From Stellar to Laboratory Jets

Andrea Ciardi

andrea.ciardi@obspm.fr

LERMA Observatoire de Paris, Université Pierre et Marie Curie, Ecole Normale Supérieure, CNRS UMR 8112

- - -

What jet physics can we study in the laboratory?

- Hydrodynamic and magneto-hydrodynamic instabilities (including radiation)
- \triangleright Turbulent jets propagation and mixing with the ambient medium
- ▷ Generation of bow shocks and collision dynamics
- $\,\triangleright\,$ Aspects of magnetic jet formation and collimation

Symposium on Gas Dynamics of Cosmic Clouds, Cambridge 1953

NGC 1501, a planetary nebula of ap- Flame propagation in a turbulent parently turbulent character. Estimated distance 3400 parsec; estimated diameter 0.9 parsec.

stream. Tenfold exposure of flame at 400 microseconds after ignition in a stream of turbulent gas with velocity 50 meters/second. Diameter 7 millimeters.

The similarity of these pictures may not mean a physical similarity of the processes involved.

Symposium on Gas Dynamics of Cosmic Clouds, Cambridge 1953

... to bring together workers from astrophysics and from aerodynamics...

... to consider which developments in fluid mechanics may be applicable to astrophysical problems...

Symposium on Gas Dynamics of Cosmic Clouds, Cambridge 1953

... to bring together workers from astrophysics and from aerodynamics...

 \dots to consider which developments in fluid mechanics may be applicable to astrophysical problems...

- $\,\triangleright\,$ Attendees to the conference included
 - B. J. Bok, E. Schatzman, G.K. Batchelor, H. Bondi, F. Hoyle, D.W. Sciama, G.I. Taylor, L. Mestel, M.J. Seaton, T.G. Cowling, J.M. Burgers, Th. von Karman, J.H. Oort...E. Fermi & S. Chandrasekhar

Symposium on Gas Dynamics of Cosmic Clouds, Cambridge 1953

... to bring together workers from astrophysics and from aerodynamics...

 \dots to consider which developments in fluid mechanics may be applicable to astrophysical problems...

- \triangleright Attendees to the conference included
 - B. J. Bok, E. Schatzman, G.K. Batchelor, H. Bondi, F. Hoyle, D.W. Sciama, G.I. Taylor, L. Mestel, M.J. Seaton, T.G. Cowling, J.M. Burgers, Th. von Karman, J.H. Oort...E. Fermi & S. Chandrasekhar
- 1. First symposium "Problems of Cosmical Aerodynamics" was held in Paris in 1949
- 2. "Gas Dynamic of Cosmic Clouds" Cambridge, UK 1953
- 3. "Cosmical Gas Dynamics", Cambridge, USA, 1957
- 4. "Cosmical Gas Dynamics: Aerodynamic Phenomena in Stellar Atmospheres", Varenna, Italy, 1960
- The Fifth Symposium on Cosmical Gas Dynamics, Nice, France, 1965

The first "astrophysics experiments" on flow dynamics

- A. Kantrowitz (Cornell University) "Experiments on the Radiation and Ionization Produced by Strong Shocks Waves"
 - "In the identification of shocks waves and in determining the role of shock phenomena in astrophysics, laboratory studies of strong shocks waves can make a contribution"

The first "astrophysics experiments" on flow dynamics

- ▷ A. Kantrowitz (Cornell University) "Experiments on the Radiation and Ionization Produced by Strong Shocks Waves"
 - "In the identification of shocks waves and in determining the role of shock phenomena in astrophysics, laboratory studies of strong shocks waves can make a contribution"
- W. Bostick (Lawrence Livermore) "Possible Hydromagnetic Simulation of Cosmical Phenomena in the Laboratory"

Discussed the scaling to astrophysical phenomena

Alfvén scaling...

from his book "Cosmic Electrodynamics", 1950

Problem	Linear dimension	Density particles/cm. ³	Magnetic field gauss	Time	
Aurora and magneticstormsReduced: $\eta = 3.10^8$	3.10 ⁹ 10	10 ³ ?-10 ¹² 3.10 ¹¹ ?-3.10 ²⁰	0·5-0·01 1·5.10 ⁸ -3.10 ⁶	Initial phase of storm = $3h. = 10^{\circ}$ sec. $\rightarrow 30 \ \mu$ sec.	
Solar corona	1011-1012	108-106	20-0.02	Life of coronal arc = 10^3 sec. \rightarrow 10^{-7} sec.	
Reduced: $\eta = 10^{10}$ – 10^{11}	10	10 ¹⁸ -10 ¹⁷	2.10 ¹¹ -2.10 ⁹	Solar cycle = 11 years = 3.10^8 sec. $\rightarrow 0.03$ sec.	
Chromosphere Reduced: $\eta = 10^{\circ}$.	10 ⁹ 10	10 ¹¹ -10 ¹⁴ 10 ¹⁹ -10 ²²	20 2.10 ⁹	Solar flare 1,000 sec. $\rightarrow 10$ µsec. Prominence 10 ⁵ sec. $\rightarrow 1,000$ µsec.	
Planetary system Reduced: $\eta = 10^{12} - 10^{13}$	$ \begin{array}{r} 10^{13} - 10^{14} \\ 10 \end{array} $	$\frac{10^3 ?}{10^{15} - 10^{16} ?}$	$\frac{10^{-5}-10^{-8}}{10^{7}-10^{5}}$	1 year \rightarrow 3–30 µsec.	
$\overline{ ext{Galaxy}}$. Reduced: $\eta = 3.10^{21}$.	3.10 ²² 10	1 3.10 ²¹	10 ⁻¹² ? 3.10 ⁹ ?	Age of universe = 10^{10} years = $3 \cdot 10^{17}$ sec. $\rightarrow 100 \ \mu$ sec.	

Plan of the talk

- \triangleright Jets in young stars
 - Divide jet physics into hydrodynamics and magneto-hydrodynamics
- \triangleright High-energy density installation (laser and z-pinch)
- Modelling of astrophysical jets and designing MHD jet experiments
 - Simplifications needed to study magnetic jet formation and collimation experimentally
- Hydrodynamic jets: propagation and interaction with an ambient medium

 $\begin{array}{l} \mbox{Core size few} \times 10^4 \mbox{ AU} \\ \mbox{Mass core} \sim \mbox{few} \times M_\odot \gg M_\star \\ \mbox{$\dot{M}_{acc}} \sim 10^{-4} \mbox{ M}_\odot \mbox{ year}^{-1} \end{array}$

- First evidence (?) of an outflow from an adiabatic core
- ▷ Estimated age 200 years
- \triangleright Slow, few km/s outflow

 $\begin{array}{l} {\rm Envelope} \sim 1000 \ {\rm AU} \\ {\rm Mass \ envelope}/{\rm disk} > M_{\star} \\ {\dot M}_{acc} \sim 10^{-5} \ {\rm M}_{\odot} \ {\rm year}^{-1} \end{array}$

- \triangleright Atomic jet close to the source
- \triangleright Mostly observed as (swept up) molecular flows
 - Slow (v \lesssim 10 km/s) cavities
 - Fast ($v \sim 10 100$ km/s) jet/bullets

Disk/envelope size few \times 100 AU Mass envelope/disk $< M_{\star}$ $\dot{M}_{acc} \sim 10^{-6} \text{ M}_{\odot} \text{ year}^{-1}$

- ▷ Atomic jet traced to pc-scales
- \triangleright Weaker swept up molecular flow
- \triangleright Clear evidence jet episodicity and variability

Disk size $\lesssim 100 \text{ AU}$ Mass disk $\ll M_{\star}$ $\dot{M}_{acc} \lesssim 10^{-7} \text{ M}_{\odot} \text{ year}^{-1}$

- ▷ Fast, several 100 km/s atomic jets
- \triangleright Wide-angle, slow H₂
- Rapid (few years) jet variability

Simplifying is the key

hydrodynamic vs. magneto-hydrodynamic jets

TABLE 1							
AVERAGE	Jet	PARAMETERS					

Distance from Star		V, °			
(AU)	Arcseconds ^a	(cm ⁻³)	B_{\perp}	(km s ⁻¹)	
10	0.02	2.5×10^{6}	82 mG	113	
30	0.06	1.5×10^{6}	53 mG	94	
100	0.2	4.5×10^{5}	19 mG	62	
300	0.6	8.8×10^4	4.8 mG	35	
10 ³	2.2	104	0.75 mG	16	
3×10^3	6.5	$1.2 \times 10^{3 d}$	$124 \mu G^d$	7.8	
10 ⁴	22	110 ^d	$16 \mu G^d$	3.3	
3×10^4	65	12 ^d	$2.4 \ \mu G^d$	1.5	

a Spatial offset from the star at the distance of the Orion star-forming region (460 pc).

Densities for a conical flow with a half opening angle of 5° and a base width of 10 AU, taking the density to be 10^4 cm⁻³ at 1000 AU. ^c The Alfvén speed V_A determined from the total density n.

^d Values refer to an average density; densities at large distances are highly influenced by shocks and rarefaction waves. See text.

Hartigan et al 2007

Simplifying is the key

hydrodynamic vs. magneto-hydrodynamic jets

▷ Formation -> Magneto-hydrodynamics

- Essentially only on z-pinches and one new expt. on laser
- ▷ Propagation -> Hydrodynamics
 - Many experiments on lasers and z-pinches

High-energy density plasma (HEDP) facilities

Working definition: energy density $arepsilon \gtrsim 10^{12}\,{
m erg\,cm^{-3}}$; pressure $p\gtrsim 1\,{
m Mbar}$

Lasers

- $\,\triangleright\,$ Energy: $\sim 1-10^4\,{\rm J} \rightarrow {\sf MJ}$
- ▷ time-scales 10s of ns
- \triangleright plasma volumes ~ mm³

Pulsed-power generators (z-pinch)

- \triangleright Energy: 100 J to several MJ
- ▷ Time-scales 100s ns
- \triangleright Plasma volumes ~ cm³

Vulcan UK

laser facilities

LIL France

FIREX Japan

pulsed-power facilities

machine in the USA has 11.4 MJ of stored energ and delivers a 20 MA current in 100 ns

SPHYNX France

ZEBRA USA

For a review of HEDP laboratory astrophysics experiments see Remington et al 2006

High-energy density plasmas

Working definition: energy density $\varepsilon\gtrsim 10^{12}\,{
m erg\,cm^{-3}}$; pressure $p\gtrsim 1\,{
m Mbar}$

High-energy density plasmas

Working definition: energy density $arepsilon \gtrsim 10^{12}\,{
m erg\,cm^{-3}}$; pressure $p\gtrsim 1\,{
m Mbar}$

"Nominal" plasma conditions (laser):

- ightarrow Length scale $L\sim 0.1$ cm
- ho~ Temperatures $T\sim 500~{
 m eV}$
- ho~ Density $ho \sim 10^{-3}\,{
 m g\,cm^{-3}}$
- ightarrow Bulk flow speed $v\sim$ 500 km/s
- $\triangleright \ \lambda_{mfp} \ll L$
- $\triangleright~B\sim 0.1~{
 m MG}$
- $\triangleright~\beta\sim 10^6$
 - in general $\beta \ll 1$ to $\beta \gg 1$

Magneto-hydrodynamic jets

From the (axisymmetric) induction equation:

$$\frac{\partial B_{\phi}}{\partial t} = -r \mathbf{B}_{\mathbf{pol}} \cdot \nabla \omega(\mathbf{r}, \mathbf{z})$$

differential angular rotation, ω , along an initially poloidal field line, **B**_{pol}, generates an azimuthal component B_{ϕ} .

¹Blandford & Payne 1982; Pelletier et al 1992; Ferreira 1995 & 1997;

¹Blandford & Payne 1982; Pelletier et al 1992; Ferreira 1995 & 1997;

 $^{^1\}mathsf{Blandford}$ & Payne 1982; Pelletier et al 1992; Ferreira 1995 & 1997;

¹Blandford & Payne 1982; Pelletier et al 1992; Ferreira 1995 & 1997;

 $^{^1\}mathsf{Blandford}$ & Payne 1982; Pelletier et al 1992; Ferreira 1995 & 1997;

Magnetic force on the plasma $\mathbf{F} = \mathbf{j} \times \mathbf{B}$: Azimuthal:

$$F_{\phi} = rac{B_{pol}}{\mu_0 r}
abla_{\parallel} (rB_{\phi})$$

Poloidal:

$$egin{aligned} & \mathcal{F}_{\parallel} = -rac{B_{\phi}}{\mu_0 r}
abla_{\parallel} (rB_{\phi}) \ & \mathcal{F}_{\perp} = -rac{B_{\phi}}{\mu_0 r}
abla_{\perp} (rB_{\phi}) + B_{
m pol} J_{\phi} \end{aligned}$$

Current (field) distribution is fundamental:

$$I = \frac{2\pi}{\mu_0} r B_{\phi}$$

Basics of jet numerical modelling

Collapsing prestellar dense-cores²

- \triangleright Early stages (few thousand years) of jet evolution
- Essentially limited to slow outflow components (protostar either not there or just formed)
- ▷ 2D and 3D "self-consistent" jet/disk system

$$\frac{\partial \rho}{\partial t} = -\nabla \cdot (\rho \mathbf{v})$$

$$\rho \frac{\partial \mathbf{v}}{\partial t} + (\rho \mathbf{v}) \cdot \nabla \mathbf{v} = -\nabla p + \frac{\mathbf{j} \times \mathbf{B}}{c} - \rho \nabla \Phi + \text{ non-ideal terms}$$

$$rac{\partial \epsilon}{\partial t} +
abla \cdot (\epsilon \mathbf{v}) = - p
abla \cdot \mathbf{v} + ext{non-ideal terms}$$

 $rac{\partial \mathbf{B}}{\partial t} =
abla imes (\mathbf{v} imes \mathbf{B}) + ext{non-ideal terms}$

²Machida et al 2006; Banerjee & Pudritz 2006; Mellon & Li 2008; Hennebelle & Fromang 2008; Hennebelle & Ciardi 2009; Ciardi & Hennebelle 2010; Joos et al 2012

Basics of jet numerical modelling

Disk included (and star)²

- > Start with an initial star-disk/ambient structure and large-scale poloidal field
- ▷ Essentially limited to 2D and relatively short time-scales
- \triangleright Jets can have a feedback on the disk and star

²Kudoh et al 1998; Zanni et al. 2007; Bessolaz et al 2008; Zanni & Ferreira 2012

Basics of jet numerical modelling

Disk (or Poynting flux injection) as a boundary condition²

- \triangleright Field distribution, rotation and mass injection at the base of the jet are imposed
- \triangleright No jet/wind feedback on the disk
- \triangleright 2D and 3D over long time and spatial scales
- May neglect gravity

²Ouyed & Pudritz 1997; Ustyugova 1999; Anderson et al 2005; Fendt 2006; Matsakos et al 2009

Modelling jets in the laboratory

To design a laboratory astrophysics jet experiments requires:

 $1. \ \mbox{ideal} \ \mbox{MHD}$ to be applicable

2.

Modelling jets in the laboratory

To design a laboratory astrophysics jet experiments requires:

- 1. ideal MHD to be applicable
- 2. Relevant initial/boundary conditions

Modelling jets in the laboratory

To design a laboratory astrophysics jet experiments requires:

- 1. ideal MHD to be applicable
- 2. Relevant initial/boundary conditions

Modelling jets as ideal-magnetofluids

$$\frac{\partial \rho}{\partial t} = -\nabla \cdot (\rho \mathbf{v})$$
$$\rho \frac{\partial \nu}{\partial t} + (\rho \mathbf{v}) \cdot \nabla \mathbf{v} = -\nabla \rho + \frac{\mathbf{j} \times \mathbf{B}}{c} - \nu \nabla^2 \mathbf{v}$$

$$\frac{\partial \epsilon}{\partial t} + \nabla \cdot (\epsilon \mathbf{v}) = -\rho \nabla \cdot \mathbf{v} - \nabla \cdot \mathbf{q} - \Lambda_{rad} + \Lambda_{Ohm} + \Lambda_{visc}$$

$$\frac{\partial \mathbf{B}}{\partial t} = \nabla \times (\mathbf{v} \times \mathbf{B} - \eta_m \nabla \times \mathbf{B})$$

From non-ideal to ideal MHD

▷ Reynolds number

$${\sf Re} = rac{{m vL}}{D_{m visc}} \gg 1$$

▷ Magnetic Reynolds number

$${\sf Re}_m = rac{vL}{D_m} \gg 1$$

▷ Peclet number

$$\mathsf{Pe} = rac{vL}{D_T} \gg 1$$

Scaling laboratory astrophysics experiments ³

Transformations of the ideal (M)HD equation

Ideal MHD equation (without gravity)

$$\frac{\partial \rho}{\partial t} = -\nabla \cdot (\rho \mathbf{v})$$

$$ho rac{\partial oldsymbol{
u}}{\partial t} + (
ho oldsymbol{
u}) \cdot
abla oldsymbol{
u} = -
abla oldsymbol{
ho} + oldsymbol{j} imes oldsymbol{B}$$

$$rac{\partial m{
ho}}{\partial t} +
abla \cdot (m{
ho} m{
m v}) = -(\gamma-1) m{
ho}
abla \cdot m{
m v} - (\gamma-1) \Lambda_{
m rad}$$

$$\frac{\partial \mathbf{B}}{\partial t} = \nabla \times (\mathbf{v} \times \mathbf{B})$$
$$p = C \rho^{\varsigma} T^{\nu}$$
$$\Lambda_{rad} = \Lambda_0 p^{\chi} \rho^{\xi}$$

 $^{^{3}}$ Ryutov et al 2000, 2001; Falize et al 2010, 2009; Bouquet et al 2011
Scaling laboratory astrophysics experiments ³

Transformations of the ideal (M)HD equation

Ideal MHD equation (without gravity)

$$\frac{\partial \rho}{\partial t} = -\nabla \cdot (\rho \mathbf{v})$$

$$\rho \frac{\partial \mathbf{v}}{\partial t} + (\rho \mathbf{v}) \cdot \nabla \mathbf{v} = -\nabla \mathbf{p} + \mathbf{j} \times \mathbf{B}$$

$$rac{\partial p}{\partial t} +
abla \cdot (p \mathbf{v}) = -(\gamma - 1) p
abla \cdot \mathbf{v} - (\gamma - 1) \Lambda_{rad}$$

$$\frac{\partial \mathbf{B}}{\partial t} = \nabla \times (\mathbf{v} \times \mathbf{B})$$
$$p = C\rho^{\varsigma} T^{\nu}$$
$$\Lambda_{rad} = \Lambda_0 p^{\chi} \rho^{\varsigma}$$

Transformation:

$$X = \lambda^{\delta_i} \tilde{X}$$

where λ^{δ_i} are the scaling parameters. For example:

$$\begin{aligned} \mathbf{r} &= \lambda^{\delta_1} \tilde{\mathbf{r}} \\ \mathbf{t} &= \lambda^{\delta_2} \tilde{\mathbf{t}} \\ \mathbf{v} &= \lambda^{\delta_3} \mathbf{v} \end{aligned}$$

One obtains a set of constraints on the scaling parameters.

In general the number of constraints is smaller than the number of scaling parameters, allowing a certain flexibility.

³Ryutov et al 2000, 2001; Falize et al 2010, 2009; Bouquet et al 2011

High-energy density plasmas

Working definition: energy density $arepsilon \gtrsim 10^{12}\,{
m erg\,cm^{-3}}$; pressure $p\gtrsim 1\,{
m Mbar}$

Nominal plasma conditions (laser):

- ho
 ight. Length scale $L\sim 0.1~{
 m cm}$
- ho~ Temperatures $T\sim 500~{
 m eV}$
- ho~ Density $ho \sim 10^{-3}\,{
 m g\,cm^{-3}}$
- $ho~B\sim 0.1~{
 m MG}$
- ho~ Bulk flow speed $v\sim 500~{
 m km/s}$
- $\triangleright \ \lambda_{mfp} \ll L$
- $\triangleright~\beta\sim 10^6$
 - in general $\beta \ll 1$ to $\beta \gg 1$)

- \triangleright Mach number $M \gtrsim 3$
- ho Pe ~ 15
- $m >~Re \sim 10^6$
- $ho~Re_M\sim 600$

Laboratory vs. Simulations vs. The real thing

Approximating the ideal-MHD equations

	Stellar jets	Simulations	Laboratory
Re	10 ¹²	$10 - 10^{3}$	$> 10^{5}$
Re _m	10^{16}	$10 - 10^{3}$	$10 - 10^{3}$
Pe	10 ¹⁰	$10 - 10^{3}$	$10 - 10^{3}$

$$\chi = \frac{\tau_{cool}}{\tau_{hydro}} = \frac{1}{\tau_{hydro}} \times \frac{\varepsilon}{\Lambda_{rad}} < 1$$

Compressible, radiative magneto-hydrodynamic flows in the laboratory

Laboratory vs. Simulations vs. The real thing

Approximating the ideal-MHD equations

	Stellar jets	Simulations	Laboratory
Re	10 ¹²	$10 - 10^{3}$	$> 10^{5}$
Re _m	10^{16}	$10 - 10^{3}$	$10 - 10^{3}$
Pe	10 ¹⁰	$10 - 10^{3}$	$10 - 10^{3}$

$$\chi = \frac{\tau_{cool}}{\tau_{hydro}} = \frac{1}{\tau_{hydro}} \times \frac{\varepsilon}{\Lambda_{rad}} < 1$$

Compressible, radiative magneto-hydrodynamic flows in the laboratory

What about the initial/boundary conditions?

"Poloidal" versus "Toroidal" collimation

Collimating and accelerating force components

$$egin{aligned} F_{\parallel} &= -rac{B_{\phi}}{\mu_0 r}
abla_{\parallel} (rB_{\phi}) \ F_{\perp} &= -rac{B_{\phi}}{\mu_0 r}
abla_{\perp} (rB_{\phi}) + B_{
m pol} J_{\phi} \end{aligned}$$

Experiments to investigate

1. $B_{\phi} \gg B_{pol} \rightarrow acceleration$ and *collimation* by toroidal component

2. $B_{pol} \gg B_{\phi} \rightarrow collimation$ by poloidal component

The basic ingredients to make a jet

To model jet formation in the laboratory seems to require at least (differential) rotation and an initially poloidal magnetic field

- 1. At a certain distance from the source where $v_{p} \sim v_{p_{A}} = (B_{p}/\sqrt{4\pi\rho})$:
 - $B_{\phi} \gg B_{p}$
- 2. Current distributions are important. The circuit needs to be closed within the outflow \longrightarrow need for an *ambient medium*

The basic ingredients to make a jet

To model jet formation in the laboratory seems to require at least (differential) rotation and an initially poloidal magnetic field

1. At a certain distance from the source where $v_{p} \sim v_{p_{A}} = \left(B_{p}/\sqrt{4\pi\rho}\right)$:

 $B_{\phi} \gg B_{p}$

2. Current distributions are important. The circuit needs to be closed within the outflow \longrightarrow need for an *ambient medium*

The basic ingredients: B_{ϕ} and a plasma

An example of astrophysical simulations with $B_{\phi} \gg B_{pol}$ Early phases of star formation⁴

Magnetized wind into an ambient density distribution from analytical, isothermal collapse models.

$$B_{\phi} \sim r^{-1}$$
 $\rho \sim r^{-2}$ $v = \text{const}$

⁴Shang et al ApJ 2006

\triangleright Pulsed-current generator

- MAGPIE generator Imperial College
- currents several 1 1.4 MA

Load

- thin metallic wires or foil (few few \times 10 μ m)
- material: aluminium, copper, tungsten....
- ▷ Time-scale few hundred nanoseconds
- \triangleright Length-scale few cm of plasma

⁵Lebedev et al 2005, Ciardi et al 2005

Below wires/foil the magnetic field is purely azimuthal:

$$B_{\phi} \sim rac{1}{r}$$

Force on **ablated** plasma is (mostly) axial:

$$F_z = -\frac{\partial}{\partial z} \left(\frac{B_\phi^2}{8\pi} \right)$$

wire cores / cold foil remain stationary

⁵Lebedev et al 2005, Ciardi et al 2005

Ambient medium

- $hinspace v \sim 100 \ {\rm km/s}$
- ho $n \sim 10^{18} \ \mathrm{cm}^{-3}$
- $ho~T\sim 10~{
 m eV}~(\sim 10^5~{
 m K})$
- Mostly free of current and magnetic field

⁵Lebedev et al 2005, Ciardi et al 2005

Ablation is faster near the central electrode:

$$\frac{dm}{dt} \propto \frac{1}{r}$$

⁵Lebedev et al 2005, Ciardi et al 2005

Rising magnetic bubble:

- Magnetic bubble is confined/collimated by the ambient plasma
- A magnetized jet forms on the axis, collimated by the magnetic field

⁵Lebedev et al 2005, Ciardi et al 2005

From stellar to laboratory jets

- ▷ Magnetically collimated jet
- $\,\triangleright\,$ Magnetically dominated cavity ($eta\ll 1$) confined by the external medium

 \triangleright

From stellar to laboratory jets

- \triangleright Magnetically collimated jet
- $\,\vartriangleright\,$ Magnetically dominated cavity ($\beta \ll 1)$ confined by the external medium
- $\triangleright m = 0$ "sausage" instability

From stellar to laboratory jets...not quite yet

- \triangleright Magnetically collimated jet
- $\,\triangleright\,$ Magnetically dominated cavity ($eta\ll 1$) confined by the external medium
- $\triangleright m = 0$ "sausage" instability

However reality is not axisymmetric....

Experiments and 3D simulations show kink-unstable jets⁶

MAGPIE experimental images of XUV self-emission

time

⁶Lebedev et al 2005; Ciardi et al 2007

Experiments and 3D simulations show kink-unstable jets⁶

MAGPIE experimental images of XUV self-emission

time

⁶Lebedev et al 2005; Ciardi et al 2007

$B_z eq 0 \rightarrow \text{stability}$

Kink instability in astrophysical jets⁷

Linear analysis of idealized-jet configuration:

 $\,\triangleright\,$ For jets with $\beta\ll 1$

- the m = 1 mode is the fastest growing
- unsheared field leads to body modes
- sheared field leads to internal modes

 $\,\triangleright\,$ For jets with $\beta\gg 1$

- ▶ fastest growing modes can be for m ≫ 1 corresponding to very large k_z
- ▶ short-wavelengths \rightarrow high-resolution \rightarrow difficult to simulate

 \triangleright In general the growth rate

 $\gamma \sim {\it v}_{{\it A}\phi}/{\it R}_{\it j}$

⁷Appl et al A&A 2000; Bonanno et al A&A 2010 ...

Mounting evidence that jets become unstable

Nakamura et al 2003

- Poynting Flux Dominated jets
- Kink m = 1 mode dominates
- No instability for low resolution simulations
- Rotation can help stabilize the jet (within the computational domain)
 - Unmagentized rotating jets have been produced on z-pinches (Ampleford et al 2008)

Moll et al 2008

- Followed the jet over very long length-scales $(2000 \times R_{j0})$
- Kink instability always develops
- Differential rotation helps to reduce growth rate

Poynting-dominated magnetic tower jets⁸

3D AMR MHD simulations with AstroBEAR

- 1. Kink instability appears first in the cooling jet.
 - Cooling increases growth rate as in laboratory jets
- 2. Rotation has a destabilizing effect.
 - At odd with previous findings, however the set-up is different
 - Possible to test in the laboratory

Pre-protostellar jets⁹

3D AMR MHD simulations with RAMSES

Follow the gravitational collapse of a dense (10⁶ cm⁻³) pre-stellar core of 1 ${\rm M}_{\odot}.$

Range of magnetizations and misalignments α .

⁹Hennebelle & Ciardi 2009; Ciardi & Hennebelle 2010; Joos et al 2012, 2013

Pre-protostellar jets¹⁰

3D AMR MHD simulations with RAMSES

- $\,\triangleright\,$ Bulk velocities $v\sim 1-5$ km/s
- \triangleright For increasing α
 - lower mass ejections rates
 - no jets/outflows for $\alpha \sim 90^{\circ}$
 - more heterogeneous flows

¹⁰Hennebelle & Ciardi 2009; Ciardi & Hennebelle 2010; Joos et al 2012, 2013

On-going work: kink-instability in pre-protostellar jets

Aligned case $\alpha = \mathbf{0}^\circ$

Are these instabilities destructive?

Kink instability in laboratory jets

Helical perturbation modifies the direction of the current generating a poloidal component of the field

 $B_{\phi} \gg B_P \quad
ightarrow \quad B_{\phi} \sim B_p$

Clumpy jets from toroidally dominated flows

Kink-instability is non-destructive

- \triangleright Kinetically dominated clumps
 - High Mach number M_{fms} > 5
 - High collimation $\alpha \sim 5^{\circ}$
 - $B_{\phi} \sim B_z \sim B_r$

On-going work: scaling to other experimental devices

Experiments performed with radial wire arrays on a the **CEA-GRAMAT** long-current pulse ($\sim 1.4 \,\mu$ s) **Oedipe** machine (800 kA).

Smaller amplitude perturbations of the jet body.

- ▷ Indications that Poynting flux into cavity was suddenly halted (wire gap filled by plasma?).
- ▷ Cavity/jet expansion may be freezing out the instabilities.

Schematic formation of episodic laboratory jets

Replace wires by a metallic micron-sized foil

Episodic jets: the experiments¹¹

- ▷ Episodic ejections create a "self-collimating" channel with a clumpy jet on the interior
 - Each magnetic cavity is confined by previously ejected plasma and field
 - No memory of initial conditions

¹¹Ciardi et al 2009; Suzuki-Vidal et al 2009 & 2010

Phenomenological model

Back to space from the laboratory

$$X_{astro} = A_i X_{lab}$$

 $\begin{array}{c} \text{Scaling factors} \\ A_{\nu} = 1 \\ A_{\rho} = 8 \times 10^{-15} \\ A_t = 3 \times 10^{-15} \\ A_x = A_{\nu}A_t = 3 \times 10^{-15} \\ A_{\rho} = A_{\rho}A_{\nu}^2 = 8 \times 10^{-15} \\ A_B = \sqrt{A_{\rho}} = 9 \times 10^{-8} \end{array}$

	Physical variables			
	Astro	Lab		
v	10^7 cm/s	10^7 cm/s		
n	10^{6} cm^{-3}	$10^{19} {\rm ~cm^{-3}}$		
t	1 year	10 ns		
	-			
x	21 AU	1 mm		
p	10^{-10}	16 kbar		
B	1 mG	1 T		
χcool	< 1	< 1		

Phenomenological model

Distance from source $D \lesssim \text{few} \times \text{AU}$ Steady-state jet launching

Distance from source $D \lesssim \text{few} \times 100 \text{ AU}$ Flow is structured by instabilities

Distance from source $D \lesssim \text{few} \times 100 \text{ AU}$ Flow is structured by instabilities Substantial flow inhomogeneities: ρ , T and \mathbf{v} . Decay and tangling of the field.

Distance from source $D \gtrsim \text{few} \times 100 \text{ AU}$ Flow is kinetically dominated Interaction between clumps producing internal shocks Interaction with previously ejected material or the ISM

Presence of bubble/cavity like features

Poloidal collimation

Collimating and accelerating force components

$$egin{aligned} & F_{\parallel} = -rac{B_{\phi}}{\mu_0 r}
abla_{\parallel} \left(rB_{\phi}
ight) \ & F_{\perp} = -rac{B_{\phi}}{\mu_0 r}
abla_{\perp} \left(rB_{\phi}
ight) + B_{
m pol} J_{\phi} \end{aligned}$$

Experiments to investigate

- 1. $B_{\phi} \gg B_{pol} \rightarrow acceleration$ and *collimation* by toroidal component
- 2. $B_{pol} \gg B_{\phi} \rightarrow collimation$ by poloidal component

Astrophysical and laboratory context Poloidal collimation¹²

¹²Spruit et al 1997; Matt et al 2003; Romanova et al 2009

Laser-driven plasma plume \rightarrow thermally-driven wind

Simulation shown has no magnetic field

Laser-target interaction with the 2D Lagrangian, radiation hydrodynamics code DUED (Atzeni et al 2005)

Profiles then input in our 3D resistive MHD code GORGON

Magnetically collimated laser-generated plasmas¹³ Poloidal collimation

Estimates of the magnetic filed strength and its duration: $B_0\gtrsim 0.1~{
m MG}$ for several $t\gg 10~{
m ns}$

¹³Ciardi et al 2013

Magnetically collimated laser-generated plasmas

1. Cavity-shell formation

- High-beta cavity
- Formation of a shell of shocked material and compressed B
- Re-direction of plasma along cavity walls
- 2. Jet formation
 - Re-directed flow converges towards the axis
 - Formation of a conical shock
 - Axial re-direction and jet formation
- 3. Re-collimation
 - Secondary cavity
 - Re-collimation, conical shock and jet

Magnetically collimated laser-generated plasmas $I \sim 10^{14} \, {\rm W \, cm^{-2}}$ and $B_0 \sim 0.2 \, {\rm MG}$

Flow instabilities

Rayleigh-Taylor type filamentation instability¹⁴

Configuration similar to a $\theta\text{-pinch}$

 \triangleright Growth rate

$$\gamma \sim \sqrt{gk_{ heta}}$$

 $k_{ heta} = m/R_{jet}$
 $g \sim v^2/R_C$

Growth time-scale is short

$$au_{\it I} \sim rac{ au_{\it coll}}{\sqrt{m}} \sim {
m few} \; {
m ns}$$

¹⁴Kleev & Velikovich 1990

Flow instabilities

Firehose¹⁵

Jet may be susceptible to firehose instability

$$egin{aligned} P_{\parallel} - P_{\perp} &> rac{B^2}{4\pi} \ P_{\parallel} &\sim
ho v^2 \ M_A^2 - rac{eta}{3} > 1 \end{aligned}$$

Marginally stable for some combination of laser intensity and magnetic field

- Possible Kelvin-Helmoltz
- ▷ Electrons may are highly-magnetized → possible anisotropic thermal pressure
- Possible stabilization by the surrounding dense, magnetized plasma

¹⁵e.g. Benford 1981

Hydrodynamic jets

Converging flows to produce hydrodynamic jets

- Supersonically converging flows can generate conical/oblique shocks which focus the flow into a jet.
- This is the most common mechanism to generate hydrodynamic jets experimentally

Early experiments on the Nova and GEKKO-XII lasers

Multi-beams - Total laser energy ~ 500 J and 1 kJ in a 100 ps pulse ($\mathit{I} \sim 10^{14} - 10^{15}$ W cm 2)

Early experiments focused on characterising and developing basic understanding of jets

- ▷ Typical jet parameters:
 - ▶ Mach > 10
 - ▶ Re, Pe >> 1
- Radiative cooling plays an important role in the jet collimation

Shigemori et al 2000

Jets on the LULI2000 laser (Loupias 2007)

Multi-beams - Total laser energy \sim 500 J to 1 kJ in a 1.5 ns pulse ($l\sim 10^{14}$ W cm 2)

Rear-side illumination of target \rightarrow easier to place an ambient medium Simultaneous measurements of many jet parameters:

- $\,\vartriangleright\, \mathsf{SOP} \, \to \, \mathsf{temperature} \, \sim \, \mathsf{a} \, \, \mathsf{few} \, \, \mathsf{eV}$
- $\,\triangleright\,$ VISAR $\rightarrow\,$ velocities \sim 100 km/s
- $\triangleright~$ Radiography $\rightarrow~$ densities $\lesssim 0.5~g~cm^{-3}$

Typical dimensionless parameters

- $\triangleright \ Mach \sim 10$
- \triangleright Re, Pe >>1

Jets on the PALS laser (Nicolai et al 2007, 2010; Kasperczuk et al 2006, 2011) Single-beam - Total laser energy 13 – 160 J in a 250 ps pulse ($I \lesssim 10^{14}$ W cm⁻²)

- Flat target with a laser focal spot that is double-peaked
- \triangleright Low energy, single beam
- Began studying jet propagation (interaction)
- Not sure it works on other laser systems

Jets on the Omega laser (Foster et al 2005)

Multi-beams - Total laser energy ~ 3.5 kJ in a 1 ns pulse ($\mathit{I} \sim 5 \times 10^{14}$ W cm 2)

- Detailed studies with radiography
- Jet are relatively slow, dense and cold (close to liquid state):
 - v ~10 km/s
 - ► T ~ 3 eV
 - $ho \sim 0.1 {
 m g cm}^{-3}$
 - $\blacktriangleright\,$ Mach \sim 3 and Re and Pe >>1

For $\lambda = Experiment a subgraph is (a) 100, (a) 200, and (c) 200 is after the over if the larce drive showing the primes (vivision it 100 in and seconds)$ found durances, excitent at 200 is and large limitant pice. The dotted pice of poster limits the market result interprise the transmission ratiofrom transmission ratiographs from simulators with RACR is <math>(a, b), (a, d) (b, ad) (b, bd, bd, ad) (bd, bd, bd) and bd dimension from the simulation of the prime of the simulators in the simulator bd dimension of the poster data of ad, ad do bd, bd,

Fig. 3.—Fluid density from the RAGE calculations at (a) 100, (b) 280, and (c) 300 ns. The gray scale is logarithmic, from 10⁻¹ to 10⁺¹ cm⁻¹; the axes are labeled in continenters.

Deflected supersonic jets on the Omega laser (Hartigan et al 2009)

12 beams with a total energy of 6 kJ in 1 ns

- Indirect drive: radiation temperature in the hohlraum 190-200 eV
- Study the fluid dynamics of the collision with a dense cloud.
- \triangleright Detailed comparison with simulations
 - and observations

Impact Parameter Series @ 200 ns

Jets on z-pinch machines (Lebedev et al 2002, 2004, 2005; Ciardi et al 2002)

- \triangleright Jets over long time- and length-scales > 10× laser experiments
- Similar dimensionless parameters to laser experiments
- \triangleright More flexible:
 - rotating jets

Rotating jets on twisted conical arrays (Ampleford et al 2008)

Curved jets on z-pinch machines

(Lebedev et al 2004, Ampleford et al 2007, Ciardi et al 2008)

- Astrophysical context: motion of source wrt interstellar medium
- \triangleright Jet is susceptible to RT instability
 - formation of clumps and internal shocks
 - rotation stabilizes the jet

Bow shocks studies on z-pinches (Suzuki-Vidal et al 2012)

Jet velocities \sim 50-100 km/s

Conclusions

▷ Experiments can study a range of physics relevant to jets

- Hydrodynamic and magneto-hydrodynamic instabilities (including radiation)
- Turbulent jets propagation and mixing with the ambient medium
- Generation of bow shocks and collision dynamics
- Aspects of magnetic jet formation and collimation
- ▷ Many experiments in their infancy
 - so expect more interesting results
- Important to couple experiments with numerical simulations, and the modelling/observations of astrophysical jets. -> BUT IT TAKES TIME!