Below wires/foil the magnetic field is
purely azimuthal:

1

Force on ablated plasma is (mostly)

axial: , 4
8 B | '
FZ - — _¢ ‘g"\c
0z \ 8w

wire cores / cold foil remain stationary

5Lebedev et al 2005, Ciardi et al 2005



Formation of magnetized laboratory jets®
Ambient medium
> v ~ 100 km/s
> n~ 101 cm~3
> T ~10 eV (~ 10° K)
>

Mostly free of current and magnetic
field

time=110 ns

5.000

1.695
0.5743
0.1947

. 0.06598

0.02236

z-axis [mm]

0.007579
0.002569

8.706E-4

295164

T T T T T T T 1 A000E4:
10 8 6 4 2 0 2 4 6 8 10
r-axis [mm]

5Lebedev et al 2005, Ciardi et al 2005



Formation of magnetized laboratory jets®

Ablation is faster near the central elec-
trode:

— X

dm 1
dt r

time=196 ns

5.000
1.695
[ 0.5743

0.1847
0.06598
0.02236

0.007579

z-axis [mm]

o N & 0 &

0.002569

B.706E-4

2.951E-4

. e 1.000E-4
10 8 6 4 2 0 2 4 6 8 10

r-axis [mm]

5Lebedev et al 2005, Ciardi et al 2005



Formation of magnetized laboratory jets®

Rising magnetic bubble:

> Magnetic bubble is

confined/collimated by the ambient
plasma

> A magnetized jet forms on the axis,
collimated by the magnetic field

time=226 ns

5.000
1.695

05743
0.1947 -

0.06598

0.02236

0.007579

z-axis [mm]

0.002569
B.706E-4

295164

T T T T T T T 1 000 ¢
10 8 6 4 2 0 2 4 6 8 10
r-axis [mm]

5Lebedev et al 2005, Ciardi et al 2005



From stellar to laboratory jets

3000 AU 15cm

stellar jet laboratory jet

> Magnetically collimated jet
> Magnetically dominated cavity (8 < 1) confined by the external medium
>
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stellar jet laboratory jet

> Magnetically collimated jet
> Magnetically dominated cavity (8 < 1) confined by the external medium
> m = 0 “sausage” instability



From stellar to laboratory jets...not quite yet

3000 AU 15cm

> Magnetically collimated jet
> Magnetically dominated cavity (8 < 1) confined by the external medium

> m = 0 “sausage” instability

However reality is not axisymmetric....



Experiments and 3D simulations show kink-unstable jets®

MAGPIE experimental images of XUV self-emission

298 ns
time

6 ebedev et al 2005; Ciardi et al 2007



Experiments and 3D simulations show kink-unstable jets®

MAGPIE experimental images of XUV self-emission

298 ns
time

!

Synthetic XUV images from 3D GORGON simulations

o. 0 @

6 ebedev et al 2005; Ciardi et al 2007



3000 AU 1.5ecm

M |

stellar jet laboratory jet




3000 AU

stellar jet laboratory jet

15cm



B, #0 — stability




Kink instability in astrophysical jets’

Linear analysis of idealized-jet configuration:
> For jets with § <« 1

» the m = 1 mode is the fastest growing
> unsheared field leads to body modes
> sheared field leads to internal modes

> For jets with > 1

» fastest growing modes can be for m > 1
corresponding to very large k.,

> short-wavelengths —high-resolution — difficult
to simulate

> In general the growth rate

¥~ vag/R;

"Appl et al A&A 2000; Bonanno et al A&A 2010 ...

“ kink” instability

B-field




Mounting evidence that jets become unstable

Nakamura et al 2003
@ Poynting Flux Dominated jets
@ Kink m = 1 mode dominates

o No instability for low resolution
simulations

@ Rotation can help stabilize the jet
(within the computational domain)

» Unmagentized rotating jets have
been produced on z-pinches
(Ampleford et al 2008)

Moll et al 2008

@ Followed the jet over very long
length-scales (2000 x Rjg)

@ Kink instability always develops

o Differential rotation helps to reduce
growth rate

A-1: t=40.0
A




Poynting-dominated magnetic tower jets®
3D AMR MHD simulations with AstroBEAR

J.
-100.  -33, 33, 100,
—

> At odd with previous findings, however p

1. Kink instability appears first in the cooling jet. adiobatic rotamg- cooling e
8 h 4 B 4 B
» Cooling increases growth rate as in ‘ 1) i)
laboratory jets 2 ‘
2. Rotation has a destabilizing effect. . ’
)

the set-up is different

> Possible to test in the laboratory : l

14 y
12 J
10 /A \
- )
A )
6 S 7
[}
4
2
ol
6 -4-20 2 4 -4-20 2 4 -4-20 2 4
(20 aU) (20 av) (20 av)

8Huarte-Espinosa et al ApJ 2012



Pre-protostellar jets’
3D AMR MHD simulations with RAMSES

Follow the gravitational collapse of a dense (10° cm~3) pre-stellar core of 1 M.

Range of magnetizations and misalignments «.

p e"'/elope
Rotation axis

Magnetic|field

) i ‘ ‘ «

9Hennebelle & Ciardi 2009; Ciardi & Hennebelle 2010; Joos et al 2012, 2013



Pre-protostellar jets!®
3D AMR MHD simulations with RAMSES

> Bulk velocities v ~ 1 —5 km/s
> For increasing o
> lower mass ejections rates
> no jets/outflows for
a ~ 90°
> more heterogeneous flows

10Hennebelle & Ciardi 2009; Ciardi & Hennebelle 2010; Joos et al 2012, 2013



On-going work: kink-instability in pre-protostellar jets

Jet speed - 224209 years

300405 cmys

2.0e+05 cm/s-

15405 cm/s

100405 crys B
in:

Aligned case oo = 0°

2800 AU




Are these instabilities destructive?



Kink instability in laboratory jets

Helical perturbation modifies the direction of the current generating a poloidal
component of the field

B¢>>Bp — B¢NBP

1 0 200 220 240 260 280
time [ns]




Clumpy jets from toroidally dominated flows

Kink-instability is non-destructive

1074
> Kinetically dominated clumps Energy Flux 10747~ =72 Vs Sg—
Wem] oo 7" ke 2 -POYNTING — -~ ENTHALPY ~T = ]

» High Mach number Mg,s > 5

10000 -
. . . T 1000
» High collimation o ~ 5° o MM b’\ﬁ/

> B¢NBZNB,

P 1u: 4
10°
lgfem’]  10°
107 T T T

0
1
B o M
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On-going work: scaling to other experimental devices
Experiments performed with radial wire arrays on a the CEA-GRAMAT
long-current pulse (~ 1.4 us) Oedipe machine (800 kA).

. ! f

/ -
new knot
4—L-- i

Smaller amplitude perturbations of the jet body.

> Indications that Poynting flux into cavity was suddenly halted (wire gap filled
by plasma?).

> Cavity/jet expansion may be freezing out the instabilities.



Schematic formation of episodic laboratory jets

Replace wires by a metallic micron-sized foil

"knotty" jet

I
foil E i masgs;:jlley

electrode




Episodic jets: the experiments!!

New zocurrence of clumay
Jetand cuiow

Instabilties

Z [mm]

breasup e jet tragatc cauty
i actio f a5
sl = 2rd
magnetic oubbie:
New ot F 30
21d magneli and aubible:
Lusble
N \\ [f]
20
15
10
-5
~0

> Episodic ejections create a “self-collimating” channel with a clumpy jet on
the interior

» Each magnetic cavity is confined by previously ejected plasma and field
» No memory of initial conditions

1 Ciardi et al 2009; Suzuki-Vidal et al 2009 & 2010



Phenomenological model

Back to space from the laboratory

Xastro = AiX/ab

Scaling factors

Physical variables

A, =1
A,=8x10"1°
A, =3x 10715

A =AA =3x1071°
Ap=A,A2 =8 x 1071
Ag= /A, =9x 1078

X cool

Astro Lab
10" em/s 107 ecm/s
10 cm=3 109 cm~3

1 year 10 ns
21 AU 1 mm
1010 16 kbar
1 mG 1T
<1 <1




Phenomenological model

B, < B,

Launching

Distance from source D < fewxAU
Steady-state jet launching



Phenomenological model

el
/:
il 2
:
1
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1
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:
L
B, < B, B, >> B,
L J L
Launching Jet collimation and instabilities

Distance from source D < fewx100 AU
Flow is structured by instabilities



Phenomenological model

e
/l
1
P :1
:
1
\:
i
i
L
B, < B, B, >> B, B, ~ B,
L J L
Launching Jet collimation and instabilities

Distance from source D < fewx100 AU

Flow is structured by instabilities

Substantial flow inhomogeneities: p, T and v.
Decay and tangling of the field.



Phenomenological model

1
;:: tangled B
:
1
\:
N~
i
L
B, < B, B, >> B, B, ~ B,
L 1L J L ]
Launching Jet collimation and instabilities Kinetic Jet

Distance from source D 2 fewx100 AU

Flow is kinetically dominated

Interaction between clumps producing internal shocks
Interaction with previously ejected material or the ISM



Phenomenological model

1
1
el
/,: tangled B
i
i
1
\:
i
1
b cawtywalls
B, < B, B, >> B, B, ~ B,
L 1L J L ]
Launching Jet collimation and instabilities Kinetic Jet

Presence of bubble/cavity like features



Poloidal collimation

Collimating and accelerating force components

By
Fi=—-——"2V) (rB
1= V1 (Bo)
By
FL=—"-V_, (rB¢) + BPO/J¢
pior

Experiments to investigate

1. By > By — acceleration and collimation by toroidal component

2. Byor > By — collimation by poloidal component



Astrophysical and laboratory context

Poloidal collimation!2

[10.0

Stelbar Wind B

N 10

=5.0

K Zanni & Ferreira, A&A 2012

12Spruit et al 1997; Matt et al 2003; Romanova et al 2009

A

magnetic field
A A

plasma plume

~ | <
solid target




Laser-driven plasma plume — thermally-driven wind

Simulation shown has no magnetic field

Aholgrice] 0000ns Rholgrice] o01.00ns

a000 ) w000
0ns 1ns !
2000 o1 2000 01

g 1000 laser Lo g oo
H [ § 8 s
E o + 0.001 2 E o ( 0.001 _g
] i Y 2
Eio00 ooor & E o1 &
o o
2000 o 2000 Te0s
1606 ~ end of laser pulse 1606
a000 a000
1 1007 007
7000 6000 5000 4000 3000 2000 1000 O 7000 6000 5000 4000 3000 2000 1000 O
Laser Dvecton [microns] Lasar Diecton [microns]
Rhofgricc] 01.99ns Rrlriod) 02000
10 o
000 300
s '
200 2 NS 01 i 3ns o1
71000 Lo T oo
H [ ] §
£ o w8 £ 0 Lot 3
] | &
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. 1005
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} 1007 to07
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Laser Directon [microns] Laser Directon [microns)

[> Laser-target interaction with the 2D Lagrangian, radiation hydrodynamics code DUED
(Atzeni et al 2005)

> Profiles then input in our 3D resistive MHD code GORGON



Magnetically collimated laser-generated plasmas®3

Poloidal collimation

10—

‘ ; : - 10?
H -- 102 (Wcm™2)
h:
b - 10 (Wem™2)
(B
RIS IR 10 (W cm™2)
R
€ epi - a
[
g [ E_’_ 10
3 a4l 3
o 4 1‘ &
\
o T
2k
80 01 02 03 04 05 %00 01 0z 03 04 05
B (MG) B (MG)

Nominal laser parameters:

E; =50—-500J; 7 =1ns; A =1.064pum; ¢ =750 um

Estimates of the magnetic filed strength and its duration:
By 2 0.1 MG for several t > 10 ns

13Cjardi et al 2013



Magnetically collimated laser-generated plasmas

1. Cavity-shell formation

» High-beta cavity
» Formation of a shell of shocked material

and compressed B Y
> Re-direction of plasma along cavity walls \\< ~

2. Jet formation
> Re-directed flow converges towards the — conical shock
axis .
» Formation of a conical shock
> Axial re-direction and jet formation

3. Re-collimation

» Secondary cavity
> Re-collimation, conical shock and jet




Magnetically collimated laser-generated plasmas
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Flow instabilities
Rayleigh-Taylor type filamentation instability*
Configuration similar to a #-pinch

> Growth rate

v~/ gke
ko = m/Rjet
g~ v’/Rc

> Growth time-scale is short

Tcoll
~ few ns

T~

plg/cc] time20ns z=10.5 mm
-450

-4.75
-5.00
-5.25
-5.50

o v N ow

-5.75

y [mm]

-6.00
-6.25
-6.50
-3 -6.75
-7.00

3 -2 -1 0 1 2 3
X [mm]

14 Kleev & Velikovich 1990



Flow instabilities

Firehosel®

Jet may be susceptible to firehose insta-
bility
2

B
P — P
I l>47T

PH ~ pv2

B

M; — =2

A3

Marginally stable for some combination
of laser intensity and magnetic field

>1

> Possible Kelvin-Helmoltz

> Electrons may are
highly-magnetized — possible
anisotropic thermal pressure

> Possible stabilization by the
surrounding dense, magnetized
plasma

15e.g. Benford 1981
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Hydrodynamic jets

Formation Propagation
>
ﬁagneﬁc fields o bow shock
OC> = =
[~
[~ . .
magneto-hydrodynamics ===» hydrodynamics
L )L J L J
launching <few 100 AU from few 100 AU to few 100000 AU

< few AU



Converging flows to produce hydrodynamic jets

> Supersonically converging flows can generate 1
conical /oblique shocks which focus the flow into
a jet.

> This is the most common mechanism to generate
hydrodynamic jets experimentally

=T
Streams /i?‘ 'q.\s

Wires/~

Cathode)




Early experiments on the Nova and GEKKO-XII lasers

Multi-beams - Total laser energy ~ 500 J and 1 kJ in a 100 ps pulse (/ ~ 101% — 101> W cm™2)

X-ray framing camera Time-integrating x-ray
(self-emission side-on) p/inhole camera

Target — ™ Nova beam

200 400 600 B30 1000 1200 1400 1600
z(m)

800 um 1> X-ray framing camera
(self-emission face-on) 300 N —
: 200
200 umI Au | £ Thomson scattering 1o
- e, - 1
400 um < Nova beam ‘E 100
200
X-ray framing camera Farley et al 1999 20000 60 Ho0 E 1000 1260 46 1600
(uranium backlit side-on) @ e

Farley et al 1999
Early experiments focused on characterising and de-

. . . . 7 b Za
veloping basic understanding of jets on(zas) ", | AZ13)
> Typical jet parameters: \ - - | I .’
» Mach > 10 3 1 mm Aot
> Re, Pe >>1 7 Fe (z29) | () /“I Au(Z:79)
> Radiative cooling plays an important role in _— -
the jet collimation \

shigemori et al 2000



Jets on the LULI2000 laser (Loupias 2007)

Multi-beams - Total laser energy ~ 500 J to 1 kJ in a 1.5 ns pulse (/ ~ 10* W cm™2)

Foam
filed Ablation

cone washer Shock Plasma jet flow
Pusher /
Laser |

Rear-side illumination of target — easier to
place an ambient medium

Simultaneous measurements of many jet pa-
rameters:

> SOP — temperature ~ a few eV
> VISAR — velocities ~ 100 km/s

> Radiography —
densities < 0.5 g cm™

Typical dimensionless parameters
> Mach ~ 10
> Re, Pe >>1

Vanadium foil

Shock drive laser




Jets on the PALS laser (Nicolai et al 2007, 2010; Kasperczuk et al 2006, 2011)
Single-beam - Total laser energy 13 — 160 J in a 250 ps pulse (/ < 10* W cm2)

To X-ray diagnostic

system
target Vst
~ main laser pulse

\
He puff

-

probe laser pulse:
for multi-material
interferogram: plasma jet

/

>> Flat target with a laser focal spot
that is double-peaked

> Low energy, single beam
> Began studying jet propagation
(interaction)

> Not sure it works on other laser
systems

a2 . O T
e 4 m% . B

_ Ry( ) R.)

E - € 1

= 200 RO 2 g0 <R

) - = NS

00+ e { +
600 400 -200 0.0 200 400 600
Re [um]

R(+)=400 m Ruf=400 um
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g (e
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Jets on the Omega laser (Foster et al 2005)
Multi-beams - Total laser energy ~ 3.5 kJ in a 1 ns pulse (/ ~ 5 x 10** W cm2)

4.0 mm dia.

Hydrocarbon foam

1
]
1
i
1
1
i
1
i v
e * “ oo

Omega laser beams
5x 101 W em?2

300 ym dia. hole

Titanium

> Detailed studies with radiography

> Jet are relatively slow, dense and
cold (close to liquid state):
» v ~10 km/s
» T ~3¢eV
» p~01gcm?
» Mach ~ 3 and Re and Pe >>1




Deflected supersonic jets on the Omega laser (Hartigan et al 2009)

12 beams with a total energy of 6 kJ in 1 ns

= |~ 300-500 pm
— | = 4 mm dia. (not to scale)

1 mm dia. polystyrene sphere —— !

i

800 1000

0.1 g em hydrocarbon foam L wm

I

h

300 pm dia. 5= {
125 ym i f
e
1 1 i [ Titanium
I i 700 pm
100 pm — 500 pm dia.
Gold Scale-1 laser-heated hohlraum

12 laser beams

Impact Parameter Series @ 200 ns.

> Indirect drive: radiation temperature
in the hohlraum 190-200 eV R

> Study the fluid dynamics of the
collision with a dense cloud.

Transmission

> Detailed comparison with simulations

» and observations




Jets on z-pinch machines (Lebedev et al 2002, 2004, 2005; Ciardi et al 2002)

Jet

Experiments on the CEA-GRAMAT z-pinch

Conical
Shock

1004 ns

Plasma
Streams

Wires |/

é athode|

Rotating jets on twisted conical arrays (Ample-
> Jets over long time- and ford et al ‘2008)

length-scales > 10x laser
experiments

> Similar dimensionless parameters to
laser experiments

> More flexible:

> rotating jets



Curved jets on z-pinch machines
(Lebedev et al 2004, Ampleford et al 2007, Ciardi et al 2008)

5mm

> Astrophysical context: motion of
source wrt interstellar medium

> Jet is susceptible to RT instability

» formation of clumps and internal
shocks
> rotation stabilizes the jet

o

]

NON-ROTATING

Pjet

Ho




Bow shocks studies on z-pinches (suzuki-vidal et al 2012)

(a)

nozzle ‘

argon

Thomson

beam

®®|

current path

Jet velocities ~ 50-100 km/s

(a)

380ns

410ns 440ns N




Conclusions

> Experiments can study a range of physics relevant to jets

» Hydrodynamic and magneto-hydrodynamic instabilities
(including radiation)

» Turbulent jets propagation and mixing with the ambient
medium

» Generation of bow shocks and collision dynamics

» Aspects of magnetic jet formation and collimation

> Many experiments in their infancy
> so expect more interesting results
> Important to couple experiments with numerical simulations, and

the modelling/observations of astrophysical jets. —> BUT IT
TAKES TIME!



