Planetary magnetic fields and magnetospheres

Philippe Zarka

LESIA, Observatoire de Paris - CNRS, France philippe.zarka@obspm.fr

- Planetary Magnetic Fields
- Magnetospheric structure
- Magnetospheric dynamics
- Electromagnetic emissions
- Exoplanets

- Planetary Magnetic Fields
- Magnetospheric structure
- Magnetospheric dynamics
- Electromagnetic emissions
- Exoplanets

• $\nabla x B = 0$ out of the sources (above the planetary surface)

 \Rightarrow B = - $\nabla \psi$ (ψ = scalar potential)

 $|B| = M/r^3 (1+3\cos^2\theta)^{1/2} = B_e/L^3 (1+3\cos^2\theta)^{1/2}$

with $B_e = M/R_P^3$ = field intensity at the equatorial surface and r = L R_P

Equation of a dipolar field line : $r = L sin^2 \theta$

• Multipolar development in spherical harmonics :

```
\psi = \mathsf{R}_\mathsf{P} \Sigma_{\mathsf{n}=1\to\infty} (\mathsf{R}_\mathsf{P}/\mathsf{r})^{\mathsf{n}+1} \mathsf{S}_\mathsf{i}^\mathsf{n} + (\mathsf{r}/\mathsf{R}_\mathsf{P})^\mathsf{n} \mathsf{S}_\mathsf{e}^\mathsf{n}
```

 S_i^n = internal sources (currents)

 S_e^n = external sources (magnetopause currents, equatorial current disc ...) with

$$\begin{split} S_{i}^{n} &= \Sigma_{m=0 \rightarrow n} \ \mathsf{P}_{n}^{m}(\cos\theta) \left[\mathsf{g}_{n}^{m} \cos \varphi + \mathsf{h}_{n}^{m} \sin \varphi \right] \\ S_{e}^{n} &= \Sigma_{m=0 \rightarrow n} \ \mathsf{P}_{n}^{m}(\cos\theta) \left[\mathsf{G}_{n}^{m} \cos \varphi + \mathsf{H}_{n}^{m} \sin \varphi \right] \end{split}$$

 $P_n^m(\cos\theta)$ = orthogonal Legendre polynomials g_n^m , h_n^m , G_n^m , H_n^m = Schmidt coefficients (internal and external)

This representation is valid out of the sources (currents). Specific currents (e.g. equatorial disc at Jupiter & Saturn) are described by an additional explicit model, not an external potential.

Degree n=1 corresponds to the dipole, n=2 to quadrupole, n=3 to octupole, ...

- Origin of planetary magnetic fields :
 - Dynamo :

Rotation + Convection (thermal, compositional) + Conducting fluid (Earth : liquid Fe-Ni in external core, Jupiter : metallic H) ⇒ sustained B field

- Remanent / ancient dynamo (Mars, Moon...)
- Induced (Jovian / Saturnian satellites)

Planet or satellite	Observed surface field (in T, approximate)	Comments and interpretation
Mercury	2×10^{-7}	Not well characterized or understood
Venus	$< 10^{-8}$ (global); no useful constraint on local fields.	No dynamo. Small remanence
Earth	5×10^{-5}	Core dynamo
Moon	Patchy (10 $^{-9}$ –10 $^{-7}$). Impact-generated? No global field	Ancient dynamo?
Mars	Patchy but locally strong $(10^{-9}-10^{-4})$ field	Ancient dynamo, remanent magnetic lineations
Jupiter	4.2×10^{-4}	Dynamo (extends to near surface)
Io	$< 10^{-6}$?	Complex (deeply imbedded in Jovian field)
Europa	10 ⁻⁷	Induction response (salty water ocean)
Ganymede	2×10^{-6}	Dynamo likely
Callisto	4×10^{-9}	Induction response (salty water ocean)
Saturn	2×10^{-5}	Dynamo (deep down)
Titan	$< 10^{-7}$	Need more data
Uranus	2×10^{-5}	Dynamo(uncertain depth)
Neptune	2×10^{-5}	Dynamo (uncertain depth)

 $1 \text{ G} = 10^{-4} \text{ T} = 10^{5} \text{ nT}$

[Stevenson, 2003]

- In-situ measurements of Terrestrial magnetic field, up to order n=14.
- Ground-based radio discovery and first measurements of Jovian magnetic field :

~20 MHz

[Burke & Franklin, 1955]

LINEARLY POLARIZED MAGNETIC FIELD EQUATORIAL SCAN POLARIZED FLUX CML = 20° CML = 125° CML = 215° CML = 315° CML = 315° CML = 315°

[Radhakrishnan & Roberts, 1958]

⇒ existence, maximum amplitude, inclination of Jovian B field system III of magnetic longitudes : P = 9 h 55 min 29.37 sec

~1 GHz

• Spacecraft measurements of planetary magnetic fields :

- Jupiter : Pioneer 10 & 11 (1973-74), Voyager 1 & 2 (1979), (Ulysses 1992, Galileo 1995-2003)

- Spacecraft measurements of planetary magnetic fields :
 - Jupiter : Pioneer 10 & 11 (1973-74), Voyager 1 & 2 (1979), (Ulysses 1992, Galileo 1995-2003)

⇒ current disc, 300 MA, in centrifugal equator explicit model 5-50 x 5 RJ

[Acuña et al., 1983]

- Spacecraft measurements of planetary magnetic fields :
 - Saturn : Pioneer 11 (1979), Voyager 1 & 2 (1980-81), (Cassini 2004-2017)

⇒ axisymmetric field, contradicts Cowling's antidynamo theorem

- \Rightarrow filtering or shadowing multipolar terms ?
- \Rightarrow origin of magnetospheric periodicities ?

(complex & variable \rightarrow unknown rotation period)

- Spacecraft measurements of planetary magnetic fields :
- Uranus, Neptune : Voyager 2 (1986 & 1989)

 \Rightarrow strongly offset & tilted B fields

•	Magnetic field of	Giant planets	compared to Earth :
---	-------------------	---------------	---------------------

Planète	Terre	Jupiter	Jupiter	Saturne	Uranus	Neptune
R _P (km)	6378	71372	71372	60330	25600	24765
Modèle	IGRF 2000	O6	VIT4	Z3	Q3	08
\mathbf{g}_{1}^{0}	-0.29615	+4.24202	+4.28077	+0.21535	+0.11893	+0.09732
\mathbf{g}_1^{-1}	-0.01728	-0.65929	-0.75306	0	+0.11579	+0.03220
h_1^{-1}	+0.05186	+0.24116	+0.24616	0	-0.15685	-0.09889
\mathbf{g}_2^{0}	-0.02267	-0.02181	-0.04283	+0.01642	-0.06030	+0.07448
\mathbf{g}_2^{-1}	+0.03072	-0.71106	-0.59426	0	-0.12587	+0.00664
h_2^{-1}	-0.02478	-0.40304	-0.50154	0	+0.06116	+0.11230
${g_2}^2$	+0.01672	+0.48714	+0.44386	0	+0.00196	+0.04499
h_2^2	-0.00458	+0.07179	+0.38452	0	+0.04759	-0.00070
\mathbf{g}_{3}^{0}	+0.01341	+0.07565	+0.08906	+0.02743	0	-0.06592
g_{3}^{1}	-0.02290	-0.15493	-0.21447	0	0	+0.04098
h_3^{-1}	-0.00227	-0.38824	-0.17187	0	0	-0.03669
g_{3}^{2}	+0.01253	+0.19775	+0.21130	0	0	-0.03581
h_3^2	+0.00296	+0.34243	+0.40667	0	0	+0.01791
g_{3}^{3}	+0.00715	-0.17958	-0.01190	0	0	+0.00484
h_{3}^{3}	-0.00492	-0.22439	-0.35263	0	0	-0.00770
M^{t} dipolaire (G.R _P ³)	0.305	4.26		0.215	0.228	0.142
Inclinaison (B / Ω)	+11°	-9.6°		-0°	-58.6°	-46.9°
Offset centre dipôle	0.08	0.07		0.04	0.31	0.55
/ centre planète (R_P)						

- Spacecraft measurements of planetary magnetic fields :
- Mercury: Mariner 10 (1974-75), (Messenger 2011-13)

 \Rightarrow weak B ~400 nT, tilt ~10°

[Ness et al., 1976, Connerney et al., 1988]

- Spacecraft measurements of planetary magnetic fields :
- Mars: Mars Global Surveyor (1996-2006)
 - ⇒ no global magnetosphere, up to 10⁴⁻⁵ nT locally at surface tectonics-related ? "mini-MS" form small bumps above the ionosphere, up to >1000 km altitude

- Spacecraft measurements of planetary magnetic fields :
- Moon: Lunar Prospector (1998-99)

 \Rightarrow no global MS, B up to 100 nT at surface, opposed to impact craters

- Spacecraft measurements of planetary magnetic fields :
- Ganymede: Galileo (1996-2003)

 \Rightarrow internal B field and magnetosphere (embedded in Jupiter's, ~100 nT)

[Gurnett et al., 1996, Kivelson et al., 1997]

View from downstream looking into flow direction

- Spacecraft measurements of planetary magnetic fields :
- other Galilean satellites, Enceladus: induced field

[Saur et al., 2002, Khurana, 2009]

Planet or satellite	Observed surface field (in T, approximate)	Comments and interpretation
Mercury	2×10^{-7}	Not well characterized or understood
Venus	$< 10^{-8}$ (global); no useful constraint on local fields.	No dynamo. Small remanence
Earth	5×10^{-5}	Core dynamo
Moon	Patchy (10 $^{-9}$ –10 $^{-7}$). Impact-generated? No global field	Ancient dynamo?
Mars	Patchy but locally strong $(10^{-9}-10^{-4})$ field	Ancient dynamo, remanent magnetic lineations
Jupiter	4.2×10^{-4}	Dynamo (extends to near surface)
Io	$< 10^{-6}$?	Complex (deeply imbedded in Jovian field)
Europa	10 ⁻⁷	Induction response (salty water ocean)
Ganymede	2×10^{-6}	Dynamo likely
Callisto	4×10^{-9}	Induction response (salty water ocean)
Saturn	2×10^{-5}	Dynamo (deep down)
Titan	$< 10^{-7}$	Need more data
Uranus	2×10^{-5}	Dynamo(uncertain depth)
Neptune	2×10^{-5}	Dynamo (uncertain depth)

 $1 \text{ G} = 10^{-4} \text{ T} = 10^{5} \text{ nT}$

[Stevenson, 2003]

- Planetary Magnetic Fields
- Magnetospheric structure
- Magnetospheric dynamics
- Electromagnetic emissions
- Exoplanets

Context

High plasma conductivity

 \Rightarrow B frozen-in

 \Rightarrow E = -VxB almost everywhere (0 in plasma frame)

 \Rightarrow quasi-neutrality

& E.B=0 ($\Delta \phi$ conserved along B lines,

= electric equipotentials)

Solar Wind

- dominated by bulk energy density : NmV²/2

- carries away solar B rooted in the Sun \Rightarrow ballerina skirt

- SW parameters at planetary orbits (r in AU) :

V ~400/ $r^{2/7}$ km/s T ~2x10⁵/ $r^{2/7}$ K

- $N = 5/r^2 \text{ cm}^{-3}$
- $B_r = 3/r^2 nT$ $B_{\phi} = B_r \Omega r/V = 3/r nT$

 $V_{\rm S} \sim 60/r^{1/7} \, {\rm km/s}$

 $V_A \sim 40x(1/2+r^{-2}/2)^{1/2}$ km/s

Magnetopause

- Pressure equilibrium : $P_{SW} = KNmV^2cos^2\chi = P_{MS} = B_T^2/2\mu_o$ with $B_T = B_P + B_C = 2 B_P$ at MP nose K = 1-2 \Rightarrow MP shape

- MP sub-solar point (dipolar field : $B_P = B_{eq} (1+3\cos^2\theta)^{1/2}/R^3$) : $R_{MP} = (2 B_{eq}^2/\mu_o KNmV^2)^{1/6}$

Magnetopause

	Mercure	Terre	Jupiter	Saturne	Uranus	Neptune
R _P (km)	2 439	6 378	71 492	60 268	25 559	24 764
D orbitale (UA)	0.39	1	5.2	9.5	19.2	30.1
M_{dip} (G.km ³)	5.5×10^{7}	7.9×10^{10}	1.6×10^{15}	4.7×10^{13}	3.8×10^{12}	2.2×10^{12}
Champ à l'équateur B _e (G)	0.003	0.31	4.3	0.21	0.23	0.14
Inclinaison [B,Ω] (°) et sens	+14	+11.7	-9.6	-0.	-58.6	-46.9
$ \begin{array}{c} R_{MP} (R_{P}) \\ calculée \\ [mesurée] \end{array} $	1.4 [~1.5]	9 [~10]	40 [~90]	17 [~20]	22 [~18]	21 [~23]

[Encrenaz et al., 2003]

Bow Shock

- supersonic / super-Alfvénic flow \Rightarrow bow shock ahead of MP
- in magnetosheath : slowed flow (V:4 for $M_A >> 1$)

 \Rightarrow B draping / pile-up (|V|.|B| = c^t)

[Spreiter et al., 1966]

- if no intrinsic B field \Rightarrow induced MS, bow shock, B draping, tail, but no cusp

- Planetary Magnetic Fields
- Magnetospheric structure
- Magnetospheric dynamics
- Electromagnetic emissions
- Exoplanets

Plasma Sources

- <u>Solar Wind</u> : cusp + diffusion/reconnection across Magnetopause (H & He, T~100 eV, ~1% of SW flow)

- lonosphere : vertical diffusive equilibrium of cold plasma (T~0.1-1. eV)

- <u>Satellites</u> : Io : volcanism \Rightarrow plasma torus [Bagenal, 1994]

Titan : atmospheric escape[Sittler et al;, 2005]Enceladus : exosphere, plumes[Dougherty et al., 2005]Icy satellites or Mercury's surface : sputtering

- <u>Rings</u> : sputtering / photo-dissociation + ionisation [Young et al., 2005]

 \Rightarrow Total MS mass ~10¹⁰ kg @ Jupiter, ~10⁷ kg @ Earth

- 2 convection cells + large scale E (dawn \rightarrow dusk) inside Earth's MS
- energetic plasma inside MS
- quasi permanent circumpolar aurora (\emptyset = 10°-20°)
- SW control (B_z) of MS activity : $B_N \neq 0$ when $B_z // B_P$

 \Rightarrow Open magnetosphere concept + Dungey cycle

[Dungey, 1961]

cycle of plasma and B field circulation in the Earth's magnetosphere

- Neutral (X) line at equator : penetration of plasma in $MS \Rightarrow MP$ no more equipotential
- Auroral oval = limit open/closed field lines

= projection of equatorial neutral line on ionosphere

- Tail stores / releases energy and magnetic flux
- Poynting flux on obstacle : $P_m = B_{\perp}^2/\mu_o V \pi R_{obs}^2$

- Corotation
 - $E = \Omega R \times B$ (radial)
 - $\Delta \phi \thicksim \Omega ~ B_{eq} ~ R_{P}{}^2$
 - ~ 90 kV @ Earth
 - ~ 400 MV @ Jupiter

- Global circulation = Convection + Corotation

Equipotentials = flow lines

```
Stagnation point at LT = 18 h
```


- Jupiter : outward radial transport (centrifugal interchange instability)

[André, 2006]

 \Rightarrow Vasyliunas cycle ~ rotation driven Dungey cycle

- Saturn : intermediate Earth - Jupiter ?

- Uranus : convection \perp corotation \Rightarrow helicoidal plasma trajectories ?

URANUS

Neptune : Magnetosphere alternately Earth-like & pole-on
⇒ no plasmasphere, mid-latitude aurorae

• Currents, Magnetosphere - Ionosphere coupling

 $\partial N_i / \partial t + \nabla N_i V_i = Q_i - L_i \implies \nabla J = 0$

 \Rightarrow closed current circuits, M-I coupling (region 2)

Currents, Magnetosphere - Ionosphere coupling

- Plasma sources vs Synchronous orbit (where $F_{centrifugal} = F_{gravitation}$)

Planet	$R_{\rm p}$ [km]	Ω [rads/s]	$G_{\rm surf} [{\rm ms}^{-2}]$	$R_{\rm synch}/R_{\rm planet}$	Plasma sources
Mercury	2440	$1.24 imes 10^{-6}$	3.3	96	None
Earth	6371	$7.29 imes 10^{-5}$	9.8	6.6	Ionosphere
Jupiter	70000	1.77×10^{-4}	25.6	2.3	Io
Saturn	60000	$1.71 imes 10^{-4}$	10.8	1.8	Rings, moons
Uranus	25500	1.01×10^{-4}	8.6	3.2	Moons
Neptune	24830	1.01×10^{-4}	10.1	3.4	Moons

[Russell, 2004]

- At Jupiter : extended current disk

- Currents, Magnetosphere Ionosphere coupling
 - radial diffusion from Io \Rightarrow J_r

- plasma pick-up + mass-loading, acceleration to corotation by $J_r x B_{MS}$ at expense of ionospheric plasma momentum via $J_i x B_i$

 ∇ .J = 0 \Rightarrow J_i = J_r B_i/B_{MS} ~ 2R³ J_r $\leq \sigma_i E_i \sim \sigma_i \Omega R B_e/R^3 R^{3/2} = \sigma_i \Omega B_e/R^{1/2}$

⇒ possible as long as $J_r \le \sigma_i \Omega B_e / 2R^{7/2}$

[Bagenal, 1989]

- Currents, Magnetosphere Ionosphere coupling
 - Corotation breakdown at 20-50 R_J

 \Rightarrow J_{//} max \Rightarrow main auroral oval at Jupiter

[[]Cowley & Bunce, 2001]

- Magnetosphere-Satellites coupling
- <u>Unmagnetized satellite / MS interaction</u> [Saur et al., 2004] E = -V x B_J with V=V_{corot}-V_K (=57 km/s @ Io) $\Delta \phi \sim 2 R_{sat} E$ (=4x10⁵ V @ Io) ⇒ induced current (a few 10⁶ A)

 $M_A < 1$ (no bow shock) \Rightarrow Alfvén wings / unipolar inductor ?

Flow dominated by magnetic energy, dissipated powed : $P_d = \epsilon B_J^2/\mu_o V \pi R_{obs}^2$ ($\epsilon \sim M_A = 0.1 - 0.2$)

[Goldreich & Lynden-Bell, 1969; Neubauer, 1980]

- Magnetosphere-Satellites coupling
- Magnetized satellite / MS interaction : B reconnection

Dissipated powed :

 $P_{d} = \varepsilon k B_{J}^{2} / \mu_{o} V \pi R_{obs}^{2}$

 $(k = \cos^4(\theta/2) = 1; \epsilon = 0.1 - 0.2)$

- Planetary Magnetic Fields
- Magnetospheric structure
- Magnetospheric dynamics
- Electromagnetic emissions
- Exoplanets

Aurorae

- reconnection at limit open / closed B lines at Earth
- corotation breakdown at Jupiter
- -? at Saturn
 - \Rightarrow e- acceleration 1-10 keV \Rightarrow visible (O, N, N₂) & UV (H, H₂) aurorae

Aurorae

- IR, X and radio counterparts

- Radio emission process : the Cyclotron Maser Instability
 - Emissions intense ($T_B \ge 10^{15-20}$ K), broadband (f~f_{ce}), 100% elliptical consistent with X mode, very anisotropic (widely open hollow cone)
 - Sources where B, f_{pe}<<f_{ce}, unstable keV e⁻ distributions (high latitude)

Satellite-induced emissions)

- strong currents + low plasma density

[Knight, 1972]

 \Rightarrow e- acceleration 1-10 keV \Rightarrow auroral-like emissions

Downstream / Upstream [Feldman et al., 2000 ; McGrath et al., 2002]

- Planetary Magnetic Fields
- Magnetospheric structure
- Magnetospheric dynamics
- Electromagnetic emissions
- Exoplanets

~862 exoplanets (in >678 systems) ~157 (18%) with $a \le 0.05 \text{ AU} = 10 \text{ Rs}$ \times hot Jupiters » ~272 (32%) with $a \le 0.1 \text{ AU}$

exoplanet.eu

B field at Solar surface :

- \rightarrow large scale ~1 G
- \rightarrow magnetic loops ~10^3 G over a few % of the surface

Magnetic stars : > 10³ G

(cf. ESPADONS / NARVAL measurements)

• Types of interaction : Magnetospheric interaction

Poynting flux of B_{IMF} on obstacle : $P_{m} = B_{\perp}^{2}/\mu_{o} V \pi R_{obs}^{2}$ Dissipated power : $P_{d} = \epsilon P_{m}$ ($\epsilon = 0.1 - 0.2$) (a) (b) magnetic field magnetic field -5 -5 5

[lp et al., 2004]

• Types of interaction : Unipolar inductor

Dissipated power : $P_d = \epsilon V B_{\perp}^2 / \mu_o \pi R_{obs}^2 = \epsilon P_m$ ($\epsilon \sim M_A = 0.1 - 0.2$)

[Shkolnik et al., 2005, 2008]

[Preusse et al., 2006]

• Types of interaction : Dipolar interaction

Dissipated power : $P_d = \epsilon k V B_{\perp}^2 / \mu_o \pi R_{obs}^2 = \epsilon k P_m$ (k = cos⁴(θ /2) = 1 ; ϵ = 0.1 - 0.2)

Interacting magnetic binaries or starplanet systems

• Electromagnetic emissions

- $P_{\text{Radio}} \sim \eta \times P_{\text{m}}$ with $\eta \sim 2-10 \times 10^{-3}$ \forall radio emission 10¹² 10¹ 10¹⁰ Radio power (W) (C) 10⁹ 10⁸ Е 107 10⁶ 10¹³ 10¹² 10¹⁰ 10⁹ 10¹¹ 10¹⁴ Incident magnetic power (W)
- Electromagnetic emissions : Radio-Magnetic Bode's law

[Zarka et al., 2001, 2007]

• Electromagnetic emissions : Radio-Magnetic Bode's law

[Zarka et al., 2001, 2007]

- Magnetic field decay for hot Jupiters ?
 - Spin-orbit synchronisation (tidal forces) $\Rightarrow \omega \downarrow$

but $M \sim \omega^{\alpha}$ with $\frac{1}{2} \leq \alpha \leq 1 \Rightarrow M \downarrow$ (B decay) ?

- Internal structure + convection models
 - \Rightarrow self-sustained dynamo

 \Rightarrow M could remain \geq a few G.R.³

Upper Limit of Magnetic Fields in Hot Jupiters

Planet	М (М _J)	P _{orb} (days)	$\begin{array}{c} R \\ (R_{J}) \end{array}$	M_D (G m ³)	<i>B</i> _s (G)
HD 179949b ^a HD 209458b	0.84	3.093 3.52	1.3 1.43	1.1×10^{24} 0.8×10^{24} 1.6×10^{24}	1.4 0.8
τ Boo b" OGLE-TR-56b	3.87 0.9	5.51 1.2	1.3	1.6×10^{24} 2.2×10^{24}	22.8

[Sanchez-Lavega, 2004]

- Magnetic field decay for hot Jupiters ?
 - Scaling for fast rotators

[Reiners & Christensen, 2010]

• Electromagnetic emissions : other predictions

- M-I coupling for fast rotators

[Nichols, 2011, 2012]

- Variable SPI for HD 189733? 07/2008 (SS at 3.4 R*) 07/2008 (SS at 5.8 R*) - 07/2008 (SS at 10 R* ₫ [mJy] [Farès et al., 2010] 240 270 phase of subplanetary point [deg]

- Prospects for radio detection
 - measurement of $B \Rightarrow$ constraints on internal structure
 - measurement of Prot \Rightarrow test spin-orbit synchronization
 - possible access to inclination [Hess & Zarka, 2011]
 - comparative magnetospheric physics, planet-star plasma interactions
 - implications for exobiology (magnetosphere limits atmospheric erosion by SW and
 - CME, cosmic ray bombardment) [Griessmeier et al., 2004 ; Khodachenko et al., 2006]

⇒ LOFAR, UTR-2, GMRT, VLA observations ongoing ...

