SPECTRAL ANALYSIS OF THE GALACTIC POSITRON ANNIHILATION EMISSION

P. Jean - C.E.S.R.

- Introduction
- SPI/INTEGRAL data analysis
- Models of the annihilation spectrum
- Fit of the phase fractions
- Fate of positrons in the bulge
- Discussion on the origin of positrons

Introduction

Production of e⁺ in the Galaxy

- β ⁺ isotopes	-> SNe, novae X-p -> X-n + e ⁺ + v _e	-> E _{e+} ~ 1 MeV
- π ⁺ decay	-> CR interactions with ISM p + p -> p + n + π ⁺ and π ⁺ -> μ ⁺ -> e ⁺	-> E _{e+} ~ 10-100 MeV
- e+e- pair production	-> accretion disks & jets γ + γ -> e ⁺ + e ⁻ -> pulsar magnetosphere γ + γ -> e ⁺ + e ⁻	-> E _{e+} ≤ 1 MeV -> E _{e+} ~ 1-1000 GeV
- exotic processes	-> e.g. dark matter, dm + dm -> e ⁺ + e ⁻	-> E _{e+} ~ ? MeV

Origin of galactic e⁺ is yet unknown

History of observations

- 1977-1989 balloon borne Ge spectrometers -> correlation between measured flux and FOV (Albernhe et al., 1981)
- 1979-1980 HEAO3 -> variability (Riegler et al., 1981) -> revisited by Mahoney et al., 1994
- 1981-1985 SMM
- 1991-1997 OSSE -> First maps
- 1995-1997 TGRS

GC flux ~
$$10^{-3} \gamma s^{-1} cm^{-2}$$

f_{Ps} = (93 ± 4)%
Bulae to disk flux ratio: B/D ~ 0.2-3.3

• SPI data analysis

Observation with SPI/INTEGRAL

INTEGRAL

ESA's <u>INTE</u>rnational <u>G</u>amma-<u>Ray</u> <u>A</u>strophysics <u>L</u>aboratory

Launch : 17 october 2002 Mission duration : 2008 (+?) Orbit : 72 h, excentric

IBIS : Imager on Board the Integral Satellite			
SPI : <u>SP</u> ectrometer onboard <u>I</u> ntegral			
JEM-X : <u>J</u> oint <u>European M</u> onitor for <u>X</u> -rays			
OMC : Optical Monitoring Camera			

- 15 10000 keV, 12', R ≈ 12
- 20 8000 keV, 2.5°, R ≈ 500
- 3 35 keV, 3', R ≈ 10
- 550 nm (V band), 6"

• SPI data analysis

Imaging the annihilation emission => spatial distribution of the sources Spectroscopy => $f_{Ps} = N_{Ps}/N_{ann}$ and line shape => in which medium e⁺ annihilate

- December 10, 2004 public INTEGRAL data release
- Total exposure time : 15.3 Ms after filtering (flares, end of orbits...)
- Relatively uniform exposure for $|l| < 50^{\circ}$ and $|b| < 15^{\circ}$.

Exposure map

Morphological analysis by model fitting :

- Bulge : 2D Gaussian shaped emission : ~8°x7° FWHM Flux = (1.09 \pm 0.04) 10⁻³ $\gamma/s/cm^{-2}$
- Galactic disk : emission detected (~3-4 σ)

Flux ~ 4-6 $10^{-4} \gamma/s/cm^{-2}$

can be attributed to e⁺ produced by ²⁶Al & ⁴⁴Ti

Morphological analysis by model fitting :

- emission detected at ~10 σ .
- 2D Gaussian shape : ~8° FWHM compatible with the 511 keV distribution

old stellar population favored

Spectral analysis of the annihilation emission

- Spectrum extracted by model fitting assuming a 8°x7° Gaussian distribution

- Exclusion of energy bands with strong instrumental background lines.
- Flux and spectral characteristics obtained by fitting analytical models (Gaussians, orthoPs continuum...) to the cleaned spectrum

Models of the annihilation spectrum

In which ISM phase positrons annihilate?

The method consist in :

- 1 modelling the e⁺e⁻ spectrum in each phase
 we neglect Doppler shifts due to :
 - Galactic rotation in the GC region (< 0.02 keV)
 - turbulence of the ISM ($v_{turb.} < v_{therm.}$)

The ISM is characterized by 5 phases

Phase	T (K)	Ion. Frac.	Local density (cm ⁻³)
Molecular	10	0.	1000
Cold	80	0.	40
Warm Neutral	8000	0.	0.4
Warm Ionized	8000	1.	0.2
Hot	106	1.	0.003

2 - fit a combination of modelled spectra

$$S_{ISM}(E) = I_{e^+e^-} \times \sum_{i=1}^{5} f_i \times S_i(E, x_{gr}) + A_c \left(\frac{E}{511}\right)^s$$

(Guessoum, Jean & Gillard 2005).

Positrons in Molecular medium (T~10 K)

Positrons in Cold medium (T~80 K)

Positrons in Warm neutral medium (T~8000 K)

Positrons in Warm ionized medium (T~8000 K)

Positrons in Hot medium (T~10⁶ K)

Positrons in Hot medium with interstellar grains (T~10⁶ K)

• Fate of positrons in the bulge

Gas content in the Bulge

-> using estimations of H_2 , HI & HII gas masses & distributions in the emitting galactic bulge region (r \leq 600 pc)

-> assuming	HI: 50% in Cold & 50% in WNM HII: 90% in WIM & 10% in hot (Ferriere 1998)			
Phase	n (cm ⁻³)	Filling Factor	Half-size (pc)	Phase fraction
Molecular	3600	0.04%	3-30	<8%
Cold	146	0.2%	~5	<23%
Warm Neutral	1.46	18%	0.1-50	~49%
Warm Ionized	0.77	10%	10-100	~51%
Hot	0.009	72%	50-100	<0.5%

 If e⁺ are uniformly distributed and annihilate without propagating then the phase fractions = filling factors => f_{hot} ~ 70% but observations yield f_{hot} < 0.5% => no sources in hot phase ? => e⁺ escape the hot phase ?

Propagation of e^+ in the bulge

-> if E > E_{ql}(n,B) => e⁺ in resonance with Alven waves => quasi-linear diffusion (D_{ql})

-> if E < E_{ql}(n,B) => diffusion regime uncertain !!! **collisional regime** provides an upper-limit => D_{coll} -> d_i ~ J(6D_i τ)

 $\rightarrow d_{max} = d_{ql} + d_{coll}$

For 1 MeV positrons & $B_{bulge} \sim 10 \ \mu G$ (Sofue et al. 1987, LaRosa et al. 2005)

Phase	n (cm ⁻³)	Half-size (pc)	E _{al} (keV)	d _{al} (pc)	d _{max} (pc)
Molecular	3600	3-30	10-3	1.0	1.0
Cold	146	~5	0.03	4.8	4.8
Warm Neutral	1.46	0.1-50	2.9	47.8	47.9
Warm Ionized	0.77	10-100	5.5	43.9	44.0
Hot	0.009	50-100	270	264	5600

=> 1 MeV positrons escape the hot phase

Initial kinetic energy of e+

- -> positrons escape (and do not annihilate in) the hot phase
- -> high energy positrons (E ≥ 100 MeV) would escape the bulge
- -> positrons with ~10 MeV would escape warm media &

annihilate in cold gas or in molecular clouds

=> E < 100 MeV

=> E < 10MeV

Observationnal facts

- Annihilation rates:

 $(1.5\pm0.1) \times 10^{43} \text{ s}^{-1}$ in the bulge $(0.3\pm0.2) \times 10^{43} \text{ s}^{-1}$ in the disk

- Bulge to disk luminosity ratio: B/D ~ 3-9
- Energy of e^+ in the bulge: E < 10 MeV

How to produce ~ $2 \times 10^{43} e^{+}/s$?

- β⁺ isotopes produced in stars (Colgate, 1970; Clayton, 1973)
 -> ⁵⁶Co : SNe
 -> ²⁶Al : SNII, WR
 -> ⁴⁴Ti : SNII
 -> ²²Na : O-Ne Novae
- Cosmic-ray $\rightarrow p + p \rightarrow p + n + \pi^+$ and $\pi^+ \rightarrow \mu^+ \rightarrow e^+$
- Compact sources -> Pulsars (Sturrock, 1971; Ramaty, 1978) -> Black-holes (Lingenfelter & Ramaty, 1982; Rees, 1982)
- Dark matter

 $\Rightarrow R_{e+} \sim 2 \times 10^{42} \text{ s}^{-1}$

Supernovae

- SNII -> e⁺ from ⁵⁶Co do not escape the ejecta (Chan & Lingenfelter, 1993)

Although SNeIa belong to the old population their distribution seems to give $(B/D)_{SNeIa} < 1$

SNIc/GRB/Hypernovae

asymetric explosion of a WR star

-> e⁺ from ⁵⁶Co released in the ISM : => N_{e+} ~ 2 × 10⁵⁴ (Cassé et al., 2003) => Need 0.2 event per millenium in the bulge

-> e⁺ produced in the jet :

=> $N_{e^+} \sim 10^{56}$ (Parizot et al., 2004)

However massive stars are located mostly in the disk & a single hypernova cannot fill the bulge

Classical novae

Thermonuclear runaway in the enveloppe of an accreting WD in a binary system.

²²Na -> ²²Ne + β^+ - in ONe novae only

-> José, Coc & Hernanz, 2003 : M₂₂ ~ 6 × 10⁻⁹ M* & v_{ONe} ~ 10 yr⁻¹. => R_{e+} ~ 10⁴¹ s⁻¹

Cosmic-ray

 $p + p \rightarrow p + n + \pi^+$ $\pi^+ \rightarrow \mu^+ \rightarrow e^+$

E > 10 MeV Contribution of π^+ in the central region assuming R_{e+} ~ R_{π^+} ~ R_{π^0} ~ R_{γ >100MeV}

 $F_{511keV,\pi^+} \sim (2-1.5f_{Ps}) \times F_{>100MeV} \sim 6 \times 10^{-5} \gamma s^{-1} cm^{-2}$

Pulsars

- Harding & Ramaty, 1987 $R_{e^+} \propto B \times P^{-1.7} s^{-1}$ pulsar⁻¹. e.g. $R_{e^+} \sim 10^{36} s^{-1}$ for the Crab

E > 10 MeV

Total galactic pulsars => R_{e+} ~ 10⁴⁰ s⁻¹

Cheng, Ho & Ruderman, 1986

LMXB/BH/Microquasar

 e^+e^- in jets through $\gamma + \gamma \rightarrow e^+ + e^-$

- Positron yield from a jet not clearly known : -> R₊ ~10⁴¹ s⁻¹ with a large uncertainty -> E \leq 1 MeV
- Number of microquasars : $N_{\mu Q}$ ~ 100 (Paredes 2005)

- $R_{disk} = N_{\mu Q}(Disk) \times R_{+}$ => $R_{disk} \sim 6 \times 10^{42} e^{+/s}$

Remark: constraint on the yield of e+ from microquasars, if microquasars are the source of bulge positrons => $R_{+} < 4 \times 10^{41} s^{-1}$

Guessoum, Jean & Prantzos, in prep.

Dark matter

- neutralinos : $\chi + \chi \rightarrow e^+ + e^$ $m_{\chi} \sim 0.1 - 1 \text{ TeV}$ => $\chi + \chi$ would produce not only e⁺ but also other particles emitting HE γ => not observed with EGRET
- light dark matter (Boehm et al., 2003)
 "Fayet" particle : f + f -> e⁺ + e⁻
 m_f ~ 10 100 MeV => low energy e⁺ & no HE γ.
 distribution in the bulge only

Ascasibar & Boehm, 2004 private communication

Conclusions

- Results of the morphological analysis
 - -> B/D => old stellar population favored (SNIa, novae, LMXB, DM)
 - -> galactic disk emission can be explained by ²⁶Al & ⁴⁴Ti
- Results of the spectral analysis :
 - -> detection of the emission from annihilation of Ps formed in flight.
 - -> annihilation emission seems to come mostly from warm media
 - => we cannot exclude a fraction (<23%) coming from cold phase
 - => we can exclude an hot phase component (<0.5%).
 - => we do not need interstellar grains to explain the line shape.
- Comparison with gas content and with our knowledge about propagation of et:
 - -> positron escape the hot phase
 - -> measured phase fractions in agreement with the filling factors of the gas
 - -> low energy positrons E ≤ ~MeV
 - -> diffuse sources : a single source of e⁺ cannot fill the bulge
- Questions :
 - -> Do e⁺ produced in the galactic disk (by SNIa, novae, LMXB) escape in the halo?
 - -> Are galactic disk e* transported toward the bulge (Prantzos, in prep)?
 - -> What is the diffusion regime of low energy positrons (Marcowith et al., in prep.)?